def modelrho(r0, logrho, nr0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, nrinf): # direct n(r) measures: traf(...) vec = np.array([logrho,nr0,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,v16,v17,v18,nrinf]) vec = traf(vec) vec = gcc.map_nr_data(vec, 1, gp) rh = phys.rho(r0, vec, 0, gp) return np.log(rh)
def modelrho(r0, rhohalf, nr00, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, nrinf): # direct n(r) measures: traf(...) vec = np.array([nr00,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,v16,v17,v18, nrinf]) #print('vec=',vec) #pdb.set_trace() vec = traf(vec) vec = gcc.map_nr(np.hstack([rhohalf, vec]), 'rho', 0, gp) #rhoparam = np.hstack([rhohalf,vec[0],vec,vec[-1]]) rh = phys.rho(r0, vec, 0, gp) return np.log(rh)
def modelrho(r0, logrho, nr0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, nrinf): # direct n(r) measures: traf(...) vec = np.array([ logrho, nr0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, nrinf ]) vec = traf(vec) vec = gcc.map_nr_data(vec, 1, gp) rh = phys.rho(r0, vec, 0, gp) return np.log(rh)
def modelrho(r0, rhohalf, nr00, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, nrinf): # direct n(r) measures: traf(...) vec = np.array([ nr00, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, nrinf ]) #print('vec=',vec) #pdb.set_trace() vec = traf(vec) vec = gcc.map_nr(np.hstack([rhohalf, vec]), 'rho', 0, gp) #rhoparam = np.hstack([rhohalf,vec[0],vec,vec[-1]]) rh = phys.rho(r0, vec, 0, gp) return np.log(rh)
def rho_param_INT_Sig_disc(z0, rhopar, pop, gp): # use splines on variable transformed integral # \Sigma(R) = \int_{r=0}^{R} \rho(r) dr xmin = z0[0]/30. # tweaked. z0[0]/1e4 gives error in quad() z0left = np.array([xmin, z0[0]*0.25, z0[0]*0.50, z0[0]*0.75]) z0nu = np.hstack([z0left, z0]) rhonu = phys.rho(z0nu, rhopar, pop, gp) # rho takes rho(rhalf) and n(r) parameters Sig = np.zeros(len(z0nu)-gp.nexp) for i in range(len(z0nu)-gp.nexp): Sig[i] = gh.quadinflog(z0nu, rhonu, xmin, z0nu[i]) gh.checkpositive(Sig, 'Sig in rho_param_INT_Sig_disc') return Sig[len(z0left):] # @z0 (z0nu without z0left, and without 3 extension bins)
def rho_param_INT_Sig_disc(z0, rhopar, pop, gp): # use splines on variable transformed integral # \Sigma(R) = \int_{r=0}^{R} \rho(r) dr xmin = z0[0] / 30. # tweaked. z0[0]/1e4 gives error in quad() z0left = np.array([xmin, z0[0] * 0.25, z0[0] * 0.50, z0[0] * 0.75]) z0nu = np.hstack([z0left, z0]) rhonu = phys.rho(z0nu, rhopar, pop, gp) # rho takes rho(rhalf) and n(r) parameters Sig = np.zeros(len(z0nu) - gp.nexp) for i in range(len(z0nu) - gp.nexp): Sig[i] = gh.quadinflog(z0nu, rhonu, xmin, z0nu[i]) gh.checkpositive(Sig, 'Sig in rho_param_INT_Sig_disc') return Sig[len( z0left):] # @z0 (z0nu without z0left, and without 3 extension bins)
def rho_param_INT_Sig(r0, rhodmpar, pop, gp): # use splines on variable transformed integral # \Sigma(R) = \int_{r=R}^{R=\infty} \rho(r) d \sqrt(r^2-R^2) xmin = gp.xfine[0]/15. # needed, if not: loose on first 4 bins r0nu = gp.xfine rhonu = phys.rho(r0nu, rhodmpar, pop, gp) Sig = np.zeros(len(r0nu)-gp.nexp) for i in range(len(r0nu)-gp.nexp): xnew = np.sqrt(r0nu[i:]**2-r0nu[i]**2) # [lunit] ynew = 2.*rhonu[i:] # power-law extension to infinity C = gh.quadinflog(xnew[-gp.nexp:], ynew[-gp.nexp:], xnew[-1], gp.rinfty*xnew[-1]) Sig[i] = gh.quadinflog(xnew[1:], ynew[1:], xmin, xnew[-1]) + C # np.inf) gh.checkpositive(Sig, 'Sig in rho_param_INT_Sig') # interpolation onto r0 tck1 = splrep(np.log(gp.xfine[:-gp.nexp]), np.log(Sig)) Sigout = np.exp(splev(np.log(r0), tck1)) return Sigout
def rho_param_INT_Sig_theta(Rproj, rhodmpar, pop, gp): # use splines on variable transformed integral # \Sigma(R) = \int_{r=R}^{R=\infty} \rho(r) d \sqrt(r^2-R^2) bit = 1.e-6 theta = np.linspace(0, np.pi/2-bit, gp.nfine) cth = np.cos(theta) cth2 = cth*cth rhonu = phys.rho(Rproj, rhodmpar, pop, gp) Sig = np.zeros(len(Rproj)) for i in range(len(Rproj)): rq = Rproj[i]/cth rhoq = np.interp(rq, Rproj, rhonu, left=0, right=0) #right=rhonu[-1]/1e10) # best for hern #rhoq = phys.rho(rq, rhodmpar, pop, gp) Sig[i] = 2.*Rproj[i]*simps(rhoq/cth2, theta) gh.checkpositive(Sig, 'Sig in rho_param_INT_Sig') # interpolation onto r0 #tck1 = splrep(np.log(gp.xfine), np.log(Sig)) #Sigout = np.exp(splev(np.log(r0), tck1)) return Sig
def rho_param_INT_Sig_theta(Rproj, rhodmpar, pop, gp): # use splines on variable transformed integral # \Sigma(R) = \int_{r=R}^{R=\infty} \rho(r) d \sqrt(r^2-R^2) bit = 1.e-6 theta = np.linspace(0, np.pi / 2 - bit, gp.nfine) cth = np.cos(theta) cth2 = cth * cth rhonu = phys.rho(Rproj, rhodmpar, pop, gp) Sig = np.zeros(len(Rproj)) for i in range(len(Rproj)): rq = Rproj[i] / cth rhoq = np.interp(rq, Rproj, rhonu, left=0, right=0) #right=rhonu[-1]/1e10) # best for hern #rhoq = phys.rho(rq, rhodmpar, pop, gp) Sig[i] = 2. * Rproj[i] * simps(rhoq / cth2, theta) gh.checkpositive(Sig, 'Sig in rho_param_INT_Sig') # interpolation onto r0 #tck1 = splrep(np.log(gp.xfine), np.log(Sig)) #Sigout = np.exp(splev(np.log(r0), tck1)) return Sig
def rho_param_INT_Sig(r0, rhodmpar, pop, gp): # use splines on variable transformed integral # \Sigma(R) = \int_{r=R}^{R=\infty} \rho(r) d \sqrt(r^2-R^2) xmin = gp.xfine[0] / 15. # needed, if not: loose on first 4 bins r0nu = gp.xfine rhonu = phys.rho(r0nu, rhodmpar, pop, gp) Sig = np.zeros(len(r0nu) - gp.nexp) for i in range(len(r0nu) - gp.nexp): xnew = np.sqrt(r0nu[i:]**2 - r0nu[i]**2) # [lunit] ynew = 2. * rhonu[i:] # power-law extension to infinity C = gh.quadinflog(xnew[-gp.nexp:], ynew[-gp.nexp:], xnew[-1], gp.rinfty * xnew[-1]) Sig[i] = gh.quadinflog(xnew[1:], ynew[1:], xmin, xnew[-1]) + C # np.inf) gh.checkpositive(Sig, 'Sig in rho_param_INT_Sig') # interpolation onto r0 tck1 = splrep(np.log(gp.xfine[:-gp.nexp]), np.log(Sig)) Sigout = np.exp(splev(np.log(r0), tck1)) return Sigout
y = np.log(analytic_rho(x)) popt3, pcov3 = curve_fit(modelrho, x, y, p0=npr.rand(gp.nrho), maxfev=10000) nr01opt = traf(popt3[1:]) nropt = gcc.map_nr(np.hstack([popt3[0], nr01opt]), 'rho', 0, gp) print('nr01opt = ', nr01opt) print('nropt = ', nropt) fig = plt.figure(facecolor='white') left, width = 0.25, 0.7 rect1 = [left, 0.4, width, 0.55] rect2 = [left, 0.2, width, 0.2] ax1 = fig.add_axes(rect1) #left, bottom, width, height ax2 = fig.add_axes(rect2, sharex=ax1) ax1.plot(x, y, 'b', lw=2, label='analytic') ax1.plot(x, modelrho(x, *popt3), 'r--', lw=2, label='fit on data') ax1.plot(x, np.log(phys.rho(x, nropt, 0, gp)), 'g--', lw=1, label='phys.rho') ax1.set_xscale('log') plt.setp(ax1.get_xticklabels(), visible=False) ax1.set_ylabel('$\\rho$') legend = ax1.legend(loc='lower left', shadow=False, borderpad=0.2, labelspacing=0.1, handletextpad=0.1, borderaxespad=0.3) frame = legend.get_frame() frame.set_facecolor('1.0') for label in legend.get_texts(): label.set_fontsize(8) for label in legend.get_lines(): label.set_linewidth(2) # the legend line width ax2.set_xscale('log') ax2.plot(x, y-modelrho(x, *popt3), 'r.-', alpha=0.8) ax2.set_xlabel('$r\\,[{\\rm pc}]$') plt.savefig('rho_fit_all.pdf')
def geom_loglike(cube, ndim, nparams, gp): tmp_profs = Profiles(gp.pops, gp.nepol) off = 0 offstep = gp.nrho if gp.chi2_Sig_converged <= 0: rhodmpar = np.array(cube[off : off + offstep]) tmp_rho0 = phys.rho(gp.xepol, rhodmpar, 0, gp) # for J factor calculation (has been deferred to output routine) # tmp_rhofine = phys.rho(gp.xfine, rhodmpar, 0, gp) # tmp_Jfine = gip.Jpar(gp.xfine, tmp_rhofine, gp) #tmp_rhofine # tck = splrep(gp.xfine[:-3], tmp_Jfine) # tmp_J = splev(gp.xepol, tck) # rhodmpar hold [rho(rhalf), nr to be used for integration # from halflight radius, defined on gp.xepol] # (only calculate) M, check tmp_M0 = gip.rho_SUM_Mr(gp.xepol, tmp_rho0) # store profiles tmp_profs.set_prof("nr", 1.0 * rhodmpar[1 + 1 : -1], 0, gp) tmp_profs.set_prof("rho", tmp_rho0, 0, gp) # tmp_profs.set_prof('J', tmp_J, 0, gp) tmp_profs.set_prof("M", tmp_M0, 0, gp) off += offstep # anyhow, even if Sig not yet converged # get profile for rho* if gp.investigate == "obs": offstep = gp.nrho lbaryonpar = np.array(cube[off : off + offstep]) rhostar = phys.rho(gp.xepol, lbaryonpar, 0, gp) off += offstep Signu = gip.rho_param_INT_Sig(gp.xepol, lbaryonpar, 0, gp) # [Munit/pc^2] MtoL = cube[off] off += 1 # store these profiles every time tmp_profs.set_prof("nu", rhostar, 0, gp) tmp_profs.set_prof("Sig", Signu, 0, gp) tmp_profs.set_MtoL(MtoL) else: lbaryonpar = np.zeros(gp.nrho) MtoL = 0.0 for pop in np.arange(1, gp.pops + 1): # [1, 2, ..., gp.pops] offstep = gp.nrho nupar = np.array(cube[off : off + offstep]) tmp_nrnu = 1.0 * nupar[1 + 1 : -1] tmp_nu = phys.rho(gp.xepol, nupar, pop, gp) tmp_Signu = gip.rho_param_INT_Sig(gp.xepol, nupar, pop, gp) # tmp_nu = pool.apply_async(phys.rho, [gp.xepol, nupar, pop, gp]) # tmp_Signu = pool.apply_async(gip.rho_param_INT_Sig, [gp.xepol, nupar, pop, gp]) off += offstep offstep = 1 tmp_hyperSig = cube[off : off + offstep] off += offstep offstep = 1 tmp_hypersig = cube[off : off + offstep] off += offstep offstep = gp.nbeta if gp.chi2_Sig_converged <= 0: betapar = np.array(cube[off : off + offstep]) tmp_beta, tmp_betastar = phys.beta(gp.xepol, betapar, gp) if check_beta(tmp_beta, gp): gh.LOG(2, "beta error") tmp_profs.chi2 = gh.err(1.0, gp) return tmp_profs try: # if True: if gp.checksig and gp.investigate == "hern": import gi_analytic as ga anrho = ga.rho(gp.xepol, gp)[0] rhodmpar_half = np.exp(splev(gp.dat.rhalf[0], splrep(gp.xepol, np.log(anrho)))) nr = -gh.derivipol(np.log(anrho), np.log(gp.xepol)) dlr = np.hstack([nr[0], nr, nr[-1]]) if gp.investigate == "gaia": dlr[-1] = 4 rhodmpar = np.hstack([rhodmpar_half, dlr]) lbaryonpar = 0.0 * rhodmpar MtoL = 0.0 betapar = np.array([0, 0, 2, max(gp.xipol) / 2]) # for hern annu = ga.rho(gp.xepol, gp)[1] nupar_half = np.exp(splev(gp.dat.rhalf[1], splrep(gp.xepol, np.log(annu)))) nrnu = -gh.derivipol(np.log(annu), np.log(gp.xepol)) dlrnu = np.hstack([nrnu[0], nrnu, nrnu[-1]]) if gp.investigate == "gaia": dlrnu[-1] = 6 nupar = np.hstack([nupar_half, dlrnu]) elif gp.checkbeta and gp.investigate == "gaia": # rhodmpar = np.array([ 0.41586608, 0.38655515, 0.60898657, 0.50936769, 0.52601378, 0.54526758, 0.5755599, 0.57900806, 0.60252357, 0.60668445, 0.62252721, 0.63173754, 0.64555439, 0.65777175, 0.67083556, 0.68506606, 0.69139872, 0.66304763, 0.61462276, 0.70916575, 0.53287872]) rhodmpar = np.array( [ 0.18235821, 0.4719348, 0.0, 0.0, 0.10029569, 0.11309553, 0.25637863, 0.31815175, 0.40621336, 0.46247927, 0.53545415, 0.60874961, 0.68978141, 0.79781574, 0.91218048, 1.08482356, 1.36074895, 1.88041885, 2.31792908, 2.62089078, 3.001, ] ) betapar = np.array([1.23555034e-03, 9.89999994e-01, 2.03722518e00, 5.85640906e00]) nupar = np.array( [ 0.15649498, 6.65618254, 0.10293663, 0.1087109, 0.13849277, 0.24371261, 0.62633345, 1.05913181, 1.43774113, 1.82346043, 2.20091446, 2.60007997, 2.98745825, 3.423104, 3.80766658, 4.2089698, 4.62950843, 4.91166037, 4.97380638, 4.99718073, 5.2277589, ] ) gp.dat.nrnu = [ np.array( [ 0.15476906, 0.85086798, 0.9342867, 0.88161169, 0.83254241, 0.85086798, 0.99930431, 1.22211638, 1.47184763, 1.78910057, 2.1987677, 2.51961046, 2.80345393, 3.10336133, 3.88504346, 4.52442727, 4.88817769, 5.07880404, 4.83455511, 6.32165657, 4.88817769, ] ), np.array( [ 0.15476906, 0.85086798, 0.9342867, 0.88161169, 0.83254241, 0.85086798, 0.99930431, 1.22211638, 1.47184763, 1.78910057, 2.1987677, 2.51961046, 2.80345393, 3.10336133, 3.88504346, 4.52442727, 4.88817769, 5.07880404, 4.83455511, 6.32165657, 4.88817769, ] ), np.array( [ 0.15476906, 0.85086798, 0.9342867, 0.88161169, 0.83254241, 0.85086798, 0.99930431, 1.22211638, 1.47184763, 1.78910057, 2.1987677, 2.51961046, 2.80345393, 3.10336133, 3.88504346, 4.52442727, 4.88817769, 5.07880404, 4.83455511, 6.32165657, 4.88817769, ] ), np.array( [ 0.15476906, 0.85086798, 0.9342867, 0.88161169, 0.83254241, 0.85086798, 0.99930431, 1.22211638, 1.47184763, 1.78910057, 2.1987677, 2.51961046, 2.80345393, 3.10336133, 3.88504346, 4.52442727, 4.88817769, 5.07880404, 4.83455511, 6.32165657, 4.88817769, ] ), ] gp.dat.nrnuerr = [ np.array( [ 0.05158969, 12.22044422, 2.44408884, 2.44408884, 2.44408884, 2.44408884, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 2.44408884, 2.44408884, 2.44408884, 2.44408884, ] ), np.array( [ 0.05158969, 12.22044422, 2.44408884, 2.44408884, 2.44408884, 2.44408884, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 2.44408884, 2.44408884, 2.44408884, 2.44408884, ] ), np.array( [ 0.05158969, 12.22044422, 2.44408884, 2.44408884, 2.44408884, 2.44408884, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 2.44408884, 2.44408884, 2.44408884, 2.44408884, ] ), np.array( [ 0.05158969, 12.22044422, 2.44408884, 2.44408884, 2.44408884, 2.44408884, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 2.44408884, 2.44408884, 2.44408884, 2.44408884, ] ), ] lbaryonpar = 0.0 * rhodmpar MtoL = 0.0 sig, kap, zetaa, zetab = phys.sig_kap_zet(gp.xepol, rhodmpar, lbaryonpar, MtoL, nupar, betapar, pop, gp) # fill_between(gp.xipol, gp.dat.sig[1]-gp.dat.sigerr[1], gp.dat.sig[1]+gp.dat.sigerr[1]) # plot(gp.xepol, sig, 'r') # xscale('log') # ylim([0, 30]) # xlabel('$r$ [pc]') # ylabel('$\sigma_{LOS}$ [km/s]') # savefig('siglos_gaia_2.pdf') # pdb.set_trace() except Exception: gh.LOG(1, "sigma error") tmp_profs.chi2 = gh.err(2.0, gp) return tmp_profs # now store the profiles gh.sanitize_vector(tmp_beta, len(tmp_profs.x0), -200, 1, gp.debug) tmp_profs.set_prof("beta", tmp_beta, pop, gp) gh.sanitize_vector(tmp_betastar, len(tmp_profs.x0), -1, 1, gp.debug) tmp_profs.set_prof("betastar", tmp_betastar, pop, gp) tmp_profs.set_prof("sig", sig, pop, gp) tmp_profs.hypersig = tmp_hypersig tmp_profs.set_prof("kap", kap, pop, gp) tmp_profs.set_zeta(zetaa, zetab, pop) tmp_profs.set_prof("nrnu", tmp_nrnu, pop, gp) tmp_profs.set_prof("nu", tmp_nu, pop, gp) # pool: tmp_nu.get() # following profile needs to be stored at all times, to calculate chi tmp_profs.set_prof("Sig", tmp_Signu, pop, gp) tmp_profs.hyperSig = tmp_hyperSig off += offstep # still do this even if gp.chi2_Sig_converged is False if off != gp.ndim: gh.LOG(1, "wrong subscripts in gi_loglike") pdb.set_trace() # determine log likelihood chi2 = calc_chi2(tmp_profs, gp) gh.LOG(-1, gp.investigate + "/" + str(gp.case) + "/" + gp.files.timestamp + ": ln L = ", gh.pretty(-chi2 / 2.0)) # x=gp.dat.rbin # linedat,=ax.loglog(x, gp.dat.Sig[1], 'b') # line,=ax.loglog(x, tmp_profs.get_prof("Sig", 1), 'r', alpha=0.1) # plt.draw() # plt.show() tmp_profs.chi2 = chi2 # after some predefined wallclock time and Sig convergence, plot all profiles # if time.time() - gp.last_plot >= gp.plot_after and gp.chi2_Sig_converged <= 0: # gp.last_plot = time.time() # try: # import plotting.plot_profiles # plotting.plot_profiles.run(gp.files.timestamp, gp.files.outdir, gp) # except: # print('plotting error in gi_loglike!') # close pool automatically after with clause return tmp_profs
popt3, pcov3 = curve_fit(modelrho, x, y, p0=npr.rand(gp.nrho), maxfev=10000) nr01opt = traf(popt3[:]) nropt = gcc.map_nr_data(nr01opt, 1, gp) print('nr01opt = ', nr01opt) print('nropt = ', nropt) fig = plt.figure(facecolor='white') left, width = 0.25, 0.7 rect1 = [left, 0.4, width, 0.55] rect2 = [left, 0.2, width, 0.2] ax1 = fig.add_axes(rect1) #left, bottom, width, height ax2 = fig.add_axes(rect2, sharex=ax1) ax1.plot(gp.xipol, np.log(gp.dat.nu[1]), 'k', lw=3, label='data') ax1.plot(x, y, 'b', lw=2, label='analytic') ax1.plot(x, modelrho(x, *popt3), 'r--', lw=2, label='fit on data') ax1.plot(x, np.log(phys.rho(x, nropt, 1, gp)), 'g--', lw=1, label='phys.rho') ax1.set_xscale('log') plt.setp(ax1.get_xticklabels(), visible=False) ax1.set_ylabel('$\\rho$') legend = ax1.legend(loc='lower left', shadow=False, borderpad=0.2, labelspacing=0.1, handletextpad=0.1, borderaxespad=0.3) frame = legend.get_frame() frame.set_facecolor('1.0') for label in legend.get_texts(): label.set_fontsize(8) for label in legend.get_lines(): label.set_linewidth(2) # the legend line width
def ant_sigkaplos(r0, rhodmpar, lbaryonpar, MtoL, nupar, betapar, pop, gp): rmin = np.log10(min(r0)) rmax = np.log10(max(r0)*gp.rinfty) r0fine = np.logspace(rmin, rmax, gp.nfine) # rho # -------------------------------------------------------------------------- rhofine = phys.rho(r0fine, rhodmpar, 0, gp) # DM mass profile (first) if gp.checksig and gp.stopstep <= 1: clf() loglog(r0fine, rhofine, 'r.-', label='rederived from dn/dlogr params') loglog(r0fine, ga.rho(r0fine, gp)[0], 'b--', label='analytic') axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.dat.rhalf[0], lw=2) xlabel('$r/\\rm{pc}$') ylabel('$\\rho(r)$') legend(loc='lower left') savefig('fit_rho_'+gp.investigate+'.pdf') pdb.set_trace() # add up tracer densities to get overall density profile # add rho* to take into account the baryonic addition # (*not* Sigma from nu_i, could miss populations, have # varying selection function as fct of radius # need a M/L parameter) # only if we work on real data, add up total baryonic contribution if gp.investigate == 'obs': nu_baryons = MtoL*phys.rho(r0fine, lbaryonpar, pop, gp) rhofine += nu_baryons # beta # ------------------------------------------------------------------------ betafine = phys.beta(r0fine, betapar, gp)[0] if gp.checksig and gp.stopstep <= 2: clf() anbeta = ga.beta(r0fine, gp)[1] plot(r0fine, betafine, 'r.-', label='model') plot(r0fine, anbeta, 'b--', label='analytic') xscale('log') axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.dat.rhalf[0], lw=2) xlabel('$r/\\rm{pc}$') ylabel('$\\beta$') ylim([-0.5, 1.0]) legend(loc='lower right') savefig('fit_beta_'+gp.investigate+'.pdf') pdb.set_trace() # nu # ------------------------------------------------------------------------ nufine = phys.rho(r0fine, nupar, pop, gp) if gp.checksig: annu = ga.rho(r0fine, gp)[pop] if gp.checksig and gp.stopstep <= 3: clf() loglog(gp.xipol, gp.dat.nu[pop], 'g.-', label='data') fill_between(gp.xipol, gp.dat.nu[pop]-gp.dat.nuerr[pop], \ gp.dat.nu[pop]+gp.dat.nuerr[pop],\ color='g', alpha=0.6) loglog(r0fine, nufine, 'r.-', label='model') loglog(r0fine, annu, 'b--', label='analytic') legend(loc='lower left') axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.dat.rhalf[0], lw=2) xlabel('$r/\\rm{pc}$') ylabel('$\\nu$') savefig('fit_nu_'+gp.investigate+'.pdf') pdb.set_trace() # \Sigma # --------------------------------------------------------------- Sigfine = gip.rho_param_INT_Sig_theta(r0fine, nupar, pop, gp) if gp.checksig and gp.stopstep <= 4: clf() anSig = ga.Sigma(r0fine, gp)[pop] loglog(gp.xipol, gp.dat.Sig[pop], 'g--', label='data') loglog(r0fine, Sigfine, 'r.-', label='model') loglog(r0fine, anSig, 'b--', label='analytic') fill_between(gp.xipol, gp.dat.Sig[pop]-gp.dat.Sigerr[pop], \ gp.dat.Sig[pop]+gp.dat.Sigerr[pop],\ color='g', alpha=0.6) axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.Xscale[0], lw=2) xlabel('$r/\\rm{pc}$') ylabel('$\\Sigma$') legend(loc='lower left') savefig('fit_Sig_'+gp.investigate+'.pdf') pdb.set_trace() # int beta(s)/s ds # ------------------------------------------------------ # test for constant \beta if gp.checksig: if gp.investigate == 'gaia': beta_star1, r_DM, gamma_star1, r_star1, r_a1, gamma_DM, rho0 = gp.files.params anintbetasfine = 0.5*(np.log(r0fine**2+r_a1**2)-np.log(r_a1**2)) elif gp.investigate == 'hern': anintbetasfine = 0.0*r0fine #betapar[0] = 1 #betapar[1] = 1 anintbetasfine = np.log(r0fine)-np.log(r0fine[0]) intbetasfine = ant_intbeta(r0fine, betapar, gp) if gp.checksig and gp.stopstep <= 5 : clf() plot(r0fine, intbetasfine, 'r.-', label='model') plot(r0fine, anintbetasfine, 'b--', label='analytic') ylim([-5, 5]) axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.dat.rhalf[0], lw=2) xscale('log') xlabel('$r/\\rm{pc}$') ylabel('$\\int ds \\beta(s)/s$') legend(loc='lower right') savefig('fit_intbeta_'+gp.investigate+'.pdf') pdb.set_trace() # M(r) # ------------------------------------------------------- #rhofine = ga.rho_hern(r0fine, gp)[0] rhoint = 4.*np.pi*r0fine**2*rhofine # add point to avoid 0.0 in Mrfine(r0fine[0]) r0tmp = np.hstack([0.,r0fine]) rhotmp = np.hstack([0.,rhoint]) splpar_rho = splrep(r0tmp, rhotmp, k=1, s=0.) # not necessarily monotonic Mrfine = np.zeros(len(r0fine)) # work in refined model for i in range(len(r0fine)): Mrfine[i] = splint(0., r0fine[i], splpar_rho) gh.checkpositive(Mrfine, 'Mrfine') if gp.checksig: anMr = ga.Mr(r0fine, gp)[0] # earlier: pop anMr = Mrfine #anMr = ga.M_hern(r0fine, gp)[0] if gp.checksig and gp.stopstep <= 6: #loglog(gp.xipol, gp.dat.Mr[pop], 'g.-', label='data') #s = r0fine/r_DM # [1] clf() loglog(r0fine, Mrfine, 'r.-', label='model') #loglog(r0fine, anMr, 'b--', label='analytic') axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.dat.rhalf[0], lw=2) xlabel('$r/\\rm{pc}$') ylabel('$M(r)$') legend(loc='lower right') savefig('fit_M_'+gp.investigate+'.pdf') pdb.set_trace() # nu(r)\cdot\sigma_r^2(r) integrand # ------------------------------------------------------- # (sigr2, 3D) * nu/exp(-intbetasfine) xint = r0fine # [pc] yint = gu.G1__pcMsun_1km2s_2 * Mrfine / r0fine**2 # [1/pc (km/s)^2] yint *= nufine # [Munit/pc^4 (km/s)^2] yint *= np.exp(2*(intbetasfine)) # [Munit/pc^4 (km/s)^2] gh.checkpositive(yint, 'yint sigr2') if gp.checksig and gp.stopstep <= 7: clf() loglog(xint, yint, 'r.-', label='model') loglog(xint, gu.G1__pcMsun_1km2s_2 * anMr / r0fine**2 * annu * np.exp(2*anintbetasfine), 'b--', label='from analytic') axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.dat.rhalf[0], lw=2) xlabel('$xint/\\rm{pc}$') ylabel('$yint$') legend(loc='lower left') savefig('fit_nu_sigmar2_'+gp.investigate+'.pdf') pdb.set_trace() # actual integration, gives \sigma_r^2 \nu sigr2nu_model = np.zeros(len(r0fine)) for k in range(len(r0fine)): #theta_old = np.linspace(0, np.arccos(r0fine[k]/(gp.rinfty*max(gp.xepol))), gp.nfine) theta = np.arccos(r0fine[k]/r0fine[k:]) rq = r0fine[k]/np.cos(theta) #Mrq = np.interp(rq, r0fine, Mrfine, left=0, right=0) #nuq = np.interp(rq, r0fine, nufine, left=0, right=0) #intbetaq = np.interp(rq, r0fine, intbetasfine, left=0, right=0) #func_interp_before = Mrq*nuq*np.exp(2*intbetaq) func_base = Mrfine*nufine*np.exp(2*intbetasfine) #func_interp_after = np.interp(rq, r0fine, func_base, left=0, right=0) func_interp_after = func_base[k:] #print('median(func_interp_after / func_interp_before = ',\ # np.median(func_interp_after / func_interp_before)) #sigr2nu_model[k] = np.exp(-2*intbetasfine[k])/r0fine[k] * \ # gu.G1__pcMsun_1km2s_2*simps(func_interp_before*np.sin(theta), theta) sigr2nu_model[k] = np.exp(-2*intbetasfine[k])/r0fine[k] * \ gu.G1__pcMsun_1km2s_2*simps(func_interp_after*np.sin(theta), theta) # clean last value (which is always 0 by construction) sigr2nu_model[-1] = sigr2nu_model[-2]/10. gh.checkpositive(sigr2nu_model, 'sigr2nu_model in sigl2s') #gh.checkpositive(sigr2nu_model_new, 'sigr2nu_model_new in sigl2s') if gp.checksig and gp.stopstep <= 8: clf() ansigr2nu = ga.sigr2(r0fine, gp)*annu loglog(r0fine, sigr2nu_model, 'r.-', label='model') loglog(r0fine, ansigr2nu, 'b--', label='analytic') axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.dat.rhalf[0], lw=2) xlabel('$r/\\rm{pc}$') ylabel('$\\sigma_r^2(r)\\nu(r)$') legend(loc='lower right') savefig('fit_sigr2_'+gp.investigate+'.pdf') # project back to LOS values, \sigma_{LOS}^2 * \Sigma(R) # ------------------------------------------------------- sigl2s = np.zeros(len(r0fine)) for k in range(len(r0fine)): bit = 1.e-6 theta = np.linspace(0, np.pi/2-bit, gp.nfine) # work on same radii as data are given theta = np.arccos(r0fine[k]/r0fine[k:]) cth = np.cos(theta) cth2 = cth*cth ynew = (1-betafine[k:]*cth2)*sigr2nu_model[k:] rq = r0fine[k]/cth ynewq = np.interp(rq, r0fine[k:], ynew, left=0, right=0) sigl2s[k] = 2.*r0fine[k]*simps(ynewq/cth2, theta) sigl2s[-1] = sigl2s[-2]/10. gh.checkpositive(sigl2s, 'sigl2s') if gp.checksig and gp.stopstep <= 9: clf() anSigsiglos2_hern = ga.Sig_sig_los_2(r0fine, gp) loglog(r0fine, sigl2s, 'r.-', label='model') loglog(r0fine, anSigsiglos2_hern, 'b--', label='analytic') axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.Xscale[0], lw=2) xlabel('$r/\\rm{pc}$') ylabel('$\\sigma_{\\rm{LOS}}^2 \Sigma$') legend(loc='lower left') savefig('fit_Sig_siglos2_'+gp.investigate+'.pdf') pdb.set_trace() # sigma_LOS^2 # ------------------------------------------------------- siglos2 = sigl2s/Sigfine if gp.checksig and gp.stopstep <= 10: clf() #ansiglos = ga.sig_los(r0fine, gp) plot(r0fine, siglos2, 'r.-', label='model') #plot(r0fine, ansiglos**2, 'b--', label='analytic') axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.Xscale[0], lw=2) xscale('log') xlabel('$r/\\rm{pc}$') ylabel('$\\sigma_{\\rm{LOS}}^2$') legend(loc='upper right') savefig('fit_siglos2_'+gp.investigate+'.pdf') pdb.set_trace() # derefine on radii of the input vector splpar_sig = splrep(r0fine, np.log(siglos2), k=3, s=0.) siglos2_out = np.exp(splev(r0, splpar_sig)) # gh.checkpositive(siglos2_out, 'siglos2_out') if gp.checksig and gp.stopstep <= 11: clf() #ansiglos = ga.sig_los(r0, gp) plot(r0, np.sqrt(siglos2_out), 'r.-', label='model') #plot(r0, ansiglos, 'b--', label='analytic') plot(gp.xipol, gp.dat.sig[pop], 'g.-', label='data') fill_between(gp.xipol, gp.dat.sig[pop]-gp.dat.sigerr[pop], gp.dat.sig[pop]+gp.dat.sigerr[pop], color='g', alpha=0.6) xscale('log') axvline(max(gp.xipol)) axvline(min(gp.xipol)) axvline(gp.Xscale[0], lw=2) xlabel('$r/\\rm{pc}$') ylabel('$\\sigma_{\\rm{LOS}}$') ylim([0,25]) legend(loc='upper right') savefig('fit_siglos_out_'+gp.investigate+'.pdf') pdb.set_trace() if not gp.usekappa: kapl4s_out = np.ones(len(siglos2_out)) if gp.usekappa: kapl4s_out = kappa(r0fine, Mrfine, nufine, sigr2nu_model, intbetasfine, gp) zetaa = -1; zetab = -1 if gp.usezeta: zetaa, zetab = zeta(r0fine, nufine, \ Sigfine,\ Mrfine, betafine,\ sigr2nu_model, gp) gh.sanitize_vector(siglos2_out, len(r0), 0, 1e30, gp.debug) return siglos2_out, kapl4s_out, zetaa, zetab
def geom_loglike(cube, ndim, nparams, gp): tmp_profs = Profiles(gp.pops, gp.nepol) off = 0 offstep = gp.nrho if gp.chi2_Sig_converged <= 0: rhodmpar = np.array(cube[off:off + offstep]) tmp_rho0 = phys.rho(gp.xepol, rhodmpar, 0, gp) # for J factor calculation (has been deferred to output routine) #tmp_rhofine = phys.rho(gp.xfine, rhodmpar, 0, gp) #tmp_Jfine = gip.Jpar(gp.xfine, tmp_rhofine, gp) #tmp_rhofine #tck = splrep(gp.xfine[:-3], tmp_Jfine) #tmp_J = splev(gp.xepol, tck) # rhodmpar hold [rho(rhalf), nr to be used for integration # from halflight radius, defined on gp.xepol] # (only calculate) M, check tmp_M0 = gip.rho_SUM_Mr(gp.xepol, tmp_rho0) # store profiles tmp_profs.set_prof('nr', 1. * rhodmpar[1 + 1:-1], 0, gp) tmp_profs.set_prof('rho', tmp_rho0, 0, gp) #tmp_profs.set_prof('J', tmp_J, 0, gp) tmp_profs.set_prof('M', tmp_M0, 0, gp) off += offstep # anyhow, even if Sig not yet converged # get profile for rho* if gp.investigate == 'obs': offstep = gp.nrho lbaryonpar = np.array(cube[off:off + offstep]) rhostar = phys.rho(gp.xepol, lbaryonpar, 0, gp) off += offstep Signu = gip.rho_param_INT_Sig(gp.xepol, lbaryonpar, 0, gp) # [Munit/pc^2] MtoL = cube[off] off += 1 # store these profiles every time tmp_profs.set_prof('nu', rhostar, 0, gp) tmp_profs.set_prof('Sig', Signu, 0, gp) tmp_profs.set_MtoL(MtoL) else: lbaryonpar = np.zeros(gp.nrho) MtoL = 0. for pop in np.arange(1, gp.pops + 1): # [1, 2, ..., gp.pops] offstep = gp.nrho nupar = np.array(cube[off:off + offstep]) tmp_nrnu = 1. * nupar[1 + 1:-1] tmp_nu = phys.rho(gp.xepol, nupar, pop, gp) tmp_Signu = gip.rho_param_INT_Sig(gp.xepol, nupar, pop, gp) #tmp_nu = pool.apply_async(phys.rho, [gp.xepol, nupar, pop, gp]) #tmp_Signu = pool.apply_async(gip.rho_param_INT_Sig, [gp.xepol, nupar, pop, gp]) off += offstep offstep = 1 tmp_hyperSig = cube[off:off + offstep] off += offstep offstep = 1 tmp_hypersig = cube[off:off + offstep] off += offstep offstep = gp.nbeta if gp.chi2_Sig_converged <= 0: betapar = np.array(cube[off:off + offstep]) tmp_beta, tmp_betastar = phys.beta(gp.xepol, betapar, gp) if check_beta(tmp_beta, gp): gh.LOG(2, 'beta error') tmp_profs.chi2 = gh.err(1., gp) return tmp_profs try: #if True: if gp.checksig and gp.investigate == 'hern': import gi_analytic as ga anrho = ga.rho(gp.xepol, gp)[0] rhodmpar_half = np.exp( splev(gp.dat.rhalf[0], splrep(gp.xepol, np.log(anrho)))) nr = -gh.derivipol(np.log(anrho), np.log(gp.xepol)) dlr = np.hstack([nr[0], nr, nr[-1]]) if gp.investigate == 'gaia': dlr[-1] = 4 rhodmpar = np.hstack([rhodmpar_half, dlr]) lbaryonpar = 0.0 * rhodmpar MtoL = 0.0 betapar = np.array([0, 0, 2, max(gp.xipol) / 2]) # for hern annu = ga.rho(gp.xepol, gp)[1] nupar_half = np.exp( splev(gp.dat.rhalf[1], splrep(gp.xepol, np.log(annu)))) nrnu = -gh.derivipol(np.log(annu), np.log(gp.xepol)) dlrnu = np.hstack([nrnu[0], nrnu, nrnu[-1]]) if gp.investigate == 'gaia': dlrnu[-1] = 6 nupar = np.hstack([nupar_half, dlrnu]) elif gp.checkbeta and gp.investigate == 'gaia': # rhodmpar = np.array([ 0.41586608, 0.38655515, 0.60898657, 0.50936769, 0.52601378, 0.54526758, 0.5755599, 0.57900806, 0.60252357, 0.60668445, 0.62252721, 0.63173754, 0.64555439, 0.65777175, 0.67083556, 0.68506606, 0.69139872, 0.66304763, 0.61462276, 0.70916575, 0.53287872]) rhodmpar = np.array([ 0.18235821, 0.4719348, 0., 0., 0.10029569, 0.11309553, 0.25637863, 0.31815175, 0.40621336, 0.46247927, 0.53545415, 0.60874961, 0.68978141, 0.79781574, 0.91218048, 1.08482356, 1.36074895, 1.88041885, 2.31792908, 2.62089078, 3.001 ]) betapar = np.array([ 1.23555034e-03, 9.89999994e-01, 2.03722518e+00, 5.85640906e+00 ]) nupar = np.array([ 0.15649498, 6.65618254, 0.10293663, 0.1087109, 0.13849277, 0.24371261, 0.62633345, 1.05913181, 1.43774113, 1.82346043, 2.20091446, 2.60007997, 2.98745825, 3.423104, 3.80766658, 4.2089698, 4.62950843, 4.91166037, 4.97380638, 4.99718073, 5.2277589 ]) gp.dat.nrnu = [ np.array([ 0.15476906, 0.85086798, 0.9342867, 0.88161169, 0.83254241, 0.85086798, 0.99930431, 1.22211638, 1.47184763, 1.78910057, 2.1987677, 2.51961046, 2.80345393, 3.10336133, 3.88504346, 4.52442727, 4.88817769, 5.07880404, 4.83455511, 6.32165657, 4.88817769 ]), np.array([ 0.15476906, 0.85086798, 0.9342867, 0.88161169, 0.83254241, 0.85086798, 0.99930431, 1.22211638, 1.47184763, 1.78910057, 2.1987677, 2.51961046, 2.80345393, 3.10336133, 3.88504346, 4.52442727, 4.88817769, 5.07880404, 4.83455511, 6.32165657, 4.88817769 ]), np.array([ 0.15476906, 0.85086798, 0.9342867, 0.88161169, 0.83254241, 0.85086798, 0.99930431, 1.22211638, 1.47184763, 1.78910057, 2.1987677, 2.51961046, 2.80345393, 3.10336133, 3.88504346, 4.52442727, 4.88817769, 5.07880404, 4.83455511, 6.32165657, 4.88817769 ]), np.array([ 0.15476906, 0.85086798, 0.9342867, 0.88161169, 0.83254241, 0.85086798, 0.99930431, 1.22211638, 1.47184763, 1.78910057, 2.1987677, 2.51961046, 2.80345393, 3.10336133, 3.88504346, 4.52442727, 4.88817769, 5.07880404, 4.83455511, 6.32165657, 4.88817769 ]) ] gp.dat.nrnuerr = [ np.array([ 0.05158969, 12.22044422, 2.44408884, 2.44408884, 2.44408884, 2.44408884, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 2.44408884, 2.44408884, 2.44408884, 2.44408884 ]), np.array([ 0.05158969, 12.22044422, 2.44408884, 2.44408884, 2.44408884, 2.44408884, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 2.44408884, 2.44408884, 2.44408884, 2.44408884 ]), np.array([ 0.05158969, 12.22044422, 2.44408884, 2.44408884, 2.44408884, 2.44408884, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 2.44408884, 2.44408884, 2.44408884, 2.44408884 ]), np.array([ 0.05158969, 12.22044422, 2.44408884, 2.44408884, 2.44408884, 2.44408884, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 0.48881777, 2.44408884, 2.44408884, 2.44408884, 2.44408884 ]) ] lbaryonpar = 0.0 * rhodmpar MtoL = 0.0 sig, kap, zetaa, zetab = phys.sig_kap_zet( gp.xepol, rhodmpar, lbaryonpar, MtoL, nupar, betapar, pop, gp) #fill_between(gp.xipol, gp.dat.sig[1]-gp.dat.sigerr[1], gp.dat.sig[1]+gp.dat.sigerr[1]) #plot(gp.xepol, sig, 'r') #xscale('log') #ylim([0, 30]) #xlabel('$r$ [pc]') #ylabel('$\sigma_{LOS}$ [km/s]') #savefig('siglos_gaia_2.pdf') #pdb.set_trace() except Exception: gh.LOG(1, 'sigma error') tmp_profs.chi2 = gh.err(2., gp) return tmp_profs # now store the profiles gh.sanitize_vector(tmp_beta, len(tmp_profs.x0), -200, 1, gp.debug) tmp_profs.set_prof('beta', tmp_beta, pop, gp) gh.sanitize_vector(tmp_betastar, len(tmp_profs.x0), -1, 1, gp.debug) tmp_profs.set_prof('betastar', tmp_betastar, pop, gp) tmp_profs.set_prof('sig', sig, pop, gp) tmp_profs.hypersig = tmp_hypersig tmp_profs.set_prof('kap', kap, pop, gp) tmp_profs.set_zeta(zetaa, zetab, pop) tmp_profs.set_prof('nrnu', tmp_nrnu, pop, gp) tmp_profs.set_prof('nu', tmp_nu, pop, gp) # pool: tmp_nu.get() # following profile needs to be stored at all times, to calculate chi tmp_profs.set_prof('Sig', tmp_Signu, pop, gp) tmp_profs.hyperSig = tmp_hyperSig off += offstep # still do this even if gp.chi2_Sig_converged is False if off != gp.ndim: gh.LOG(1, 'wrong subscripts in gi_loglike') pdb.set_trace() # determine log likelihood chi2 = calc_chi2(tmp_profs, gp) gh.LOG( -1, gp.investigate + '/' + str(gp.case) + '/' + gp.files.timestamp + ': ln L = ', gh.pretty(-chi2 / 2.)) # x=gp.dat.rbin # linedat,=ax.loglog(x, gp.dat.Sig[1], 'b') # line,=ax.loglog(x, tmp_profs.get_prof("Sig", 1), 'r', alpha=0.1) # plt.draw() # plt.show() tmp_profs.chi2 = chi2 # after some predefined wallclock time and Sig convergence, plot all profiles #if time.time() - gp.last_plot >= gp.plot_after and gp.chi2_Sig_converged <= 0: # gp.last_plot = time.time() # try: # import plotting.plot_profiles # plotting.plot_profiles.run(gp.files.timestamp, gp.files.outdir, gp) # except: # print('plotting error in gi_loglike!') # close pool automatically after with clause return tmp_profs
def geom_loglike(cube, ndim, nparams, gp): tmp_profs = Profiles(gp.pops, gp.nipol) off = 0 offstep = 1 norm = cube[off] off += offstep offstep = gp.nrho rhodmpar = np.array(cube[off:off+offstep]) #SS cube[1:1+nrho] tmp_rho = phys.rho(gp.xepol, rhodmpar, 0, gp) tmp_profs.set_prof('rho', tmp_rho[gp.nexp:-gp.nexp], 0, gp) off += offstep offstep = gp.nrho lbaryonpar = np.array(cube[off:off+offstep]) #SS cube[1+nrho:1+2*nrho] tmp_rhostar = phys.rho(gp.xepol, lbaryonpar, 0, gp)[gp.nexp:-gp.nexp] tmp_profs.set_prof('nu', tmp_rhostar, 0, gp) # [Munit/pc^3] Sigstar = phys.nu_SUM_Sig(gp.dat.binmin, gp.dat.binmax, tmp_rhostar) # [Munit/pc^2] tmp_profs.set_prof('Sig', Sigstar, 0, gp) off += offstep MtoL = cube[off] #SS cube[1+2*nrho] off += 1 for pop in np.arange(1, gp.pops+1): offstep = gp.nrho nupar = np.array(cube[off:off+offstep]) #SS 1 cube[2+2*nrho:2+3*nrho] tmp_nu = phys.rho(gp.xepol, nupar, pop, gp)[gp.nexp:-gp.nexp] tmp_profs.set_prof('nu', tmp_nu, pop, gp) # [Munit/pc^3] tmp_Sig = phys.nu_SUM_Sig(gp.dat.binmin, gp.dat.binmax, tmp_nu) # [Munit/pc^2] tmp_profs.set_prof('Sig', tmp_Sig, pop, gp) off += offstep if gp.checksig: pdb.set_trace() offstep = gp.nbeta if gp.chi2_nu_converged: tiltpar = np.array(cube[off:off+offstep])#SS cube[2+3*nrho:..+nbeta] tmp_tilt = phys.tilt(gp.xipol, tiltpar, gp) if check_tilt(tmp_tilt, gp): gh.LOG(1, 'tilt error') tmp_profs.chi2 = gh.err(2., gp) return tmp_profs tmp_profs.set_prof('tilt', tmp_tilt, pop, gp) sig = phys.sigz(gp.xepol, rhodmpar, lbaryonpar, MtoL, nupar, norm, tiltpar, pop, gp) tmp_profs.set_prof('sig', sig, pop, gp) # tmp_profs.set_prof('kap', kap, pop, gp) off += offstep # add also in case Sig has not yet converged # to get the right variables if off != gp.ndim: gh.LOG(1,'wrong subscripts in gi_class_cube') raise Exception('wrong subscripts in gi_class_cube') # determine log likelihood chi2 = calc_chi2(tmp_profs, gp) gh.LOG(1, ' log L = ', -chi2/2.) tmp_profs.chi2 = chi2 return tmp_profs # from likelihood L = exp(-\chi^2/2), want log of that