예제 #1
0
 def __init__(self, screen, font):
     '''Init game state, player score, game count, etc...'''
     self.screen = screen
     self.font = font
     self.gfx = gfx.Gfx(screen, font)
     self.state = menu.Menu(self)
     self.choose_minigame()
     self.difficulty = 0
     self.players = [player.Player(), player.Player()]
     self.active_player = 0
     self.second_turn = False
예제 #2
0
 def __init__(self,
              ann,
              grid_seed=1,
              num_time_steps=60,
              should_visualize=False):
     self.agent = agent.Agent()
     self.grid = grid.Grid(seed=grid_seed)
     self.agent.set_ann(ann)
     self.agent.set_grid(self.grid)
     self.gfx = gfx.Gfx() if should_visualize else None
     self.num_time_steps = num_time_steps
예제 #3
0
 def __init__(self, border, font, outputs):
     '''Init game state, player score, game count, etc...'''
     self.border = border
     self.screen = border.subsurface(
         Rect((Game.BORDER_SIZE, Game.BORDER_SIZE),
              (Game.SCREEN_WIDTH - 2 * Game.BORDER_SIZE,
               Game.SCREEN_HEIGHT - 2 * Game.BORDER_SIZE)))
     self.font = font
     self.gfx = gfx.Gfx(self.screen, font)
     self.state = menu.Menu(self)
     self.outputs = outputs
     self.init()
예제 #4
0
    def __init__(self):
        self.gfx = gfx.Gfx()
        object_collection.ObjectCollection.all_boids = []
        for i in range(100):
            object_collection.ObjectCollection.all_boids.append(boid.Boid())

        object_collection.ObjectCollection.all_predators = []
        for i in range(0):
            object_collection.ObjectCollection.all_predators.append(
                predator.Predator())

        self.run()
예제 #5
0
    def test_rendering(self):
        w = world.World()
        x, y, width = 1, 0, 2
        w.set_item(x, y, width)

        agent_x = 2
        w.set_agent(agent_x)

        g = gfx.Gfx(fps=2)
        g.draw(w)
        w.agent.move(-1)
        w.move_item_down()
        g.draw(w)
        w.agent.move(-2)
        w.move_item_down()
        g.draw(w)
        w.agent.move(-3)
        w.move_item_down()
        g.draw(w)
        w.agent.move(-4)
        w.move_item_down()
        g.draw(w)
        g.draw(w)
예제 #6
0
파일: simulator.py 프로젝트: iver56/it3708
    with open('best_individual.json') as best_agent_weights:
        weights = json.load(best_agent_weights)

    if args.scenario == 'pull':
        genotype_class = BeerTrackerPullGenotype
    elif args.scenario == 'wall':
        genotype_class = BeerTrackerWallGenotype
    else:
        genotype_class = BeerTrackerGenotype

    nn = Rnn(num_input_nodes=genotype_class.num_input_nodes,
             num_hidden_nodes=genotype_class.num_hidden_nodes,
             num_output_nodes=genotype_class.num_output_nodes)
    nn.set_weights(weights)

    g = gfx.Gfx()
    g.fps = 8

    for i in range(args.num_scenarios):
        seed = i + ((997 * args.generation) if args.mode == 'dynamic' else 0)
        print '---', 'seed', seed, '---'
        bt = BeerTracker(nn=nn, seed=seed, scenario=args.scenario)
        bt.gfx = g
        bt.run()
        print bt.world.agent.num_small_misses, 'small miss(es)'
        print bt.world.agent.num_large_misses, 'large miss(es)'
        print bt.world.agent.num_partial_captures, 'partial capture(s)'
        print bt.world.agent.num_small_captures, 'small capture(s)'
        print bt.world.agent.num_large_captures, 'large capture(s)'
        if args.scenario == 'pull':
            print bt.world.agent.num_good_pulls, 'good pulls'
예제 #7
0
    def __init__(self):
        arg_parser = argparse.ArgumentParser()

        arg_parser.add_argument('--scenario',
                                dest='scenario',
                                type=str,
                                choices=['standard', 'pull', 'wall'],
                                required=False,
                                default="standard")
        arg_parser.add_argument('--mode',
                                dest='mode',
                                type=str,
                                choices=['static', 'dynamic'],
                                required=False,
                                default="dynamic")
        arg_parser.add_argument(
            '--num-scenarios',
            dest='num_scenarios',
            help='Number of scenarios per agent per generation',
            type=int,
            required=False,
            default=3)
        arg_parser.add_argument('--adult-selection-method',
                                dest='adult_selection_method',
                                type=str,
                                choices=[
                                    'full_generational_replacement',
                                    'over_production', 'generational_mixing'
                                ],
                                required=False,
                                default="over_production")
        arg_parser.add_argument('--parent-selection-method',
                                dest='parent_selection_method',
                                type=str,
                                choices=[
                                    'fitness_proportionate', 'sigma_scaling',
                                    'boltzmann_selection',
                                    'tournament_selection'
                                ],
                                required=False,
                                default="tournament_selection")
        arg_parser.add_argument('--adult-pool-size',
                                dest='adult_pool_size',
                                help='Max number of adults in the adult pool',
                                type=int,
                                required=False,
                                default=50)
        arg_parser.add_argument('-p',
                                '--population-size',
                                dest='population_size',
                                help='Number of individuals in a population',
                                type=int,
                                required=False,
                                default=100)
        arg_parser.add_argument('-g',
                                '--num-generations',
                                dest='num_generations',
                                help='Number of generations',
                                type=int,
                                required=False,
                                default=190)
        arg_parser.add_argument('--num-runs',
                                dest='num_runs',
                                help='Number of runs',
                                type=int,
                                required=False,
                                default=1)
        arg_parser.add_argument(
            '--crossover-rate',
            dest='crossover_rate',
            help=
            'Probability of sexual reproduction (two parents) instead of asexual reproduction (one parent)',
            type=float,
            required=False,
            default=0.5)
        arg_parser.add_argument(
            '--mutation-rate',
            dest='mutation_rate',
            help='Probability of gene mutation in new genotypes',
            type=float,
            required=False,
            default=0.5)
        arg_parser.add_argument(
            '--silent',
            nargs='?',
            dest='silent',
            help='Add this flag for the program to be less verbose',
            const=True,
            required=False,
            default=False)
        arg_parser.add_argument('--visualize-every',
                                dest='visualize_every',
                                type=int,
                                required=False,
                                default=-1)

        self.args = arg_parser.parse_args()

        if self.args.adult_pool_size < 1 or self.args.adult_pool_size > self.args.population_size:
            raise Exception(
                'adult_pool_size must be a positive integer that is not greater than population_size'
            )
        if self.args.crossover_rate < 0.0 or self.args.crossover_rate > 1.0:
            raise Exception('crossover_rate must be between 0.0 and 1.0')
        if self.args.mutation_rate < 0.0 or self.args.mutation_rate > 1.0:
            raise Exception('mutation_rate must be between 0.0 and 1.0')
        if self.args.num_scenarios < 1:
            raise Exception('num_scenarios must be at least 1')
        if self.args.adult_selection_method == 'generational_mixing' and self.args.mode == 'dynamic':
            raise Exception(
                'Generational mixing and dynamic mode do not work well together'
            )

        ga.BeerTrackerProblem.parse_args()
        self.problem_class = ga.BeerTrackerProblem
        self.problem_class.dynamic_mode = self.args.mode == 'dynamic'
        self.problem_class.num_scenarios = self.args.num_scenarios
        self.problem_class.scenario = self.args.scenario
        if self.args.scenario == 'pull':
            self.genotype_class = ga.BeerTrackerPullGenotype
        elif self.args.scenario == 'wall':
            self.genotype_class = ga.BeerTrackerWallGenotype
        else:
            self.genotype_class = ga.BeerTrackerGenotype
        self.individual_class = ga.BeerTrackerIndividual
        self.individual_class.genotype_class = self.genotype_class

        if self.args.visualize_every >= 1:
            import gfx
            self.beer_tracker_gfx = gfx.Gfx()
            self.beer_tracker_gfx.fps = 8

        logs = []
        for i in range(self.args.num_runs):
            population = self.run()
            logs.append(population.log)

        with open('logs.json', 'w') as log_file:
            json.dump(logs, log_file)
예제 #8
0
파일: neat.py 프로젝트: iver56/it3708
    def __init__(self):
        arg_parser = argparse.ArgumentParser()
        arg_parser.add_argument(
            '-g',
            '--num-generations',
            dest='num_generations',
            type=int,
            required=False,
            default=100
        )
        arg_parser.add_argument(
            '-p',
            '--population_size',
            dest='population_size',
            type=int,
            required=False,
            default=50
        )
        arg_parser.add_argument(
            '-s',
            '--seed',
            dest='seed',
            type=int,
            required=False,
            default=1
        )
        arg_parser.add_argument(
            '-v',
            '--visualize',
            nargs='?',
            dest='visualize',
            help='Visualize the best neural network in each generation',
            const=True,
            required=False,
            default=False
        )
        arg_parser.add_argument(
            '--visualize-every',
            dest='visualize_every',
            type=int,
            required=False,
            default=1
        )
        arg_parser.add_argument(
            '--num-scenarios',
            dest='num_scenarios',
            type=int,
            required=False,
            default=5
        )
        arg_parser.add_argument(
            '--mode',
            dest='mode',
            type=str,
            choices=['static', 'dynamic'],
            required=False,
            default="dynamic"
        )
        arg_parser.add_argument(
            '--allow-clones',
            nargs='?',
            dest='allow_clones',
            help="""Allow clones or nearly identical genomes to exist simultaneously in the
                    population. This is useful for non-deterministic environments,
                    as the same individual will get more than one chance to prove himself, also
                    there will be more chances the same individual to mutate in different ways.
                    The drawback is greatly increased time for reproduction. If you want to
                    search quickly, yet less efficient, leave this to true.""",
            const=True,
            required=False,
            default=False
        )
        arg_parser.add_argument(
            '--add-neuron-prob',
            dest='add_neuron_probability',
            type=float,
            help='MutateAddNeuronProb: Probability for a baby to be mutated with the'
                 ' Add-Neuron mutation',
            required=False,
            default=0.03
        )
        arg_parser.add_argument(
            '--add-link-prob',
            dest='add_link_probability',
            type=float,
            help='MutateAddLinkProb: Probability for a baby to be mutated with the'
                 ' Add-Link mutation',
            required=False,
            default=0.03
        )
        arg_parser.add_argument(
            '--rem-link-prob',
            dest='remove_link_probability',
            type=float,
            help='MutateRemLinkProb: Probability for a baby to be mutated with the'
                 ' Remove-Link mutation',
            required=False,
            default=0.03
        )
        arg_parser.add_argument(
            '--rem-simple-neuron-prob',
            dest='remove_simple_neuron_probability',
            type=float,
            help='MutateRemSimpleNeuronProb: Probability for a baby that a simple neuron'
                 ' will be replaced with a link',
            required=False,
            default=0.03
        )
        arg_parser.add_argument(
            '--fs-neat',
            nargs='?',
            dest='fs_neat',
            help='Use FS-NEAT',
            const=True,
            required=False,
            default=False
        )
        self.args = arg_parser.parse_args()

        if self.args.visualize:
            import gfx
            self.beer_tracker_gfx = gfx.Gfx()
            self.beer_tracker_gfx.fps = 8

        self.log = []
        self.run()

        with open('logs.json', 'w') as log_file:
            json.dump([self.log], log_file)