def index(): l = {"^IXIC": "NASDAQ", "^NYA": "NYSE", "^XAX": "AMEX"} r = [] for k, v in l.items(): r1 = getdata.get(k, v) r.append(r1) cdn_js = CDN.js_files[0] cdn_css = CDN.css_files[0] return render_template("index.html", r=r, cdn_css=cdn_css, cdn_js=cdn_js)
def plot(n): # if n == "Google": # a = "GOOG" # elif n == "Facebook": # a = "FB" # else: # a = "DXC" l = { "Google": "GOOG", "Facebook": "FB", "DXC": "DXC", "Tesla": "TSLA", "Apple": "AAPL", "IBM": "IBM", "Twitter": "TWTR", "Amazon": "AMZN", "Microsoft": "MSFT", "Dell": "DELL", "Cisco": "CSCO", "VmWare": "VMW", "AMD": "AMD", "Intel": "INTC", "Dow Jones": "^DJI", "NASDAQ": "^IXIC", "NYSE": "^NYA", "AMEX": "^XAX", "Alibaba": "BABA", "Addiko Bank": "ADKO.VI" } a = l[n] cdn_js = CDN.js_files[0] cdn_css = CDN.css_files[0] r1 = getdata.get(a, n) return render_template("plot.html", script1=r1[0], div1=r1[1], cdn_css=cdn_css, cdn_js=cdn_js, n1=r1[2], n=n)
print('ALL DONE') def makeonehot(X, dim): res = [] for i in X: here = np.zeros(dim) here[i] = 1 res.append(here) res = np.asarray(res) return res if __name__ == "__main__": classnum = 99 X, Y = getdata.get('/home/lihang/2017/bdimg/data/train_data2/', 224, 224, 3) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.93, random_state=42) Y_train = makeonehot(Y_train, classnum) Y_test = makeonehot(Y_test, classnum) train(X_train, Y_train, X_test, Y_test, depoch=25, ftepoch=201, batch_size=32, classnum=classnum, out='2inception.model')
sheet.write(0, 7, '公交时间/min') sheet.write(0, 8, '驾车距离/km') sheet.write(0, 9, '驾车时间/min') lists = [[10, 14], [10, 15], [11, 14], [11, 15], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13]] index = 0 line = 1 # 当前待写入待行号 while (index < 10): for i in range(nrows): for j in range(ncols): x = lists[index][0] - 1 y = lists[index][1] - 1 if ((i <= 7) and (i >= 3) and (j <= 3) and (j >= 0)) or ((i == x) and (j == y)): continue else: sheet.write(line, 0, '%d,%d' % (i + 1, j + 1)) # 出发地 sheet.write(line, 1, '%d,%d' % (x + 1, y + 1)) # 目的地 for k in range(4): # 获取并打印四种出行方式的距离、时间 distance, duration = getdata.get(table.cell_value(i, j), table.cell_value(x, y), k) sheet.write(line, 2 + k * 2, round(int(distance) / 1000, 1)) sheet.write(line, 2 + k * 2 + 1, round(int(duration) / 60)) line = line + 1 print(line) index = index + 1 wbk.save('data_final.xls')
def forward(self, x): x = self.conv1(x.unsqueeze(1)) #print(x.size()) x = self.conv2(x) #print(x.size()) x = x.view(x.size(0), -1) x = self.lc1(x) #x = self.lc2(x) x = self.out(x) return x net = Net().cuda() print(net) bsize = 500 log_train, log_test, label_train, label_test = getdata.get() Train_data = Data.TensorDataset(log_train, label_train) Test_data = Data.TensorDataset(log_test, label_test) train_data = Data.DataLoader(dataset=Train_data, batch_size=bsize, shuffle=False) test_data = Data.DataLoader(dataset=Test_data, batch_size=bsize, shuffle=False) optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5, weight_decay=1e-9) loss_function = nn.CrossEntropyLoss() for epoch in range(1000): #print("Epoch: {}".format(epoch)) running_loss = 0.0
args = parser.parse_args() np.random.seed(1) #固定下来随机化shuffle的序列 image_height = 30 #数字图片应该普遍长宽比例是这样 image_width = 120 image_channel = 1 #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2) # 训练,测试,持久化 #with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_core config = tf.ConfigProto() #config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 占用GPU90%的显存 config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: #with tf.Session() as sess: # 完成数据的读取,使用的是tensorflow的读取图片 X, Y, labellen = getdata.get(image_height, image_width, image_channel) print(max(labellen)) num_class = getdata.classnum() + 1 print('numclass:', num_class) # 将数据集shuffle X, Y = util.shuffledata(X, Y) # 将数据区分为测试集合和训练集合 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.9, random_state=33) print('Train: ', len(X_train)) print('Test: ', len(X_test)) model = MultiNet(image_height, image_width, image_channel, num_class) model.train(sess, X_train,
print('ALL DONE') def makeonehot(X, dim): res = [] for i in X: here = np.zeros(dim) here[i] = 1 res.append(here) res = np.asarray(res) return res if __name__ == "__main__": classnum = 99 X, Y = getdata.get('../data/train_data2/') X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.95, random_state=79) Y_train = makeonehot(Y_train, classnum) Y_test = makeonehot(Y_test, classnum) train(X_train, Y_train, X_test, Y_test, depoch=35, ftepoch=50, batch_size=32, classnum=classnum, out='inception.model')
model.save(out) # X_test = preprocess_input(X_test) #score, acc = model.evaluate(X_test, Y_test, batch_size=batch_size) #print('now accu:',acc) print('ALL DONE') def makeonehot(X, dim): res = [] for i in X: here = np.zeros(dim) here[i] = 1 res.append(here) res = np.asarray(res) return res if __name__ == "__main__": X, Y = getdata.get('/home/lihang/2017/bdimg/data/train_data/') #X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.9, random_state=33) Y_train = makeonehot(Y_train, 100) #Y_test = makeonehot(Y_test,100) train(X, Y_train, None, None, epoch=20, batch_size=32, out='inceptionv3-ft.model')