path_entity = simulation + '/' + entity + '/' if os.path.isdir(path_entity): print(entity) simulated_matrix = np.load(path_entity + 'sim_fc.npy') J = np.loadtxt(path_entity + 'J_ij.csv', delimiter=',') critical_temperature = np.loadtxt(path_entity + 'ctem.csv', delimiter=',') ctemp_sim.append(critical_temperature) susceptibility_sim.append( np.loadtxt(path_entity + 'susc.csv', delimiter=',')) c, r = correlation_function(simulated_matrix, J) index_ct = find_nearest(ts, critical_temperature) dimensionality = dim(c, r, index_ct) if not np.isinf(r[-1]): dimensionality_sim.append(dimensionality) dimensionality_exp.append(dimensionality_sim) fig, ax = plt.subplots(figsize=(10, 7)) colors = ['blue', 'green', 'red', 'black', 'cyan'] parts = plt.violinplot(dimensionality_exp, positions=np.array(sizes_), showmeans=True, showmedians=False) cont = 0
import matplotlib.pyplot as plt from generalize_ising_model.ising_utils import corrfun, dim, find_nearest mat = scipy.io.loadmat( '/home/brainlab/Desktop/Rudas/Scripts/ising/dimentionality/wd1/full.mat') corr = mat['Corr_all'] J = mat['J_count_MS_Det'] tc_subs = np.squeeze(mat['tc_subs']) temp = np.squeeze(mat['temp']) print('Starting') corr_fun, r_all = corrfun(corr, J) print(corr_fun.shape) sub = corr_fun.shape[0] d = [] for i in range(sub): print('Sub ' + str(i + 1)) corr_func = corr_fun[i, :, :] idx_ct = find_nearest(temp, tc_subs[i]) d.append(dim(corr_func, r_all[i, :], idx_ct)) print(d) plt.scatter(np.linspace(0, len(d), num=len(d)), d) plt.show() print('Hola Mundo')