def compute_one(img_path,gt_path): out = img_path gt = load_image(gt_path) # val_gt_erode paired with [0,0,0]label value # label order: R G B # num_classes = len(label_values) gt = util.reverse_one_hot(util.one_hot_it(gt, label_values)) output_image = util.reverse_one_hot(util.one_hot_it(out, label_values)) running_metrics_val.update(gt, output_image)
def compute_one(img_path, gt_path): gt = load_image(gt_path) # val_gt_erode paired with [0,0,0]label value # label order: R G B # num_classes = len(label_values) gt = util.reverse_one_hot(util.one_hot_it(gt, label_values)) gt_binary = np.zeros(gt.shape, dtype=np.uint8) gt_binary[gt == object_class] = 1 output_image = img_path running_metrics_val.update(gt_binary, output_image)