def __init__(self, prev, curr, templates, callback=None, match_threshold=0.8): """ State machine for hand gesture recognition. Callback is called with the parameters: query : array_like The set of (x,y) points that represent the hand path template : array_like The best matching template gesture score : float The matching score (in range [0,1] with 1 being perfect match) theta : float The rotation of the gesture that gave the best match clsid : int The ID of the template class that matched best Parameters ---------- imshape : tuple The dimensions tuple of the image stream templates : string, h5py.File h5py.File instance or path to the h5 dataset of template gestures to use callback : function Callback function called when a gesture match is made """ super(self.__class__, self).__init__(self.Wait) self.callback = callback self.match_threshold = match_threshold if isinstance(templates, basestring): self.template_ds = h5py.File(templates, 'r') else: self.template_ds = templates self.segmenter = SkinMotionSegmenter(prev, curr) self.detector = ConvexityHandDetector() self.tracker = CrCbMeanShiftTracker() self.imshape = prev.shape self.counter = 0 self.waypts = []
def __init__(self,prev,curr,templates,callback=None,match_threshold=0.8): """ State machine for hand gesture recognition. Callback is called with the parameters: query : array_like The set of (x,y) points that represent the hand path template : array_like The best matching template gesture score : float The matching score (in range [0,1] with 1 being perfect match) theta : float The rotation of the gesture that gave the best match clsid : int The ID of the template class that matched best Parameters ---------- imshape : tuple The dimensions tuple of the image stream templates : string, h5py.File h5py.File instance or path to the h5 dataset of template gestures to use callback : function Callback function called when a gesture match is made """ super(self.__class__,self).__init__(self.Wait) self.callback = callback self.match_threshold = match_threshold if isinstance(templates,basestring): self.template_ds = h5py.File(templates,'r') else: self.template_ds = templates self.segmenter = SkinMotionSegmenter(prev,curr) self.detector = ConvexityHandDetector() self.tracker = CrCbMeanShiftTracker() self.imshape = prev.shape self.counter = 0 self.waypts = []
class HandGestureRecognizer(StateMachineBase): def __init__(self, prev, curr, templates, callback=None, match_threshold=0.8): """ State machine for hand gesture recognition. Callback is called with the parameters: query : array_like The set of (x,y) points that represent the hand path template : array_like The best matching template gesture score : float The matching score (in range [0,1] with 1 being perfect match) theta : float The rotation of the gesture that gave the best match clsid : int The ID of the template class that matched best Parameters ---------- imshape : tuple The dimensions tuple of the image stream templates : string, h5py.File h5py.File instance or path to the h5 dataset of template gestures to use callback : function Callback function called when a gesture match is made """ super(self.__class__, self).__init__(self.Wait) self.callback = callback self.match_threshold = match_threshold if isinstance(templates, basestring): self.template_ds = h5py.File(templates, 'r') else: self.template_ds = templates self.segmenter = SkinMotionSegmenter(prev, curr) self.detector = ConvexityHandDetector() self.tracker = CrCbMeanShiftTracker() self.imshape = prev.shape self.counter = 0 self.waypts = [] @property def backprojection(self): if self.state == 'Track' and self.tracker.backprojection is not None: return self.tracker.backprojection return self.segmenter.backprojection def Wait(self, img): self.counter = (self.counter + 1) % WAIT_PERIOD if self.counter == 0: return self.Search def Search(self, img): mask = self.segmenter.segment(img) if not self.detector(mask): return bbox, com = findBBoxCoM_contour(self.detector.contour) # use the hand contour to draw out a more precise mask of the crcb # image mask = np.zeros_like(mask) cv2.drawContours(mask.view(np.uint8), [self.detector.contour], 0, 1, thickness=-1) self.tracker.init(self.segmenter.coseg.converted_image, bbox, mask=mask, update=True) self.waypts = [com] self.tracker.backprojection = mask # this is a dirty little trick >:) self.counter = (self.counter + 1) % VAL_PERIOD if self.counter == 0: return self.Track def Track(self, img): mask = self.segmenter.segment(img) if self.segmenter.moseg.bbox is not None: x, y, w, h = self.segmenter.moseg.bbox mask.fill(0) mask[y:y + h, x:x + w] = True x, y, w, h = self.tracker.track( self.segmenter.coseg.converted_image, mask) # it's possible that there is still motion but that tracking failed # so make sure backprojection is not all zeros if self.tracker.backprojection.any(): bbox, (xc, yc) = findBBoxCoM(self.tracker.backprojection) self.waypts.append((int(xc), int(yc))) return # success! keep tracking... # if we got to this point then tracking has failed if len(self.waypts) > MINWAYPTS and self.callback is not None: # Find best gesture match x, y = zip(*[(self.imshape[1] - x, self.imshape[0] - y) for x, y in self.waypts]) matches = dollar.query(x, y, scale, samplesize, self.template_ds) score, theta, clsid = matches[0] if score > self.match_threshold: ds = self.template_ds[clsid][0] self.callback((x, y), (ds['x'], ds['y']), score, theta, clsid) self.waypts = [] return self.Wait
class HandGestureRecognizer(StateMachineBase): def __init__(self,prev,curr,templates,callback=None,match_threshold=0.8): """ State machine for hand gesture recognition. Callback is called with the parameters: query : array_like The set of (x,y) points that represent the hand path template : array_like The best matching template gesture score : float The matching score (in range [0,1] with 1 being perfect match) theta : float The rotation of the gesture that gave the best match clsid : int The ID of the template class that matched best Parameters ---------- imshape : tuple The dimensions tuple of the image stream templates : string, h5py.File h5py.File instance or path to the h5 dataset of template gestures to use callback : function Callback function called when a gesture match is made """ super(self.__class__,self).__init__(self.Wait) self.callback = callback self.match_threshold = match_threshold if isinstance(templates,basestring): self.template_ds = h5py.File(templates,'r') else: self.template_ds = templates self.segmenter = SkinMotionSegmenter(prev,curr) self.detector = ConvexityHandDetector() self.tracker = CrCbMeanShiftTracker() self.imshape = prev.shape self.counter = 0 self.waypts = [] @property def backprojection(self): if self.state == 'Track' and self.tracker.backprojection is not None: return self.tracker.backprojection return self.segmenter.backprojection def Wait(self,img): self.counter = (self.counter+1) % WAIT_PERIOD if self.counter == 0: return self.Search def Search(self,img): mask = self.segmenter.segment(img) if not self.detector(mask): return bbox,com = findBBoxCoM_contour(self.detector.contour) # use the hand contour to draw out a more precise mask of the crcb # image mask = np.zeros_like(mask) cv2.drawContours(mask.view(np.uint8),[self.detector.contour],0,1,thickness=-1) self.tracker.init(self.segmenter.coseg.converted_image,bbox,mask=mask,update=True) self.waypts = [com] self.tracker.backprojection = mask # this is a dirty little trick >:) self.counter = (self.counter+1) % VAL_PERIOD if self.counter == 0: return self.Track def Track(self,img): mask = self.segmenter.segment(img) if self.segmenter.moseg.bbox is not None: x,y,w,h = self.segmenter.moseg.bbox mask.fill(0) mask[y:y+h,x:x+w] = True x,y,w,h = self.tracker.track(self.segmenter.coseg.converted_image,mask) # it's possible that there is still motion but that tracking failed # so make sure backprojection is not all zeros if self.tracker.backprojection.any(): bbox,(xc,yc) = findBBoxCoM(self.tracker.backprojection) self.waypts.append((int(xc),int(yc))) return # success! keep tracking... # if we got to this point then tracking has failed if len(self.waypts) > MINWAYPTS and self.callback is not None: # Find best gesture match x,y = zip(*[(self.imshape[1]-x,self.imshape[0]-y) for x,y in self.waypts]) matches = dollar.query(x,y,scale,samplesize,self.template_ds) score,theta,clsid = matches[0] if score > self.match_threshold: ds = self.template_ds[clsid][0] self.callback((x,y),(ds['x'],ds['y']),score,theta,clsid) self.waypts = [] return self.Wait