This program is used to check that python-getfem is working. This is also a good example of use of GetFEM. """ import os import numpy as np import getfem as gf NX = 10 m = gf.Mesh('cartesian', np.arange(0., 1. + 1. / NX, 1. / NX), np.arange(0., 1. + 1. / NX, 1. / NX)) ## create a mesh_fem of for a field of dimension 1 (i.e. a scalar field) mf = gf.MeshFem(m, 1) mf.set_classical_fem(2) ## Integration which will be used mim = gf.MeshIm(m, 4) ## Detect the border of the mesh border = m.outer_faces() m.set_region(1, border) ## Interpolate the initial data U0 = mf.eval('y*(y-1.)*x*(x-1.)*x*x') V0 = 0. * U0 md = gf.Model('real') md.add_fem_variable('u', mf)
rho = 1.000e+00 Lambda = 1.000e+00 Mu = 1.000e+00 print "create a Mesh object" d = 1.000e+00 x = 1.000e+00 y = 1.000e+00 z = 1.000e+00 m = gf.Mesh('cartesian Q1', np.arange(0., x + d, d), np.arange(0., y + d, d), np.arange(0., z + d, d)) m.set('optimize_structure') print "create a MeshFem object" mfu = gf.MeshFem(m, 3) # displacement print "assign the FEM" mfu.set_fem(gf.Fem('FEM_QK(3,1)')) print "build a MeshIm object" mim = gf.MeshIm(m, gf.Integ('IM_HEXAHEDRON(5)')) print "detect some boundary of the mesh" P = m.pts() ctop = (abs(P[0, :] - 0.) < 1e-6) cbot = (abs(P[1, :] - 0.) < 1e-6) pidtop = np.compress(ctop, range(0, m.nbpts())) pidbot = np.compress(cbot, range(0, m.nbpts())) ftop = m.faces_from_pid(pidtop) fbot = m.faces_from_pid(pidbot)
import getfem as gf with_graphics = True try: import getfem_tvtk except: print( "\n** Could NOT import getfem_tvtk -- graphical output disabled **\n") import time time.sleep(2) with_graphics = False m = gf.Mesh('import', 'gid', '../meshes/tripod.GiD.msh') print('done!') mfu = gf.MeshFem(m, 3) # displacement mfp = gf.MeshFem(m, 1) # pressure mfd = gf.MeshFem(m, 1) # data mim = gf.MeshIm(m, gf.Integ('IM_TETRAHEDRON(5)')) degree = 2 linear = False incompressible = False # ensure that degree > 1 when incompressible is on.. mfu.set_fem(gf.Fem('FEM_PK(3,%d)' % (degree, ))) mfd.set_fem(gf.Fem('FEM_PK(3,0)')) mfp.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,0)')) print('nbcvs=%d, nbpts=%d, qdim=%d, fem = %s, nbdof=%d' % \ (m.nbcvs(), m.nbpts(), mfu.qdim(), mfu.fem()[0].char(), mfu.nbdof())) P = m.pts()
# Import basic modules import getfem as gf import numpy as np ## Parameters NX = 100 # Mesh parameter. Dirichlet_with_multipliers = True # Dirichlet condition with multipliers # or penalization dirichlet_coefficient = 1e10 # Penalization coefficient # Create a simple cartesian mesh m = gf.Mesh('regular_simplices', np.arange(0, 1 + 1. / NX, 1. / NX), np.arange(0, 1 + 1. / NX, 1. / NX)) # Create a MeshFem for u and rhs fields of dimension 1 (i.e. a scalar field) mfu = gf.MeshFem(m, 1) mfrhs = gf.MeshFem(m, 1) # assign the P2 fem to all convexes of the both MeshFem mfu.set_fem(gf.Fem('FEM_PK(2,2)')) mfrhs.set_fem(gf.Fem('FEM_PK(2,2)')) # Integration method used mim = gf.MeshIm(m, gf.Integ('IM_TRIANGLE(4)')) # Boundary selection flst = m.outer_faces() fnor = m.normal_of_faces(flst) tleft = abs(fnor[1, :] + 1) < 1e-14 ttop = abs(fnor[0, :] - 1) < 1e-14 fleft = np.compress(tleft, flst, axis=1) ftop = np.compress(ttop, flst, axis=1)
# Mesh m = gf.Mesh('cartesian', np.arange(0, 1 + 1. / NX, 1. / NX)) # Selection of the contact and Dirichlet boundaries GAMMAC = 1 GAMMAD = 2 border = m.outer_faces() normals = m.normal_of_faces(border) contact_boundary = border[:, np.nonzero(normals[0] < -0.01)[0]] m.set_region(GAMMAC, contact_boundary) contact_boundary = border[:, np.nonzero(normals[0] > 0.01)[0]] m.set_region(GAMMAD, contact_boundary) # Finite element methods mfu = gf.MeshFem(m) mfu.set_classical_fem( u_degree) # Assumed to be a Lagrange FEM in the following mfd = gf.MeshFem(m, 1) mfd.set_classical_fem(u_degree) # Integration method mim = gf.MeshIm(m, 4) # GetFEM model md = gf.Model('real') md.add_fem_variable('u', mfu) md.add_fem_data('v', mfu) md.add_initialized_data('t_N', theta_N) md.add_initialized_data('g_N', gamma0_N / h)
dimY = 10.01 dimZ = 3.01 stepX = 2.0 stepY = 2.0 stepZ = 1.5 x = np.arange(0, dimX, stepX) y = np.arange(0, dimY, stepY) z = np.arange(0, dimZ, stepZ) m = gf.Mesh('regular simplices', x, y, z) m.set('optimize_structure') # Export the mesh to vtk m.export_to_vtk("BlockMesh.vtk") # Create MeshFem objects # (i.e. assign elements onto the mesh for each variable) mfu = gf.MeshFem(m, 3) # displacement mff = gf.MeshFem(m, 1) # for plot von-mises # assign the FEM mfu.set_fem(gf.Fem('FEM_PK(3,1)')) mff.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,1,0.01)')) # mfu.export_to_vtk("BlockMeshDispl.vtk") # ==== Set the integration method ==== mim = gf.MeshIm(m, gf.Integ('IM_TETRAHEDRON(5)')) # ==== Summary ==== print(' ==================================== \n Mesh details: ') print(' Problem dimension:', mfu.qdim(), '\n Number of elements: ', m.nbcvs(), '\n Number of nodes: ', m.nbpts()) print(' Number of dof: ', mfu.nbdof(), '\n Element type: ', mfu.fem()[0].char())
t_rg = m.outer_faces_with_direction([0,1], np.pi/180) in_rg = m.outer_faces_in_box([-1e-6,H1+H2-1e-6],[W1+1e-6,H1+H2+1e-6]) out_rg = m.outer_faces_in_box([W1+W2-1e-6,-1e-6],[W1+W2+1e-6,H2+1e-6]) m.set_region(IN_RG, in_rg) m.set_region(OUT_RG, out_rg) m.extend_region(INOUT_RG, in_rg) m.extend_region(INOUT_RG, out_rg) m.extend_region(WALL_RG, l_rg) m.extend_region(WALL_RG, b_rg) m.extend_region(WALL_RG, r_rg) m.extend_region(WALL_RG, t_rg) m.region_subtract(WALL_RG, INOUT_RG) #MeshFem mfv_ = gf.MeshFem(m, 2) mfv_.set_classical_fem(2) kept_dofs = np.setdiff1d(np.arange(mfv_.nb_basic_dof()), mfv_.basic_dof_on_region(WALL_RG)) mfv = gf.MeshFem("partial", mfv_, kept_dofs) mfp_ = gf.MeshFem(m, 1) mfp_.set_classical_fem(1) kept_dofs = np.setdiff1d(np.arange(mfp_.nb_basic_dof()), mfp_.basic_dof_on_region(OUT_RG)) mfp = gf.MeshFem("partial", mfp_, kept_dofs) mim = gf.MeshIm(m, 5) # 9 gauss points per quad md = gf.Model("real") md.add_fem_variable("v", mfv)
def import_fem(sico): """ Build a mesh object using getfem. We use getfem++ to build the finite element model and to fill in the operators required by siconos: - the mass matrix (Mass) - the stiffness matrix (Stiff) - the matrix that links global coordinates and local coord. at contact points (H) """ ############################ # The geometry and the mesh ############################ dimX = 10.01 dimY = 10.01 dimZ = 3.01 stepX = 1.0 stepY = 1.0 stepZ = 1.0 x = np.arange(0, dimX, stepX) y = np.arange(0, dimY, stepY) z = np.arange(0, dimZ, stepZ) m = gf.Mesh('regular simplices', x, y, z) m.set('optimize_structure') # Export the mesh to vtk m.export_to_vtk("BlockMesh.vtk") # Create MeshFem objects # (i.e. assign elements onto the mesh for each variable) mfu = gf.MeshFem(m, 3) # displacement mfd = gf.MeshFem(m, 1) # data mff = gf.MeshFem(m, 1) # for plot von-mises # assign the FEM mfu.set_fem(gf.Fem('FEM_PK(3,1)')) mfd.set_fem(gf.Fem('FEM_PK(3,0)')) mff.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,1,0.01)')) # mfu.export_to_vtk("BlockMeshDispl.vtk") # Set the integration method mim = gf.MeshIm(m, gf.Integ('IM_TETRAHEDRON(5)')) # Summary print(' ==================================== \n Mesh details: ') print(' Problem dimension:', mfu.qdim(), '\n Number of elements: ', m.nbcvs(), '\n Number of nodes: ', m.nbpts()) print(' Number of dof: ', mfu.nbdof(), '\n Element type: ', mfu.fem()[0].char()) print(' ====================================') ########################### # Set the parameters # for the constitutive law ########################### E = 1e3 # Young modulus Nu = 0.3 # Poisson coef. # Lame coeff. Lambda = E * Nu / ((1 + Nu) * (1 - 2 * Nu)) Mu = E / (2 * (1 + Nu)) # Density Rho = 1.0 #7.800 Gravity = -9.81 ############################ # Boundaries detection ############################ allPoints = m.pts() # Bottom points and faces cbot = (abs(allPoints[2, :]) < 1e-6) pidbot = np.compress(cbot, list(range(0, m.nbpts()))) fbot = m.faces_from_pid(pidbot) BOTTOM = 1 m.set_region(BOTTOM, fbot) # Top points and faces ctop = (abs(allPoints[2, :]) > dimZ - stepZ) pidtop = np.compress(ctop, list(range(0, m.nbpts()))) ftop = m.faces_from_pid(pidtop) TOP = 2 m.set_region(TOP, ftop) # Top-Left points and faces cleft = (abs(allPoints[1, :]) < 1e-6) clefttop = cleft * ctop pidlefttop = np.compress(clefttop, list(range(0, m.nbpts()))) flefttop = m.faces_from_pid(pidlefttop) pidleft = np.compress(cleft, list(range(0, m.nbpts()))) fleft = m.faces_from_pid(pidleft) LEFTTOP = 3 m.set_region(LEFTTOP, flefttop) LEFT = 4 m.set_region(LEFT, fleft) # Create a model md = gf.Model('real') md.add_fem_variable('u', mfu) md.add_initialized_data('lambda', Lambda) md.add_initialized_data('mu', Mu) md.add_initialized_data('source_term', [0, 0, -100]) md.add_initialized_data('push', [0, 100, 0]) md.add_initialized_data('rho', Rho) md.add_initialized_data('gravity', Gravity) # Weight = np.zeros(mfu.nbdof()) ## Weight = [] md.add_initialized_data('weight', [0, 0, Rho * Gravity]) md.add_isotropic_linearized_elasticity_brick(mim, 'u', 'lambda', 'mu') #md.add_source_term_brick(mim,'u','source_term',TOP) #md.add_source_term_brick(mim,'u','push',LEFT) md.add_source_term_brick(mim, 'u', 'weight') #md.add_Dirichlet_condition_with_multipliers(mim,'u',mfu,BOTTOM) md.assembly() sico.Stiff = md.tangent_matrix() sico.RHS = md.rhs() sico.q0 = md.variable('u') md2 = gf.Model('real') md2.add_fem_variable('u', mfu) md2.add_initialized_data('rho', Rho) md2.add_mass_brick(mim, 'u', 'rho') md2.assembly() sico.Mass = md2.tangent_matrix() sico.nbdof = mfu.nbdof() sico.mfu = mfu sico.mesh = m sico.pos = np.zeros(sico.nbdof) sico.pos[0:sico.nbdof:3] = m.pts()[0, :] sico.pos[1:sico.nbdof:3] = m.pts()[1, :] sico.pos[2:sico.nbdof:3] = m.pts()[2, :] sico.K0 = np.dot(sico.Stiff.full(), sico.pos) sico.bot = pidbot # running solve... #md.solve() # post-processing #VM=md.compute_isotropic_linearized_Von_Mises_or_Tresca('u','lambda','mu',mff) # extracted solution #U = md.variable('u') # export U and VM in a pos file #sl = gf.Slice(('boundary',),mfu,1) #sl.export_to_vtk('toto.vtk', mfu, U, 'Displacement', mff, VM, 'Von Mises Stress') # H-Matrix fillH(pidbot, sico, mfu.nbdof()) return md
mls.add(ls1) mls.add(ls2) mls.add(ls2) mls.add(ls2) mls.add(ls3) mls.adapt() #print(mls.linked_mesh()) lls = mls.levelsets() cm = mls.cut_mesh() ctip = mls.crack_tip_convexes() mf = gf.MeshFem(m) mf.set_classical_fem(1) mfls = gf.MeshFem('levelset',mls,mf) gf.memstats() nbd = mfls.nbdof() if True: sl = gf.Slice(('none',), mls, 2); U = rand(1,nbd); sl.export_to_pos('slU.pos',mfls,U,'U') mfls.export_to_pos('U.pos',U,'U') cm.export_to_pos('cm.pos') m.export_to_pos('m.pos')
# creation of a simple cartesian mesh m = gf.Mesh('cartesian', np.arange(0, 1 + 0.5 / NX, 1. / NX), np.arange(0, 1 + 0.5 / NX, 1. / NX)) (pid, idx) = m.pid_from_cvid() P = m.pts() is_in_circle = (P[0, :] - xc)**2 + (P[1, :] - yc)**2 <= radius**2 areap = np.zeros(idx.size - 1) for cv in range(idx.size - 1): if all(is_in_circle[pid[idx[cv]:idx[cv + 1]]]): areap[cv] = 1 mfu = gf.MeshFem(m, 2) mfd = gf.MeshFem(m, 1) mfm = gf.MeshFem(m, 2) mfdu = gf.MeshFem(m) mim = gf.MeshIm(m, 5) mfu.set_fem(gf.Fem('FEM_QK(2,2)')) mfd.set_fem(gf.Fem('FEM_QK(2,1)')) mfm.set_fem(gf.Fem('FEM_QK(2,2)')) mfdu.set_fem(gf.Fem('FEM_QK_DISCONTINUOUS(2,2)')) mfu.set_dof_partition(areap) b_in = m.outer_faces(np.nonzero(areap == 1)) b_out = m.outer_faces(np.nonzero(areap == 0))
def import_fem2(sico): """ Build a mesh object using getfem. We use getfem++ to build the finite element model and to fill in the operators required by siconos: - the mass matrix (Mass) - the stiffness matrix (Stiff) - the matrix that links global coordinates and local coord. at contact points (H) """ ############################ # The geometry and the mesh ############################ dimX = 10.01 dimY = 10.01 dimZ = 10.01 stepX = 1.0 stepY = 1.0 stepZ = 1.0 x = np.arange(0, dimX, stepX) y = np.arange(0, dimY, stepY) z = np.arange(0, dimZ, stepZ) m = gf.Mesh('regular simplices', x, y, z) m.set('optimize_structure') # Export the mesh to vtk m.export_to_vtk("BlockMesh.vtk") # Create MeshFem objects # (i.e. assign elements onto the mesh for each variable) mfu = gf.MeshFem(m, 3) # displacement mfd = gf.MeshFem(m, 1) # data mff = gf.MeshFem(m, 1) # for plot von-mises # assign the FEM mfu.set_fem(gf.Fem('FEM_PK(3,1)')) mfd.set_fem(gf.Fem('FEM_PK(3,0)')) mff.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,1,0.01)')) # mfu.export_to_vtk("BlockMeshDispl.vtk") # Set the integration method mim = gf.MeshIm(m, gf.Integ('IM_TETRAHEDRON(5)')) # Summary print(' ==================================== \n Mesh details: ') print(' Problem dimension:', mfu.qdim(), '\n Number of elements: ', m.nbcvs(), '\n Number of nodes: ', m.nbpts()) print(' Number of dof: ', mfu.nbdof(), '\n Element type: ', mfu.fem()[0].char()) print(' ====================================') ########################### # Set the parameters # for the constitutive law ########################### E = 1e3 # Young modulus Nu = 0.3 # Poisson coef. # Lame coeff. Lambda = E * Nu / ((1 + Nu) * (1 - 2 * Nu)) Mu = E / (2 * (1 + Nu)) # Density Rho = 7800 ############################ # Boundaries detection ############################ allPoints = m.pts() # Bottom points and faces cbot = (abs(allPoints[2, :]) < 1e-6) pidbot = np.compress(cbot, list(range(0, m.nbpts()))) fbot = m.faces_from_pid(pidbot) BOTTOM = 1 m.set_region(BOTTOM, fbot) # Top points and faces ctop = (abs(allPoints[2, :]) > dimZ - stepZ) pidtop = np.compress(ctop, list(range(0, m.nbpts()))) ftop = m.faces_from_pid(pidtop) TOP = 2 m.set_region(TOP, ftop) # Top-Left points and faces cleft = (abs(allPoints[1, :]) < 1e-6) clefttop = cleft * ctop pidlefttop = np.compress(clefttop, list(range(0, m.nbpts()))) flefttop = m.faces_from_pid(pidlefttop) pidleft = np.compress(cleft, list(range(0, m.nbpts()))) fleft = m.faces_from_pid(pidleft) LEFTTOP = 3 m.set_region(LEFTTOP, flefttop) LEFT = 4 m.set_region(LEFT, fleft) ############################ # Assembly ############################ nbd = mfd.nbdof() # Stiffness matrix sico.Stiff = gf.asm_linear_elasticity(mim, mfu, mfd, np.repeat([Lambda], nbd), np.repeat([Mu], nbd)) # Mass matrix sico.Mass = Rho * gf.asm_mass_matrix(mim, mfu) # Right-hand side Ftop = gf.asm_boundary_source(TOP, mim, mfu, mfd, np.repeat([[0], [0], [-1]], nbd, 1)) Fleft = gf.asm_boundary_source(LEFT, mim, mfu, mfd, np.repeat([[0], [10], [0]], nbd, 1)) sico.RHS = Ftop + Fleft sico.nbdof = mfu.nbdof() sico.q0 = mfu.basic_dof_from_cvid() sico.bot = pidbot # H-Matrix fillH(pidbot, sico, mfu.nbdof()) return m
K = 1 # Degree of the finite element method dirichlet_version = 1 # 0 = simplification, 1 = with multipliers, # 2 = penalization r = 1.E8 # Penalization parameter. NX = 80 # Number of element per direction if (quadrangles): m = gf.Mesh('cartesian', np.arange(0., 1. + 1. / NX, 1. / NX), np.arange(0., 1. + 1. / NX, 1. / NX)) else: m = gf.Mesh( 'import', 'structured', 'GT="GT_PK(2,1)";SIZES=[1,1];NOISED=0;NSUBDIV=[%d,%d];' % (NX, NX)) ## Create a mesh_fem for a 2D vector field mftheta = gf.MeshFem(m, 2) mfu = gf.MeshFem(m, 1) mftheta.set_classical_fem(K) mfu.set_classical_fem(K) mim = gf.MeshIm(m, 6) mim_reduced = gf.MeshIm(m, 1) ## Detect the border of the mesh and assign it the boundary number 1 border = m.outer_faces() m.set_region(1, border) ## Build the model md = gf.Model('real') md.add_fem_variable('u', mfu) md.add_fem_variable('theta', mftheta) md.add_initialized_data('E', Emodulus)
ULS2s = np.minimum(ULS2s, (abs(y - yc) + abs(x - xc) - R)) ls2.set_values(ULS2, ULS2s) # '-y-x+.2') # '(y-.2)^2 - 0.04') mls = gf.MeshLevelSet(m) mls.add(ls) mls.add(ls2) mls.adapt() mls.cut_mesh().export_to_pos('ver.pos') mim_bound = gf.MeshIm('levelset', mls, 'boundary(a+b)', gf.Integ('IM_TRIANGLE(6)')) #, gf.Integ('IM_QUAD(5)')) mim = gf.MeshIm('levelset', mls, 'all(a+b)', gf.Integ('IM_TRIANGLE(6)')) mim.set_integ(4) mfu0 = gf.MeshFem(m, 2) mfu0.set_fem(gf.Fem('FEM_QK(2,3)')) mfdu = gf.MeshFem(m, 1) mfdu.set_fem(gf.Fem('FEM_QK_DISCONTINUOUS(2,2)')) mf_mult = gf.MeshFem(m, 2) mf_mult.set_fem(gf.Fem('FEM_QK(2,1)')) A = gf.asm('volumic', 'V()+=comp()', mim_bound) #mls.cut_mesh().export_to_pos('mls.pos','cut mesh') #mf_ls.export_to_pos('mf_ls.pos',ULS,'ULS') dof_out = mfu0.dof_from_im(mim) cv_out = mim.convex_index()
print 'Experiments for option %d and order %d' % (option, order) for i in range(0, len(hrange)): NX = round(LX / hrange[i]) NT = NX if (errors1[option, i, 1] < 0.): if (call_test_plasticity() != 0): print 'Not converged solution' err_L2 = 400 err_H1 = 400 exit(1) else: # Load the final step filename = resultspath + ('/mf_%d.mf' % (NT)) m = gf.Mesh('load', filename) mf_u = gf.MeshFem('load', filename, m) filename = resultspath + ('/U_%d.dat' % (NT)) U = np.loadtxt(filename) # Load the reference solution m_ref = gf.Mesh('load', refname_mf) mf_u_ref = gf.MeshFem('load', refname_mf, m_ref) U_ref = np.loadtxt(refname_U) mim_ref = gf.MeshIm(m_ref, 6) # Estimate of the difference in L2 and H1 norms Ui = gf.compute_interpolate_on(mf_u, U, mf_u_ref) norm_L2 = gf.compute_L2_norm(mf_u_ref, U_ref, mim_ref) err_L2 = gf.compute_L2_dist(mf_u_ref, Ui, mim_ref, mf_u_ref, U_ref) norm_H1 = gf.compute_H1_semi_norm(mf_u_ref, U_ref, mim_ref)
dirichlet_boundary_B = outer_B[:,np.nonzero(normals_B[1] < -0.95)[0]] mesh_B.set_region(CONTACT_BOUNDARY_B, contact_boundary_B) mesh_B.set_region(DIRICHLET_BOUNDARY_B, dirichlet_boundary_B) #pts_B = mesh_B.pts() #for ip in range(pts_B.shape[1]): # x = pts_B[0,ip] # y = pts_B[1,ip] # pts_B[1,ip] = y + 0.02*x**2 #mesh_B.set_pts(pts_B) #mesh_R.export_to_vtk('/tmp/mesh_R.vtk') #mesh_B.export_to_vtk('/tmp/mesh_B.vtk') # Ring mfu_R = gf.MeshFem(mesh_R, N) mfu_R.set_classical_fem(fem_disp_order_R) pre_mflambda_R = gf.MeshFem(mesh_R, N) pre_mflambda_R.set_classical_fem(fem_mult_order_R) mfvm_R = gf.MeshFem(mesh_R) mfvm_R.set_classical_discontinuous_fem(fem_disp_order_R-1) mim_R = gf.MeshIm(mesh_R, integration_degree_R) mim_R_contact = gf.MeshIm(mesh_R, integration_contact_degree_R) # Block mfu_B = gf.MeshFem(mesh_B, N) mfu_B.set_classical_fem(fem_disp_order_B)
meshs.append(mesh) print("Time for import mesh", time.process_time() - t) t = time.process_time() ############################################################################### # Definition of finite elements methods and integration method # mfus = [] mfds = [] mims = [] for elements_degree, mesh in zip(elements_degrees, meshs): mfu = gf.MeshFem(mesh, 3) mfu.set_classical_fem(elements_degree) mfus.append(mfu) mfd = gf.MeshFem(mesh, 1) mfd.set_classical_fem(elements_degree) mfds.append(mfd) mim = gf.MeshIm(mesh, elements_degree * 2) mims.append(mim) ############################################################################### # We get the mass and stiffness matrices using asm function. # mass_matrixs = []
# (at your option) any later version. # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public # License for more details. # You should have received a copy of the GNU Lesser General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. # ############################################################################ from numpy import * import getfem import getfem_tvtk mfu=getfem.MeshFem('load','tank_3D.mfu') m=mfu.linked_mesh() mfp=getfem.MeshFem('load','tank_3D.mfp',m) U = fromfile('tank_3D.U', 'd') P = fromfile('tank_3D.P', 'd') sl=getfem.Slice(('boundary',('intersection',('planar',+1,[0,0,0],[0,1,0]),('planar',+1,[0,0,0],[1,0,0]))),m,3); print("importing tvtk..") print("import done") fig = getfem_tvtk.Figure(gui='tvtk') fig.show(sl, data=(mfp, P), vdata=(mfu,U), edges=False) fig.show(sl, data=(mfp, P), edges=False)
[0., -1.], 0.01) # Bottom boundary of the foundation HOLE_BOUND = 1 CONTACT_BOUND = 2 BOTTOM_BOUND = 3 mesh1.set_region(HOLE_BOUND, fb1) mesh1.set_region(CONTACT_BOUND, fb2) mesh1.region_subtract(CONTACT_BOUND, HOLE_BOUND) mesh2.set_region(BOTTOM_BOUND, fb3) # # Definition of finite elements methods and integration method # mfu1 = gf.MeshFem(mesh1, 2) mfu1.set_classical_fem(elements_degree) mflambda = gf.MeshFem(mesh1, 2) mflambda.set_classical_fem(elements_degree - 1) mflambda_C = gf.MeshFem(mesh1, 1) mflambda_C.set_classical_fem(elements_degree - 1) mfu2 = gf.MeshFem(mesh2, 2) mfu2.set_classical_fem(elements_degree) mfvm1 = gf.MeshFem(mesh1, 1) mfvm1.set_classical_discontinuous_fem(elements_degree) mfvm2 = gf.MeshFem(mesh2, 1) mfvm2.set_classical_discontinuous_fem(elements_degree) mim1 = gf.MeshIm(mesh1, 4) mim1c = gf.MeshIm(mesh1, gf.Integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(4),2)')) mim2 = gf.MeshIm(mesh2, 4)
test_tangent_matrix = False # Test or not tangent system validity incompressible = False; # Incompressibility option explicit_potential = False; # Elasticity law with explicit potential # lawname = 'Ciarlet Geymonat' # params = [1.,1.,0.25] lawname = 'SaintVenant Kirchhoff' params = [1.,1.] if (incompressible): lawname = 'Incompressible Mooney Rivlin' params = [1.,1.] N1 = 2; N2 = 4; h = 20.; DX = 1./N1; DY = (1.*h)/N2; m = gf.Mesh('cartesian', np.arange(-0.5, 0.5+DX,DX), np.arange(0., h+DY,DY), np.arange(-1.5, 1.5+3*DX,3*DX)) mfu = gf.MeshFem(m, 3) # mesh-fem supporting a 3D-vector field mfdu = gf.MeshFem(m,1) # The mesh_im stores the integration methods for each tetrahedron mim = gf.MeshIm(m, gf.Integ('IM_GAUSS_PARALLELEPIPED(3,4)')) # We choose a P2 fem for the main unknown mfu.set_fem(gf.Fem('FEM_QK(3,2)')) if (dirichlet_version == 1): mfd = mfu; else: mfd = gf.MeshFem(m,1) mfd.set_fem(gf.Fem('FEM_QK(3,1)')) # The P2 fem is not derivable across elements, hence we use a discontinuous # fem for the derivative of U. mfdu.set_fem(gf.Fem('FEM_QK_DISCONTINUOUS(3,2)'));
m_p3.region_merge(RG_CONTACT_p3_in, 500043 + 100 * i) m_p3.region_merge(RG_CONTACT_p3_in, 500083 + 100 * i) m_p3.region_merge(RG_CONTACT_p3_out, 500013 + 100 * i) m_p3.region_merge(RG_CONTACT_p3_out, 500053 + 100 * i) m_p1.region_merge(RG_CONTACT_p1, RG_CONTACT_p1_in) m_p1.region_merge(RG_CONTACT_p1, RG_CONTACT_p1_out) m_p2.region_merge(RG_CONTACT_p2, RG_CONTACT_p2_in) m_p2.region_merge(RG_CONTACT_p2, RG_CONTACT_p2_out) m_p3.region_merge(RG_CONTACT_p3, RG_CONTACT_p3_in) m_p3.region_merge(RG_CONTACT_p3, RG_CONTACT_p3_out) N = m_1.dim() # displacement meshfems mfu_1 = gf.MeshFem(m_1, N) mfu_2 = gf.MeshFem(m_2, N) mfu_p1 = gf.MeshFem(m_p1, N) mfu_p2 = gf.MeshFem(m_p2, N) mfu_p3 = gf.MeshFem(m_p3, N) mfu_1.set_classical_fem(disp_fem_order) mfu_2.set_classical_fem(disp_fem_order) mfu_p1.set_classical_fem(disp_fem_order) mfu_p2.set_classical_fem(disp_fem_order) mfu_p3.set_classical_fem(disp_fem_order) # rhs meshfems mfout_1 = gf.MeshFem(m_1, 1) mfout_2 = gf.MeshFem(m_2, 1) mfout_p1 = gf.MeshFem(m_p1, 1) mfout_p2 = gf.MeshFem(m_p2, 1)
This program is used to check that Python-GetFEM interface, and more generally GetFEM are working. It focuses on testing some operations of the high generic assembly language. $Id$ """ import numpy as np import getfem as gf import os NX = 4 m1 = gf.Mesh('cartesian', np.arange(0, 1 + 1. / NX, 1. / NX)) # Structured 1D mesh mfu1 = gf.MeshFem(m1, 1) mfu1.set_fem(gf.Fem('FEM_PK(1,1)')) mim1 = gf.MeshIm(m1, gf.Integ('IM_GAUSS1D(4)')) U1 = mfu1.eval('x') m2 = gf.Mesh('triangles grid', np.arange(0, 1 + 1. / NX, 1. / NX), np.arange(0, 1 + 1. / NX, 1. / NX)) # Structured 2D mesh mfu2 = gf.MeshFem(m2, 1) mfu2.set_fem(gf.Fem('FEM_PK(2,1)')) mim2 = gf.MeshIm(m2, gf.Integ('IM_TRIANGLE(4)')) U2 = mfu2.eval('x+y') md = gf.Model('real') md.add_fem_variable('u1', mfu1) md.set_variable('u1', U1)
NX = 20 # Mesh parameter. N = 2 Dirichlet_with_multipliers = True # Dirichlet condition with multipliers # or penalization dirichlet_coefficient = 1e10 # Penalization coefficient using_HHO = True # Use HHO method or standard Lagrange FEM # Create a simple cartesian mesh I = np.arange(0, 1 + 1. / NX, 1. / NX) if (N == 2): m = gf.Mesh('regular_simplices', I, I) elif (N == 3): m = gf.Mesh('regular_simplices', I, I, I) # Meshfems mfu = gf.MeshFem(m, 1) mfgu = gf.MeshFem(m, N) mfur = gf.MeshFem(m, 1) mfrhs = gf.MeshFem(m, 1) if (using_HHO): mfu.set_fem( gf.Fem('FEM_HHO(FEM_SIMPLEX_IPK(%d,2),FEM_SIMPLEX_CIPK(%d,2))' % (N, N - 1))) mfur.set_fem(gf.Fem('FEM_PK(%d,3)' % N)) else: mfu.set_fem(gf.Fem('FEM_PK(%d,2)' % N)) mfur.set_fem(gf.Fem('FEM_PK(%d,2)' % N)) mfgu.set_fem(gf.Fem('FEM_PK(%d,2)' % N)) mfrhs.set_fem(gf.Fem('FEM_PK(%d,2)' % N))
m.export_to_vtk("mesh.vtk") # Levelset definition: R1 = 2.5 R2 = 16 ytip = R1 xtip = np.sqrt(R2 * R2 - R1 * R1) ls1 = gf.LevelSet(m, 2, "y-%g*tanh(x/7.)" % R1, "x*x+y*y-%g" % (R2 * R2)) ls2 = gf.LevelSet(m, 2, "y+%g*tanh(x/7.)" % R1, "x*x+y*y-%g" % (R2 * R2)) mls = gf.MeshLevelSet(m) mls.add(ls1) mls.add(ls2) mls.adapt() # Basic mesh_fem without enrichment: mf_pre = gf.MeshFem(m) if (quad): mf_pre.set_fem(gf.Fem("FEM_QK(2,2)")) else: mf_pre.set_fem(gf.Fem("FEM_PK(2,2)")) # Definition of the enriched finite element method (MeshFemLevelSet): mfls = gf.MeshFem("levelset", mls, mf_pre) # Global functions for asymptotic enrichment: mf_part_unity = gf.MeshFem(m) mf_part_unity.set_classical_fem(1) DOFpts = mf_part_unity.basic_dof_nodes() ctip_dofs = [ np.nonzero(np.linalg.norm(DOFpts - x, axis=0) < 0.5)[0] for x in [[[xtip], [-ytip]], [[-xtip], [ytip]], [[xtip], [ytip]],
fb2 = mesh.outer_faces_with_direction([0., -1.], 0.01) # Bottom (Neumann) fb3 = mesh.outer_faces_in_box([-1., 10.], [101., 101.]) fb4 = mesh.outer_faces_in_box([10., -1.], [101., 101.]) LEFT_BOUND = 1 BOTTOM_BOUND = 2 AUX_BOUND1 = 3 AUX_BOUND2 = 4 mesh.set_region(LEFT_BOUND, fb1) mesh.set_region(BOTTOM_BOUND, fb2) mesh.set_region(AUX_BOUND1, fb3) mesh.set_region(AUX_BOUND2, fb4) mesh.region_subtract(LEFT_BOUND, AUX_BOUND2) mesh.region_subtract(BOTTOM_BOUND, AUX_BOUND1) # Create a MeshFem for u and rhs fields of dimension 1 (i.e. a scalar field) mfu = gf.MeshFem(mesh, 1) mfP0 = gf.MeshFem(mesh, 1) # Assign the discontinuous P2 fem to all convexes of the both MeshFem mfu.set_fem(gf.Fem('FEM_PK(2,2)')) mfP0.set_fem(gf.Fem('FEM_PK(2,0)')) # Integration method used mim = gf.MeshIm(mesh, gf.Integ('IM_TRIANGLE(4)')) # Inner edges for the computation of the normal derivative jump in_faces = mesh.inner_faces() INNER_FACES = 18 mesh.set_region(INNER_FACES, in_faces) # Model md = gf.Model('real')
N = mesh.dim() bottom_faces = mesh.outer_faces_in_box([-LX / 2 - 1e-5, -LY / 2 - 1e-5], [LX / 2 + 1e-5, -LY / 2 + 1e-5]) top_faces = mesh.outer_faces_in_box([-LX / 2 - 1e-5, LY / 2 - 1e-5], [LX / 2 + 1e-5, LY / 2 + 1e-5]) mesh.set_region(B_BOUNDARY, bottom_faces) mesh.set_region(T_BOUNDARY, top_faces) mesh.region_merge(TB_BOUNDARY, T_BOUNDARY) mesh.region_merge(TB_BOUNDARY, B_BOUNDARY) mesh.export_to_vtk("%s/mesh.vtk" % resultspath) # FEM mfu = gf.MeshFem(mesh, N) mfu.set_classical_fem(disp_fem_order) mfdir = mfu mfphi = gf.MeshFem(mesh, 1) mfphi.set_classical_fem(phi_fem_order) mfout = gf.MeshFem(mesh) mfout.set_classical_discontinuous_fem(2) # Integration method mim = gf.MeshIm(mesh, integration_degree) mimd1 = gf.MeshImData(mim, -1) # Model
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public # License and GCC Runtime Library Exception for more details. # You should have received a copy of the GNU Lesser General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. # ############################################################################ import numpy as np import getfem as gf NX = 10 m = gf.Mesh('cartesian', np.arange(0,1+1./NX,1./NX), np.arange(0,1+1./NX,1./NX)) mf = gf.MeshFem(m,1) # create a meshfem of for a field of dimension 1 mf.set('fem',gf.Fem('FEM_QK(2,2)')) print (gf.Fem('FEM_QK(2,2)').poly_str()) # mim=gf.MeshIm(m, gf.Integ('IM_EXACT_PARALLELEPIPED(2)')); // not allowed mim=gf.MeshIm(m, gf.Integ('IM_GAUSS_PARALLELEPIPED(2, 4)')); border = m.outer_faces() m.set_region(42, border) # create the region B42 (:- md=gf.Model('real') md.add_fem_variable('u', mf) md.add_Laplacian_brick(mim, 'u')
elif str(gt[0])=='GT_PRISM(3,1)': #print 'index of PRISM: ', i listPrism.append(i) elif str(gt[0])=='GT_QK(3,1)': #print 'index of HEXA: ', i listHexa.append(i) else: print('Geometric transformation: ', gt[0]) print('num Tetra: ', len(listTetra)) print('num Hexa: ', len(listHexa)) print('num Hexa: ', len(listHexa)) print('num Hexa: ', len(listHexa)) mfu = gf.MeshFem(m, 3) mfu.set_fem(gf.Fem('FEM_QK(3,{d})'.format(d=degree)),listHexa) mfu.set_fem(gf.Fem('FEM_PYRAMID_LAGRANGE({d})'.format(d=degree)),listPyramid) mfu.set_fem(gf.Fem('FEM_PK_PRISM(3,{d})'.format(d=degree)),listPrism) mfu.set_fem(gf.Fem('FEM_PK(3,{d})'.format(d=degree)),listTetra) mim = gf.MeshIm(m, 3) # Model md = gf.Model('real') md.add_fem_variable('u',mfu) md.add_initialized_data('mu_para', Mu) md.add_initialized_data('lambda_para', Lambda) md.add_linear_generic_assembly_brick(mim,"lambda_para*Div_u*Div_Test_u + 2*mu_para*Sym(Grad_u):Grad_Test_u")
This program is used to check that python-getfem is working. This is also a good example of use of GetFEM++. $Id$ """ import numpy as np import getfem as gf NX = 10.0 thickness = 0.01 f = -5. * pow(thickness, 3.) m = gf.Mesh('regular simplices', np.arange(0, 1.01, 1 / NX), np.arange(0, 1.01, 1 / NX)) mfu3 = gf.MeshFem(m, 1) mfth = gf.MeshFem(m, 2) mfd = gf.MeshFem(m, 1) mfu3.set_fem(gf.Fem('FEM_PK(2,1)')) mfth.set_fem(gf.Fem('FEM_PK(2,2)')) mfd.set_fem(gf.Fem('FEM_PK(2,2)')) mim = gf.MeshIm(m, gf.Integ('IM_TRIANGLE(5)')) #get the list of faces whose normal is [-1,0] flst = m.outer_faces() fnor = m.normal_of_faces(flst) fleft = np.compress(abs(fnor[1, :] + 1) < 1e-14, flst, axis=1) fright = np.compress(abs(fnor[1, :] - 1) < 1e-14, flst, axis=1) CLAMPED_BOUNDARY = 1
try: import getfem_tvtk except: print "\n** Could NOT import getfem_tvtk -- graphical output disabled **\n" import time time.sleep(2) with_graphics = False L = 100 H = 20 m = gf.Mesh('triangles grid', np.arange(0, L + 0.01, 4), np.arange(0, H + 0.01, 2)) mim = gf.MeshIm(m, gf.Integ('IM_TRIANGLE(6)')) mfu = gf.MeshFem(m, 2) mfsigma = gf.MeshFem(m, 4) mfd = gf.MeshFem(m) mf0 = gf.MeshFem(m) mfdu = gf.MeshFem(m) mfu.set_fem(gf.Fem('FEM_PK(2,1)')) mfsigma.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(2,1)')) mfd.set_fem(gf.Fem('FEM_PK(2,1)')) mf0.set_fem(gf.Fem('FEM_PK(2,0)')) mfdu.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(2,1)')) Lambda = 121150 Mu = 80769 von_mises_threshold = 4000
0, .5, 1, 0, .5, 1, 0, .5, 1, 0, .5, 1, 0, .5, 1, 0, .5, 1, 0, .5, 1, 0, .5, 1, 0, .5, 1 ]) - 1.5, np.array([ 0, 0, 0, .5, .5, .5, 1, 1, 1, 0, 0, 0, .5, .5, .5, 1, 1, 1, 0, 0, 0, .5, .5, .5, 1, 1, 1 ]) - 1, np.array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, .5, .5, .5, .5, .5, .5, .5, .5, .5, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]) ]) m1 = gf.Mesh('cartesian', [0, 1, 2, 3], [0, 1, 2], [-3, -2]) mf0 = gf.MeshFem(m0) mf0.set_classical_fem(1) mf1 = gf.MeshFem(m1) mf1.set_classical_fem(1) sl = gf.Slice(('boundary', ), m0, 6) U = np.random.standard_normal(mf0.nbdof()) # VTK: m0.export_to_vtk('check_export0.vtk', 'quality') m1.export_to_vtk('check_export1.vtk', 'quality') mf0.export_to_vtk('check_export2.vtk', 'ascii') mf1.export_to_vtk('check_export3.vtk', 'ascii') # DX: try: