예제 #1
0
파일: hyperpars.py 프로젝트: cciaschi/bart
depths = 2e-5 + (2e-4 - 2e-5) * np.random.rand(N)
durations = 0.3 + 0.2 * np.random.rand(N)
datasets = []
for t0, depth, duration in zip(t0s, depths, durations):
    ds = deepcopy(dataset)
    model = np.ones_like(ds.time)
    model[(ds.time < t0+duration)*(ds.time > t0-duration)] *= 1.0 - depth
    ds.flux *= model
    datasets.append(ds)

[pl.plot(ds.time, ds.flux, ".") for ds in datasets]
pl.savefig("data.png")

# Compute the Gaussian processes on the dataset.
gp = GaussianProcess([1e-3, 3.0, 10.])
gp.compute(dataset.time, dataset.ferr)

# Loop over true epochs.
d = 0.2
correct = []
incorrect = []
for t0, depth, duration, data in zip(t0s, depths, durations, datasets):
    null = gp.lnlikelihood(data.flux - 1.0)

    # Compute the correct model.
    model = np.ones_like(data.time)
    model[(data.time < t0+duration)*(data.time > t0-duration)] *= 1.0 - 0.0001
    correct.append(gp.lnlikelihood(data.flux - model) - null)

    for i, t in enumerate(data.time):
        if np.abs(t0 - t) < 2*d:
예제 #2
0
파일: test_grid.py 프로젝트: cciaschi/bart
pl.savefig("data.png")

t = data.time
f = data.flux
d = 0.2

x = np.linspace(-6, 0, 10)
y = np.linspace(-1.0, 10, 12)
s2n = np.zeros((len(x), len(y)))
ll = np.zeros((len(x), len(y)))
delta_ll = np.zeros((len(x), len(y)))

for ix, a in enumerate(x):
    for iy, l in enumerate(y):
        gp = GaussianProcess([10 ** a, 10 ** l, 1e6])
        gp.compute(data.time, data.ferr)
        null = gp.lnlikelihood(f - 1.0)
        results = []
        for i, t0 in enumerate(t):
            if np.abs(t0 - truth[2]) < 2*d:
                continue
            model = np.ones_like(f)
            model[(t < t0+d) * (t > t0-d)] *= 1.0 - 0.0001
            results.append((t0, gp.lnlikelihood(f - model)))
        results = np.array(results)

        model = np.ones_like(f)
        model[(t < truth[2]+d) * (t > truth[2]-d)] *= 1.0 - 0.0001
        ll_true = gp.lnlikelihood(f - model)

        mu, std = np.mean(results[:, 1]), np.std(results[:, 1])
예제 #3
0
파일: data.py 프로젝트: cciaschi/bart
class GPLightCurve(LightCurve):
    """
    An extension to :class:`LightCurve` with a Gaussian Process likelihood
    function. This does various nice things like masking NaNs and Infs and
    normalizing the fluxes by the median.

    :param time:
        The time series in days.

    :param flux:
        The flux measurements in arbitrary units.

    :param ferr:
        The error bars on ``flux``.

    :param hyperpars:
        The parameters for the ``GaussianProcess`` kernel.

    :param texp: (optional)
        The integration time (in seconds). (default: 1626.0… Kepler
        long-cadence)

    :param K: (optional)
        The number of bins to use in the approximate exposure time integral.
        (default: 3)

    """

    def __init__(self, time, flux, ferr, hyperpars, jitter=0.0, **kwargs):
        if GaussianProcess is None:
            raise ImportError("You need to install george to use GPs")
        super(GPLightCurve, self).__init__(time, flux, ferr, **kwargs)
        self._hyperpars = hyperpars
        self._gp = None
        self._jitter = jitter

    def __getstate__(self):
        return dict([(k, v) for k, v in self.__dict__.items() if k != "_gp"])

    def __setstate__(self, d):
        for k, v in d.items():
            setattr(self, k, v)
        self._gp = None

    @property
    def gp(self):
        if self._gp is None:
            self._gp = GaussianProcess(ExpSquaredKernel(*self.hyperpars))
        if not self._gp.computed:
            std = np.sqrt(self.ferr**2 + self.jitter**2)
            self._gp.compute(self.time, std)
        return self._gp

    @property
    def jitter(self):
        return self._jitter

    @jitter.setter
    def jitter(self, value):
        self._gp = None
        self._jitter = value

    @property
    def hyperpars(self):
        return self._hyperpars

    @hyperpars.setter
    def hyperpars(self, value):
        self._hyperpars = value
        self._gp = None

    # Helper functions for the individual hyperparameters.
    @property
    def alpha(self):
        return self._hyperpars[0]

    @alpha.setter
    def alpha(self, value):
        h = self._hyperpars
        h[0] = value
        self.hyperpars = h

    @property
    def scale(self):
        return self._hyperpars[1]

    @scale.setter
    def scale(self, value):
        h = self._hyperpars
        h[1] = value
        self.hyperpars = h

    def optimize_hyperpars(self, n=None, **kwargs):
        if n is None:
            n = len(self.time)
        gp = GaussianProcess(self.hyperpars)
        flag, hyperpars = gp.optimize(self.time[:n], self.ferr[:n],
                                      self.flux[:n]-1, **kwargs)
        self.hyperpars = hyperpars
        return flag, hyperpars

    def lnlike(self, lc):
        """
        Get the likelihood of this dataset given a particular :class:`Model`.

        :param model:
            The predicted light curve model evaluated at ``eval_time``.

        """
        return self.gp.lnlikelihood(self.flux - lc)

    def predict(self, lc, size=None, resample=None):
        """
        Generate a sample from the light curve probability function for a
        particular :class:`Model`.

        :param model:
            The predicted light curve model evaluated at ``eval_time``.

        """
        if resample is None:
            mu, cov = self.gp.predict(self.flux - lc, self.time)
            return mu + lc
        t = self.time[::resample]
        mu, cov = self.gp.predict(self.flux - lc, t)
        mu += lc[::resample]
        return np.interp(self.time, t, mu)
예제 #4
0
파일: periodic.py 프로젝트: iancze/george
# Generate some fake data.
period = 0.956
x = 10 * np.sort(np.random.rand(75))
yerr = 0.1 + 0.1 * np.random.rand(len(x))
y = gp.sample_prior(x)
y += 0.8 * np.cos(2 * np.pi * x / period)
y += yerr * np.random.randn(len(yerr))

# Set up a periodic kernel.
pk = ExpSquaredKernel(np.sqrt(0.8), 1000.0) * CosineKernel(period)
kernel2 = kernel + pk
gp2 = GaussianProcess(kernel2)

# Condition on this data.
gp2.compute(x, yerr)

# Compute the log-likelihood.
print("Log likelihood = {0}".format(gp2.lnlikelihood(y)))

# Compute the conditional predictive distribution.
t = np.linspace(0, 10, 200)
f = gp2.sample_conditional(y, t, size=500)
mu = np.mean(f, axis=0)
std = np.std(f, axis=0)

pl.errorbar(x, y, yerr=yerr, fmt=".k")
pl.plot(t, mu, "k", lw=2, alpha=0.5)
pl.plot(t, mu+std, "k", alpha=0.5)
pl.plot(t, mu-std, "k", alpha=0.5)
pl.savefig("periodic.png")