def word_vec(self, word, use_norm=False): """Get the word's representations in vector space, as a 1D numpy array. Parameters ---------- word : str A single word whose vector needs to be returned. use_norm : bool If True, returns normalized vector. Returns ------- :class:`numpy.ndarray` The word's representations in vector space, as a 1D numpy array. Raises ------ KeyError For words with all ngrams absent, a KeyError is raised. Example ------- >>> from gensim.models import FastText >>> sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]] >>> >>> model = FastText(sentences, min_count=1) >>> meow_vector = model.word_vec('meow') # get vector for word """ return FastTextKeyedVectors.word_vec(self.wv, word, use_norm=use_norm)
def word_vec(self, word, use_norm=False): return FastTextKeyedVectors.word_vec(self.wv, word, use_norm=use_norm)