def generate_test(self, batch_size, encode, soft_ordinal_conf, ensemble=False, ensemble_type='regression'): # Load dataset if not loaded self.load(self._name) if self._big_dataset: return BigGenerator(self._df_test, self._base_path, self._num_classes, self._x_col, self._y_col, mean=self.mean_train, std=self.std_train, encode=encode, batch_size=batch_size, labels=self._labels, soft_ordinal_config=soft_ordinal_conf, ensemble=ensemble, ensemble_type=ensemble_type) else: return SmallGenerator(self._x_test, self._y_test, self._num_classes, mean=self.mean_train, std=self.std_train, batch_size=batch_size, encode=encode, labels=self._labels, soft_ordinal_config=soft_ordinal_conf, ensemble=ensemble, ensemble_type=ensemble_type)
def generate_test(self, batch_size): # Load dataset if not loaded self.load(self._name) if self._big_dataset: return BigGenerator(self._df_test, self._base_path, self._num_classes, self._x_col, self._y_col, mean=self.mean_train, std=self.std_train, batch_size=batch_size) else: return SmallGenerator(self._x_test, self._y_test, self._num_classes, mean=self.mean_train, std=self.std_train, batch_size=batch_size)
def generate_test(self, batch_size, labels_transform=lambda labels, n: to_categorical(labels, num_classes=n)): # Load dataset if not loaded self.load(self._name) if self._big_dataset: return BigGenerator(self._df_test, self._base_path, self._num_classes, self._x_col, self._y_col, mean=self.mean_train, std=self.std_train, batch_size=batch_size, labels_transform=labels_transform) else: return SmallGenerator(self._x_test, self._y_test, self._num_classes, mean=self.mean_train, std=self.std_train, batch_size=batch_size, labels_transform=labels_transform)
def generate_train(self, batch_size, augmentation): # Load dataset if not loaded self.load(self._name) if self._big_dataset: return BigGenerator(self._df_train, self._base_path, self._num_classes, self._x_col, self._y_col, mean=self.mean_train, std=self.std_train, batch_size=batch_size, augmentation=augmentation, workers=self._workers) else: return SmallGenerator(self._x_train, self._y_train, self._num_classes, mean=self.mean_train, std=self.std_train, batch_size=batch_size, augmentation=augmentation, workers=self._workers)