def main(): parser = argparse.ArgumentParser() parser.add_argument('--config_json', help='location of json configuration', default='config.json') options = vars(parser.parse_args()) config_json = read_config(options['config_json']) #url = 'https://api.openweathermap.org/data/2.5/weather?zip={}&appid={}'.format(options['zip'], options['owmkey']) #r = requests.get(url) ticks_per_quarter = config_json['midi']['ticks_per_quarter'] midi_output = midi.Midi(ticks_per_quarter) trk_chk = midi.Midi.TrackChunk(ticks_per_quarter) # result sequence is a list containing a single list containing the resulting measures from the algorithm result_sequence = genetic.run(config_json) for measure in result_sequence[0]: print("Result measure: {}".format(measure)) for note in measure.notes: note_length_ticks = int(ticks_per_quarter * note.note_len * 4) trk_chk.add_event(1, 0, note.midi_num, 96, 0) trk_chk.add_event(0, 0, note.midi_num, 0, note_length_ticks) midi_output.chunks.append(trk_chk) midi_output.write_to_file(config_json['midi']['output'])
def main(): """Run imported algorithms and show statistics.""" if OMIT_OUTPUT: sys.stdout = open(os.devnull, 'w') genetic_time, lcv_time, mrv_time, ph_time = [], [], [], [] for _ in range(NO_OF_TESTS): now = time.time() genetic.run() genetic_time.append(time.time() - now) now = time.time() least_constraining_value.run() lcv_time.append(time.time() - now) now = time.time() minimum_remaining_values.run() mrv_time.append(time.time() - now) now = time.time() power_heuristic.run() ph_time.append(time.time() - now) if OMIT_OUTPUT: sys.stdout = sys.__stdout__ algorithms = [ 'Genetic', 'Least constraining value', 'Minimum remaining values', 'Power heuristic' ] stats = [genetic_time, lcv_time, mrv_time, ph_time] for name, t in zip(algorithms, stats): avg_time = round(sum(t) / NO_OF_TESTS * 1000, ACCURACY) print(f"Statistics for {name} algorithm: {avg_time} ms.")
def test(stat,time): mystats = team.calcTeamStats(mystarters, stat, players, time) head = team.statidHeader(stat) t1,f1=genetic.run(mystarters,TeamsToInclude=[0,MYTEAMID],StatsToMaximize=stat, TimeFrame=time, Population=1000, Generations=60) print('\n\n\n\n\n\n\n') [print(head[i],mystats[i]) for i in range(len(head))] print() gastats = team.calcTeamStats(t1, stat, players, time) [print(head[i],gastats[i]) for i in range(len(head))] m = set(mystarters) g = set(t1) k = m&g d = m-g u = g-m print('\nKeep:') for x in k: p = players[x] print(p['stats_percentown'],p['stats_percentowndelta'],p['player_name'],p['position_eligible']) print('\nDrop:') for x in d: p = players[x] print(p['stats_percentown'],p['stats_percentowndelta'],p['player_name'],p['position_eligible']) print('\nPickup:') for x in u: p = players[x] print(p['stats_percentown'],p['stats_percentowndelta'],p['player_name'],p['position_eligible']) mystats = team.calcTeamStats(mystarters, st, players, time) gastats = team.calcTeamStats(t1, st, players, time) print (gastats) print (mystats) print (len(mystats)) print ( sum( [a/b for a,b in zip(gastats,mystats)] ) )
def initialize(): preamble() generate_detectors() initialize_state() genetic.run()