예제 #1
0
def get_fit_param(param_fname):

    fit_fname = get_fit_limits_fname(param_fname)
    print(fit_fname)
    fit_param = load_fit_limits(fit_fname)
    fit_mi = 10**fit_param['mi']
    fit_rd = fit_param['rd'] * 1e-3
    return fit_mi, fit_rd
def get_survival_rate(param_fname, fit, mass_bins):
    param = dtk.Param(param_fname)
    cluster_loc = param.get_string('cluster_loc')
    cluster_load_num = param.get_int('cluster_load_num')
    cluster_data = load_clusters(cluster_loc)
    # getting the Ngal with and without disruption
    model_fit_fname = "figs/"+param_fname+"/calc_likelihood_bounds.py/grid_fit_param.txt"
    model_fit = load_fit_limits(model_fit_fname)
    return get_survival_rate_cluster(cluster_data,  cluster_load_num, mass_bins, model_fit, )
예제 #3
0
def plot_radii_effects(param_files, radii, params, xlabel=None, plot_reference=None):
    parameter_labels = {'mi': r"M$_{infall}$"+"\n"+r"[log10 h$^{-1}$ M$_\odot$]",
                        'rd': r"R$_{disrupt}$"+"\n"+r"[h$^{-1}$ kpc]",
                        'rm': r"R$_{merge}$"+"\n"+r"[h$^{-1}$ Mpc]",
                        'x2': r"$\chi^2_{reduced}$",}
    param_fits = []
    for pfile in param_files:
        print(pfile)
        fit = load_fit_limits(pfile)
        param_fits.append(fit)
    size = len(params)
    gs = gridspec.GridSpec(size, 1)
    sharex_ax = None
    fig = plt.figure()

    for i, param in enumerate(params):
        if sharex_ax is None:
            ax = plt.subplot(gs[i, 0])
        else:
            ax = plt.subplot(gs[i, 0], sharex=sharex_ax)
        y, y_err_lower, y_err_upper = get_param_line(param_fits, param, param!='x2')
        ax.plot(radii, y)
        if param != 'x2':
            print(param)
            ax.fill_between(radii, y-y_err_lower, y+y_err_upper, alpha=0.3)
            if plot_reference is not None:
                ax.axhline(y[plot_reference], ls='--', color='k')
                ax.axhline(y[plot_reference]-y_err_lower[plot_reference], ls=':', color='k')
                ax.axhline(y[plot_reference]+y_err_upper[plot_reference], ls=':', color='k')
        ax.set_ylabel(parameter_labels[param])
        if param == 'x2' :
            if xlabel is not None: #x2 is always last
                ax.set_xlabel(xlabel)
        else:
            ax.xaxis.set_ticklabels([])
    gs.tight_layout(fig)
def load_fit_limits_set(param_fnames):
    return [ load_fit_limits("figs/"+param_fname+"/calc_likelihood_bounds.py/grid_fit_param.txt") for param_fname in param_fnames]
def plot_miscentering_effects(fname_pattern, distances_str, distances_val):
    param_files_rd = [
        fname_pattern.replace("${displacement}", distance)
        for distance in distances_str
    ]
    # [print(pfd) for pfd in param_files_rd]
    rds = []
    rds_ue = []
    rds_le = []

    mis = []
    mis_ue = []
    mis_le = []
    chi2 = []
    for pfd in param_files_rd:
        fit = load_fit_limits(pfd)
        print(fit)
        mis.append(fit['mi'])
        mis_ue.append(fit['mi_limits'][0])
        mis_le.append(fit['mi_limits'][1])
        rds.append(fit['rd'])
        rds_ue.append(fit['rd_limits'][0])
        rds_le.append(fit['rd_limits'][1])
        chi2.append(fit['x2'])

    # Convert Mpc to kpc
    distances_val *= 1000
    distances_val += 1
    # plt.figure()
    # plt.plot(distances_val+0.01, mis, '-o')
    # plt.fill_between(distances_val+0.01, mis_le, mis_ue, alpha=0.3)
    # plt.xlabel('Center Displacement')
    # plt.ylabel('M$_{infall}$ [Msun/h]')
    # plt.xscale('log')

    # plt.figure()
    # plt.plot(distances_val+0.01, rds, '-o')
    # plt.fill_between(distances_val+0.01, rds_le, rds_ue, alpha=0.3)
    # plt.xlabel('Center Displacement')
    # plt.ylabel('R$_{disrupt}$ [kpc/h]')
    # plt.xscale('log')

    gs = gridspec.GridSpec(3, 1)
    sharex_ax = None
    fig = plt.figure(figsize=(6, 10))
    ax1 = plt.subplot(gs[0, 0])
    ax1.plot(distances_val, mis, '-o')
    ax1.fill_between(distances_val, mis_le, mis_ue, alpha=0.3)
    ax1.set_xscale('log')
    ax1.set_ylabel("M$_{infall}$" + "\n" + r"[log10 h$^{-1}$ M$_\odot$]")
    ax1.xaxis.set_ticklabels([])

    # ax1.plot(distances_val+0.01, mis, '-o')
    # ax1.fill_between(distances_val+0.01, mis_le, mis_ue, alpha=0.3)

    ax2 = plt.subplot(gs[1, 0])
    ax2.plot(distances_val, rds, '-o')
    ax2.fill_between(distances_val, rds_le, rds_ue, alpha=0.3)
    ax2.set_ylabel("R$_{disrupt}$" + "\n" + r"[h$^{-1}$ kpc]")
    ax2.set_xscale('log')
    ax2.xaxis.set_ticklabels([])

    ax3 = plt.subplot(gs[2, 0])
    ax3.plot(distances_val, chi2, '-o')
    ax3.set_ylabel("$\widetilde\chi^2$")
    ax3.set_xscale('log')
    ax3.set_yscale('log')
    # ax3.fill_between(distances_val+0.01, rds_le, rds_ue, alpha=0.3)
    ax3.set_xlabel('Center Displacement + 1 [h$^{-1}$ kpc]')
    gs.tight_layout(fig)