def test_qgen(sess, testset, tokenizer, qgen, cpu_pool, batch_size, logger): qgen_sources = qgen.get_sources(sess) qgen_evaluator = Evaluator(qgen_sources, qgen.scope_name, network=qgen, tokenizer=tokenizer) qgen_batchifier = QuestionerBatchifier(tokenizer, qgen_sources, status=('success',)) qgen_iterator = Iterator(testset, pool=cpu_pool, batch_size=batch_size, batchifier=qgen_batchifier) [qgen_loss] = qgen_evaluator.process(sess, qgen_iterator, outputs=[qgen.ml_loss]) logger.info("QGen test loss: {}".format(qgen_loss))
class GuesserWrapper(object): def __init__(self, guesser, batchifier, tokenizer, listener): self.guesser = guesser self.batchifier = batchifier self.tokenizer = tokenizer self.listener = listener self.evaluator = None def initialize(self, sess): self.evaluator = Evaluator(self.guesser.get_sources(sess), self.guesser.scope_name) def find_object(self, sess, games): # the guesser may need to split the input iterator = BasicIterator(games, batch_size=len(games), batchifier=self.batchifier) # sample self.evaluator.process(sess, iterator, outputs=[], listener=self.listener, show_progress=False) results = self.listener.results() # Update games new_games = [] # for game in games: for game in games: res = results[game.dialogue_id] # print("--") # print(att) game.id_guess_object = res["id_guess_object"] game.user_data.get("softmax", []).append(res["softmax"]) game.status = "success" if res["success"] else "failure" game.is_full_dialogue = True new_games.append(game) return new_games
def test_guesser(sess, testset, tokenizer, guesser, cpu_pool, batch_size, logger): guesser_sources = guesser.get_sources(sess) guesser_evaluator = Evaluator(guesser_sources, guesser.scope_name, network=guesser, tokenizer=tokenizer) guesser_batchifier = QuestionerBatchifier(tokenizer, guesser_sources, status=('success',)) guesser_iterator = Iterator(testset, pool=cpu_pool, batch_size=batch_size, batchifier=guesser_batchifier) [guesser_loss, guesser_error] = guesser_evaluator.process(sess, guesser_iterator, [guesser.loss, guesser.error]) logger.info("Guesser test loss: {}".format(guesser_loss)) logger.info("Guesser test error: {}".format(guesser_error))
def test_oracle(sess, testset, tokenizer, oracle, cpu_pool, batch_size, logger): oracle_dataset = OracleDataset(testset) oracle_sources = oracle.get_sources(sess) oracle_evaluator = Evaluator(oracle_sources, oracle.scope_name, network=oracle, tokenizer=tokenizer) oracle_batchifier = OracleBatchifier(tokenizer, oracle_sources, status=('success',)) oracle_iterator = Iterator(oracle_dataset, pool=cpu_pool, batch_size=batch_size, batchifier=oracle_batchifier) [oracle_loss, oracle_error] = oracle_evaluator.process(sess, oracle_iterator, [oracle.loss, oracle.error]) logger.info("Oracle test loss: {}".format(oracle_loss)) logger.info("Oracle test error: {}".format(oracle_error))
network=network, tokenizer=tokenizer) batchifier = QuestionerBatchifier(tokenizer, sources, status=('success', )) for t in range(start_epoch, no_epoch): logger.info('Epoch {}..'.format(t + 1)) train_iterator = Iterator(trainset, batch_size=batch_size, pool=cpu_pool, batchifier=batchifier, shuffle=True) train_loss, train_accuracy = evaluator.process(sess, train_iterator, outputs=outputs + [optimizer]) valid_iterator = Iterator(validset, pool=cpu_pool, batch_size=batch_size * 2, batchifier=batchifier, shuffle=False) valid_loss, valid_accuracy = evaluator.process(sess, valid_iterator, outputs=outputs) logger.info("Training loss: {}".format(train_loss)) logger.info("Training error: {}".format(1 - train_accuracy)) logger.info("Validation loss: {}".format(valid_loss)) logger.info("Validation error: {}".format(1 - valid_accuracy))
logger.info('Epoch {}..'.format(t + 1)) # logger.info('Epoch {}..'.format(t + 1)) logger.info(" train_oracle | Iterator ...") t1 = time.time() train_iterator = Iterator(trainset, batch_size=batch_size, pool=cpu_pool, batchifier=batchifier, shuffle=True) t2 = time.time() logger.info(" train_oracle | Iterator...Total=".format(t2-t1)) t1 = time.time() train_loss, train_accuracy = evaluator.process(sess, train_iterator, outputs=outputs + [optimizer],out_net=best_param) t2 = time.time() logger.info(" train_oracle | evaluatorator...Total=".format(t2-t1)) t1 = time.time() valid_iterator = Iterator(validset, pool=cpu_pool, batch_size=batch_size*2, batchifier=batchifier, shuffle=False) t2 = time.time()
batchifier = QuestionerBatchifier(tokenizer, sources, status=('success', )) best_val_loss = 1e5 for t in range(0, config['optimizer']['no_epoch']): logger.info('Epoch {}..'.format(t + 1)) train_iterator = Iterator(trainset, batch_size=batch_size, pool=cpu_pool, batchifier=batchifier, shuffle=True) [train_loss] = evaluator.process(sess, train_iterator, outputs=outputs + [optimizer]) valid_iterator = Iterator(validset, pool=cpu_pool, batch_size=batch_size * 2, batchifier=batchifier, shuffle=False) [valid_loss] = evaluator.process(sess, valid_iterator, outputs=outputs) logger.info("Training loss: {}".format(train_loss)) logger.info("Validation loss: {}".format(valid_loss)) if valid_loss < best_val_loss:
for t in range(start_epoch, no_epoch): if args.skip_training: logger.info("Skip training...") break logger.info('Epoch {}..'.format(t + 1)) # Create cpu pools (at each iteration otherwise threads may become zombie - python bug) cpu_pool = create_cpu_pool(args.no_thread, use_process=use_process) train_iterator = Iterator(trainset, batch_size=batch_size, pool=cpu_pool, batchifier=batchifier, shuffle=True) train_loss, _ = evaluator.process(sess, train_iterator, outputs=outputs + [optimizer], listener=listener) train_accuracy = listener.accuracy( ) # Some guessers needs to go over the full dataset before comuting the accuracy, thus we use an intermediate listener valid_iterator = Iterator(validset, pool=cpu_pool, batch_size=batch_size * 2, batchifier=batchifier, shuffle=False) valid_loss, _ = evaluator.process(sess, valid_iterator, outputs=outputs, listener=listener) valid_accuracy = listener.accuracy()
best_val_loss = 1e5 for t in range(0, config['optimizer']['no_epoch']): logger.info('Epoch {}..'.format(t + 1)) train_iterator = Iterator(trainset, batch_size=batch_size, pool=cpu_pool, batchifier=batchifier, shuffle=True) # Changed for [train_loss, _] = evaluator.process(sess, train_iterator, outputs=outputs + [optimizer] + [network.summary], n_batch=global_train_step, writer=writer_t, mod_val=config["freq"]) print "The Golbal Train Step is : %d" % (global_train_step[0]) # Don't know why the batch size is doubled??? # valid_iterator = Iterator(validset, pool=cpu_pool, # batch_size=batch_size*2, # batchifier=batchifier, # shuffle=False) valid_iterator = Iterator(validset, pool=cpu_pool, batch_size=batch_size, batchifier=batchifier,
# CPU cpu_pool = create_cpu_pool( args.no_thread, use_process=image_builder.require_multiprocess()) logger.info('Epoch {}/{}..'.format(t + 1, no_epoch)) train_iterator = Iterator(trainset, batch_size=batch_size, batchifier=batchifier, shuffle=True, pool=cpu_pool) [train_loss, train_accuracy_fake ] = evaluator.process(sess, train_iterator, outputs=outputs + [optimize], listener=listener) train_accuracy = listener.evaluate() valid_iterator = Iterator(validset, batch_size=batch_size * 2, batchifier=batchifier, shuffle=False, pool=cpu_pool) [valid_loss, valid_accuracy_fake] = evaluator.process(sess, valid_iterator, outputs=outputs, listener=listener) valid_accuracy = listener.evaluate()
shuffle=True, pool=cpu_pool) [train_loss, train_accuracy] = train_evaluator.process(sess, train_iterator, outputs=outputs + [optimizer]) valid_loss, valid_accuracy = 0,0 if not merge_dataset: valid_iterator = Iterator(validset, batch_size=batch_size*2, batchifier=eval_batchifier, shuffle=False, pool=cpu_pool) # Note : As we need to dump a compute VQA accuracy, we can only use a single-gpu evaluator [valid_loss, valid_accuracy] = eval_evaluator.process(sess, valid_iterator, outputs=[networks[0].loss, networks[0].accuracy], listener=vqa_eval_listener) logger.info("Training loss: {}".format(train_loss)) logger.info("Training accuracy: {}".format(train_accuracy)) logger.info("Validation loss: {}".format(valid_loss)) logger.info("Validation accuracy: {}".format(valid_accuracy)) logger.info(vqa_eval_listener.get_accuracy()) if valid_accuracy >= best_val_acc: best_train_acc = train_accuracy best_val_acc = valid_accuracy saver.save(sess, save_path.format('params.ckpt')) logger.info("checkpoint saved...") pickle_dump({'epoch': t}, save_path.format('status.pkl'))
sources = network.get_sources(sess) logger.info("Sources: " + ', '.join(sources)) saver.restore(sess, save_path.format('params.ckpt')) if not os.path.exists(args.features): os.makedirs(args.features) # create training tools evaluator = Evaluator(sources, network.scope_name, network=network, tokenizer=tokenizer) batchifier = QuestionerBatchifier(tokenizer, sources, status=('success',)) train_iterator = Iterator(trainset, batch_size=batch_size * 2, pool=cpu_pool, batchifier=batchifier, shuffle=False) _, train_states = evaluator.process(sess, train_iterator, outputs=outputs, output_dialogue_states=True) save_dialogue_states(args.features, "train", *train_states) valid_iterator = Iterator(validset, pool=cpu_pool, batch_size=batch_size * 2, batchifier=batchifier, shuffle=False) _, valid_states = evaluator.process(sess, valid_iterator, outputs=outputs, output_dialogue_states=True) save_dialogue_states(args.features, "valid", *valid_states) test_iterator = Iterator(testset, pool=cpu_pool, batch_size=batch_size * 2, batchifier=batchifier, shuffle=False)
class QGenWrapper(object): def __init__(self, qgen, batchifier, tokenizer, max_length, k_best): self.qgen = qgen self.batchifier = batchifier self.tokenizer = tokenizer self.ops = dict() self.ops["sampling"] = qgen.create_sampling_graph( start_token=tokenizer.start_token, stop_token=tokenizer.stop_token, max_tokens=max_length) self.ops["greedy"] = qgen.create_greedy_graph( start_token=tokenizer.start_token, stop_token=tokenizer.stop_token, max_tokens=max_length) beam_predicted_ids, seq_length, att = qgen.create_beam_graph( start_token=tokenizer.start_token, stop_token=tokenizer.stop_token, max_tokens=max_length, k_best=k_best) # print('b',beam_predicted_ids) # print('s',seq_length) # Only keep best beam self.ops[ "beam"] = beam_predicted_ids[:, 0, :], seq_length[:, 0], beam_predicted_ids[:, 0, :] * 0, att self.evaluator = None def initialize(self, sess): self.evaluator = Evaluator(self.qgen.get_sources(sess), self.qgen.scope_name, network=self.qgen, tokenizer=self.tokenizer) def policy_update(self, sess, games, optimizer): # ugly hack... to allow training on RL batchifier = copy.copy(self.batchifier) batchifier.generate = False batchifier.supervised = False iterator = BasicIterator(games, batch_size=len(games), batchifier=batchifier) # Check whether the gradient is accumulated if isinstance(optimizer, AccOptimizer): sess.run(optimizer.zero) # reset gradient local_optimizer = optimizer.accumulate else: local_optimizer = optimizer # Compute the gradient self.evaluator.process(sess, iterator, outputs=[local_optimizer], show_progress=False) if isinstance(optimizer, AccOptimizer): sess.run(optimizer.update) # Apply accumulated gradient def sample_next_question(self, sess, games, att_dict, beta_dict, mode): # ugly hack... to allow training on RL batchifier = copy.copy(self.batchifier) batchifier.generate = True batchifier.supervised = False # create the training batch batch = batchifier.apply(games, skip_targets=True) batch["is_training"] = False batch["is_dynamic"] = True # Sample tokens, seq_length, state_values, atts = self.evaluator.execute( sess, output=self.ops[mode], batch=batch) # tokens, seq_length, state_values, atts, betas = self.evaluator.execute(sess, output=self.ops[mode], batch=batch) # Update game new_games = [] for game, question_tokens, l, state_value, att in zip( games, tokens, seq_length, state_values, atts): # for game, question_tokens, l, state_value, att, beta in zip(games, tokens, seq_length, state_values, atts, betas): if not game.user_data[ "has_stop_token"]: # stop adding question if dialogue is over # clean tokens after stop_dialogue_tokens if self.tokenizer.stop_dialogue in question_tokens: game.user_data["has_stop_token"] = True l = np.nonzero( question_tokens == self.tokenizer.stop_dialogue )[0][0] + 1 # find the first stop_dialogue occurrence # Append the newly generated question game.questions.append( self.tokenizer.decode(question_tokens[:l])) game.question_ids.append(len(game.question_ids)) game.user_data["state_values"] = game.user_data.get( "state_values", []) game.user_data["state_values"].append(state_value[:l].tolist()) att = att.tolist() att_i = np.argsort(att).tolist() att_3 = np.sort(att).tolist() if game.dialogue_id not in att_dict: att_dict[game.dialogue_id] = [] att_dict[game.dialogue_id].append((att_i, att_3)) else: att_dict[game.dialogue_id].append((att_i, att_3)) # beta = beta.tolist() # if game.dialogue_id not in beta_dict: # beta_dict[game.dialogue_id] = [] # beta_dict[game.dialogue_id].append(beta) # else: # beta_dict[game.dialogue_id].append(beta) new_games.append(game) return new_games, att_dict #, beta_dict