def test_jr2(): s = Simulator(mode='gui') try: scene = BuildingScene('Ohoopee') s.import_scene(scene) jr2 = JR2_Kinova(config) s.import_robot(jr2) jr2.set_position([-6, 0, 0.1]) obj3 = InteractiveObj(os.path.join(gibson2.assets_path, 'models', 'scene_components', 'door.urdf'), scale=2) s.import_interactive_object(obj3) obj3.set_position_rotation( [-5, -1, 0], [0, 0, np.sqrt(0.5), np.sqrt(0.5)]) jr2.apply_action([0.005, 0.005, 0, 0, 0, 0, 0, 0, 0, 0]) for _ in range(400): s.step() jr2.apply_action([ 0, 0, 0, 0, 3.1408197119196117, -1.37402907967774, -0.8377005721485424, -1.9804208517373096, 0.09322135043256494, 2.62937740156038 ]) for _ in range(400): s.step() finally: s.disconnect()
def load_scene_objects(self): if not self.is_interactive: return self.scene_objects = [] self.scene_objects_pos = [] scene_path = get_model_path(self.model_id) urdf_files = [ item for item in os.listdir(scene_path) if item[-4:] == 'urdf' and item != 'scene.urdf' ] position_files = [ item[:-4].replace('alignment_centered', 'pos') + 'txt' for item in urdf_files ] for urdf_file, position_file in zip(urdf_files, position_files): logging.info('Loading urdf file {}'.format(urdf_file)) with open(os.path.join(scene_path, position_file)) as f: pos = np.array( [float(item) for item in f.readlines()[0].strip().split()]) obj = InteractiveObj(os.path.join(scene_path, urdf_file)) obj.load() self.scene_objects.append(obj) self.scene_objects_pos.append(pos)
def load_interactive_objects(self): """ Load interactive objects :return: a list of interactive objects """ interactive_objects = [] interactive_objects_path = [ 'object_2eZY2JqYPQE.urdf', 'object_lGzQi2Pk5uC.urdf', 'object_ZU6u5fvE8Z1.urdf', 'object_H3ygj6efM8V.urdf', 'object_RcqC01G24pR.urdf' ] for _ in range(self.interactive_objects_num_dups): for urdf_model in interactive_objects_path: obj = InteractiveObj(os.path.join(gibson2.assets_path, 'models/sample_urdfs', urdf_model)) self.simulator.import_object(obj) interactive_objects.append(obj) return interactive_objects
def test_import_rbo_object(): s = Simulator(mode='headless') try: scene = StadiumScene() s.import_scene(scene) obj = RBOObject('book') s.import_articulated_object(obj) obj2 = RBOObject('microwave') s.import_articulated_object(obj2) obj.set_position([0, 0, 2]) obj2.set_position([0, 1, 2]) obj3 = InteractiveObj( os.path.join(gibson2.assets_path, 'models', 'scene_components', 'door.urdf')) s.import_articulated_object(obj3) for i in range(100): s.step() finally: s.disconnect()
'--save_yaml', action='store_true', help='Whether to save orientations and probabilities to yaml.') parser.add_argument('--threshold', type=float, default=0.02, help='Threshold for including orientations or not.') args = parser.parse_args() mesh = trimesh.load(args.object_file) poses = trimesh.poses.compute_stable_poses(mesh, n_samples=5, threshold=args.threshold) urdf_file = args.object_file.replace('.obj', '.urdf') obj = InteractiveObj(filename=urdf_file, scale=1.0) body_id = simulator.import_object(obj) info_dict = {} aabb = pb.getAABB(body_id) print('Showing all stable placement rotations:') dicts = [] def viz_transform(transform): quat = Quaternion(matrix=transform) r = quat.real v = quat.vector obj.set_position_orientation( [0, 0, mesh.extents[2] / 2.0], [quat.vector[0], quat.vector[1], quat.vector[2], quat.real])
def __init__(self, config_file, model_id=None, mode='headless', action_timestep=1 / 10.0, physics_timestep=1 / 240.0, automatic_reset=False, device_idx=0, render_to_tensor=False): """ :param config_file: config_file path :param model_id: override model_id in config file :param mode: headless or gui mode :param action_timestep: environment executes action per action_timestep second :param physics_timestep: physics timestep for pybullet :param device_idx: device_idx: which GPU to run the simulation and rendering on """ self.config = parse_config(config_file) if model_id is not None: self.config['model_id'] = model_id # gibson external camera self.initial_pos = np.array([0, 1.3, 4]) self.initial_view_direction = np.array([0, 0, -1]) self.up = np.array([0, 1, 0]) # output res for RL self.out_image_height = 84 self.out_image_width = 84 # class: stadium=0, robot=1, drawer=2, handle=3 self.num_object_classes = 4 self.automatic_reset = automatic_reset self.mode = mode self.action_timestep = action_timestep self.physics_timestep = physics_timestep self.simulator = Simulator( mode=mode, gravity=0, timestep=physics_timestep, use_fisheye=self.config.get('fisheye', False), image_width=self.config.get('image_width', 128), image_height=self.config.get('image_height', 128), vertical_fov=self.config.get('vertical_fov', 90), device_idx=device_idx, render_to_tensor=render_to_tensor, auto_sync=False) self.simulator_loop = int(self.action_timestep / self.simulator.timestep) self.load() self.hand_start_pos = [0.05, 1, 1.05] self.hand_start_orn = p.getQuaternionFromEuler([-np.pi / 2, 0, np.pi]) self.set_robot_pos_orn(self.robots[0], self.hand_start_pos, self.hand_start_orn) # load drawer self.drawer_start_pos = [0, 2.2, 1] self.drawer_start_orn = p.getQuaternionFromEuler([0, 0, -np.pi / 2]) self.handle_idx = 3 self.drawer = InteractiveObj( os.path.join(gibson2.assets_path, 'models', 'drawer', 'drawer_one_sided_handle.urdf')) self.import_drawer_handle() self.drawer.set_position_orientation(self.drawer_start_pos, self.drawer_start_orn) self.handle_init_pos = p.getLinkState(self.drawer_id, self.handle_idx)[0][1] self.simulator.sync() self._state_id = p.saveState()
class HandDrawerEnv(BaseEnv): def __init__(self, config_file, model_id=None, mode='headless', action_timestep=1 / 10.0, physics_timestep=1 / 240.0, automatic_reset=False, device_idx=0, render_to_tensor=False): """ :param config_file: config_file path :param model_id: override model_id in config file :param mode: headless or gui mode :param action_timestep: environment executes action per action_timestep second :param physics_timestep: physics timestep for pybullet :param device_idx: device_idx: which GPU to run the simulation and rendering on """ self.config = parse_config(config_file) if model_id is not None: self.config['model_id'] = model_id # gibson external camera self.initial_pos = np.array([0, 1.3, 4]) self.initial_view_direction = np.array([0, 0, -1]) self.up = np.array([0, 1, 0]) # output res for RL self.out_image_height = 84 self.out_image_width = 84 # class: stadium=0, robot=1, drawer=2, handle=3 self.num_object_classes = 4 self.automatic_reset = automatic_reset self.mode = mode self.action_timestep = action_timestep self.physics_timestep = physics_timestep self.simulator = Simulator( mode=mode, gravity=0, timestep=physics_timestep, use_fisheye=self.config.get('fisheye', False), image_width=self.config.get('image_width', 128), image_height=self.config.get('image_height', 128), vertical_fov=self.config.get('vertical_fov', 90), device_idx=device_idx, render_to_tensor=render_to_tensor, auto_sync=False) self.simulator_loop = int(self.action_timestep / self.simulator.timestep) self.load() self.hand_start_pos = [0.05, 1, 1.05] self.hand_start_orn = p.getQuaternionFromEuler([-np.pi / 2, 0, np.pi]) self.set_robot_pos_orn(self.robots[0], self.hand_start_pos, self.hand_start_orn) # load drawer self.drawer_start_pos = [0, 2.2, 1] self.drawer_start_orn = p.getQuaternionFromEuler([0, 0, -np.pi / 2]) self.handle_idx = 3 self.drawer = InteractiveObj( os.path.join(gibson2.assets_path, 'models', 'drawer', 'drawer_one_sided_handle.urdf')) self.import_drawer_handle() self.drawer.set_position_orientation(self.drawer_start_pos, self.drawer_start_orn) self.handle_init_pos = p.getLinkState(self.drawer_id, self.handle_idx)[0][1] self.simulator.sync() self._state_id = p.saveState() """ modify import_articulated_object() in simulator.py to render drawer and drawer handle separately for semantic inforamtion """ def import_drawer_handle(self): self.drawer_id = self.drawer.load() # render drawer class_id = self.simulator.next_class_id self.simulator.next_class_id += 1 visual_objects = [] link_ids = [] poses_rot = [] poses_trans = [] for shape in p.getVisualShapeData(self.drawer_id): id, link_id, type, dimensions, filename, rel_pos, rel_orn, color = shape[: 8] link_name = p.getJointInfo(self.drawer_id, link_id)[12] if link_name != b'handle_left' and link_name != b'handle_right' and link_name != b'handle_grip': filename = os.path.join(gibson2.assets_path, 'models/mjcf_primitives/cube.obj') self.simulator.renderer.load_object(filename, transform_orn=rel_orn, transform_pos=rel_pos, input_kd=color[:3], scale=np.array(dimensions)) visual_objects.append( len(self.simulator.renderer.visual_objects) - 1) link_ids.append(link_id) _, _, _, _, pos, orn = p.getLinkState(id, link_id) poses_rot.append( np.ascontiguousarray(quat2rotmat(xyzw2wxyz(orn)))) poses_trans.append(np.ascontiguousarray(xyz2mat(pos))) self.simulator.renderer.add_instance_group( object_ids=visual_objects, link_ids=link_ids, pybullet_uuid=self.drawer_id, class_id=class_id, poses_rot=poses_rot, poses_trans=poses_trans, dynamic=True, robot=None) # render drawer handle class_id = self.simulator.next_class_id self.simulator.next_class_id += 1 visual_objects = [] link_ids = [] poses_rot = [] poses_trans = [] for shape in p.getVisualShapeData(self.drawer_id): id, link_id, type, dimensions, filename, rel_pos, rel_orn, color = shape[: 8] link_name = p.getJointInfo(self.drawer_id, link_id)[12] if link_name == b'handle_left' or link_name == b'handle_right' or link_name == b'handle_grip': filename = os.path.join(gibson2.assets_path, 'models/mjcf_primitives/cube.obj') self.simulator.renderer.load_object(filename, transform_orn=rel_orn, transform_pos=rel_pos, input_kd=color[:3], scale=np.array(dimensions)) visual_objects.append( len(self.simulator.renderer.visual_objects) - 1) link_ids.append(link_id) _, _, _, _, pos, orn = p.getLinkState(id, link_id) poses_rot.append( np.ascontiguousarray(quat2rotmat(xyzw2wxyz(orn)))) poses_trans.append(np.ascontiguousarray(xyz2mat(pos))) self.simulator.renderer.add_instance_group( object_ids=visual_objects, link_ids=link_ids, pybullet_uuid=self.drawer_id, class_id=class_id, poses_rot=poses_rot, poses_trans=poses_trans, dynamic=True, robot=None) def set_robot_pos_orn(self, robot, pos, orn): robot.set_position_orientation(pos, orn) def get_drawer_handle_pos(self): return np.array(p.getLinkState(self.drawer_id, self.handle_idx)[0]) # legacy get state from gibson def get_state_legacy(self): state = OrderedDict() if 'rgb' in self.output: state['rgb'] = self.get_rgb() if 'depth' in self.output: state['depth'] = self.get_depth() if 'normal' in self.output: state['normal'] = self.get_normal() if 'seg' in self.output: state['seg'] = self.get_seg() return state def get_state(self): state = np.empty((0, self.image_height, self.image_width), dtype=np.uint8) if 'depth' in self.output: depth = self.get_depth_external()[..., None].transpose(2, 0, 1) state = np.concatenate((state, depth), axis=0) if 'seg' in self.output: seg = self.get_seg_external()[..., None].transpose(2, 0, 1) state = np.concatenate((state, seg), axis=0) return state.astype(np.uint8) def _sigmoids(self, x, value_at_1, sigmoid): if sigmoid in ('cosine', 'linear', 'quadratic'): if not 0 <= value_at_1 < 1: raise ValueError( '`value_at_1` must be nonnegative and smaller than 1, ' 'got {}.'.format(value_at_1)) else: if not 0 < value_at_1 < 1: raise ValueError( '`value_at_1` must be strictly between 0 and 1, ' 'got {}.'.format(value_at_1)) if sigmoid == 'gaussian': scale = np.sqrt(-2 * np.log(value_at_1)) return np.exp(-0.5 * (x * scale)**2) elif sigmoid == 'hyperbolic': scale = np.arccosh(1 / value_at_1) return 1 / np.cosh(x * scale) elif sigmoid == 'long_tail': scale = np.sqrt(1 / value_at_1 - 1) return 1 / ((x * scale)**2 + 1) elif sigmoid == 'cosine': scale = np.arccos(2 * value_at_1 - 1) / np.pi scaled_x = x * scale return np.where( abs(scaled_x) < 1, (1 + np.cos(np.pi * scaled_x)) / 2, 0.0) elif sigmoid == 'linear': scale = 1 - value_at_1 scaled_x = x * scale return np.where(abs(scaled_x) < 1, 1 - scaled_x, 0.0) elif sigmoid == 'quadratic': scale = np.sqrt(1 - value_at_1) scaled_x = x * scale return np.where(abs(scaled_x) < 1, 1 - scaled_x**2, 0.0) elif sigmoid == 'tanh_squared': scale = np.arctanh(np.sqrt(1 - value_at_1)) return 1 - np.tanh(x * scale)**2 else: raise ValueError('Unknown sigmoid type {!r}.'.format(sigmoid)) def is_close_reward(self, x, bounds=(0.0, 0.0), margin=0.0, sigmoid='gaussian', value_at_margin=_DEFAULT_VALUE_AT_MARGIN): lower, upper = bounds if lower > upper: raise ValueError('Lower bound must be <= upper bound.') if margin < 0: raise ValueError('`margin` must be non-negative.') in_bounds = np.logical_and(lower <= x, x <= upper) if margin == 0: value = np.where(in_bounds, 1.0, 0.0) else: d = np.where(x < lower, lower - x, x - upper) / margin value = np.where(in_bounds, 1.0, self._sigmoids(d, value_at_margin, sigmoid)) return float(value) if np.isscalar(x) else value def get_reward_new(self): handle_center = self.get_drawer_handle_pos() grip_center = self.robots[0].get_palm_position() reach_dist = np.linalg.norm(grip_center - handle_center) pull_dist = self.max_pull_dist - (self.handle_init_pos - handle_center[1]) close_threshold = 0.05 reach_reward = -self.reach_reward_factor * reach_dist pull_reward = self.is_close_reward(pull_dist, (0, close_threshold), close_threshold * 2) return reach_reward + pull_reward def get_reward(self): handle_center = self.get_drawer_handle_pos() grip_center = self.robots[0].get_palm_position() reach_dist = np.linalg.norm(grip_center - handle_center) pull_dist = self.handle_init_pos - handle_center[1] reach_rew = -self.reach_reward_factor * reach_dist if reach_dist < 0.05: self.reach_completed = True else: self.reach_completed = False def pull_reward(): if self.reach_completed: pull_rew = self.pull_reward_factor * pull_dist return pull_rew else: return 0 pull_rew = pull_reward() reward = reach_rew + pull_rew return reward def is_goal_pulled(self): epsilon = 0.01 return (self.handle_init_pos - self.get_drawer_handle_pos()[1]) > self.max_pull_dist - epsilon def get_termination(self, info={}): done = False # if self.is_goal_pulled() and self.reach_completed: # done = True # info['success'] = True if self.current_step >= self.max_step: done = True # info['success'] = False if done: info['episode_length'] = self.current_step return done, info def get_depth(self): """ :return: depth sensor reading, normalized to [0.0, 1.0] """ depth = -self.simulator.renderer.render_robot_cameras( modes=('3d'))[0][:, :, 2:3] # 0.0 is a special value for invalid entries depth[depth < self.depth_low] = 0.0 depth[depth > self.depth_high] = 0.0 # re-scale depth to [0.0, 1.0] depth /= self.depth_high return depth def get_rgb(self): """ :return: RGB sensor reading, normalized to [0.0, 1.0] """ return self.simulator.renderer.render_robot_cameras( modes=('rgb'))[0][:, :, :3] def get_normal(self): """ :return: surface normal reading """ return self.simulator.renderer.render_robot_cameras( modes='normal')[0][:, :, :3] def get_seg(self): """ :return: semantic segmentation mask, normalized to [0.0, 1.0] """ seg = self.simulator.renderer.render_robot_cameras( modes='seg')[0][:, :, 0:1] if self.num_object_classes is not None: seg = np.clip(seg * 255.0 / self.num_object_classes, 0.0, 1.0) return seg def get_depth_external(self): self.simulator.renderer.set_camera( self.initial_pos, self.initial_pos + self.initial_view_direction, self.up) depth = -self.simulator.renderer.render(modes=('3d'))[0][:, :, 2:3] depth[depth < self.depth_low] = 0.0 depth[depth > self.depth_high] = 0.0 depth /= self.depth_high return (depth * 255).astype(np.uint8)[:, :, 0] def get_seg_external(self): self.simulator.renderer.set_camera( self.initial_pos, self.initial_pos + self.initial_view_direction, self.up) seg = self.simulator.renderer.render(modes='seg')[0][:, :, 0:1] if self.num_object_classes is not None: seg = seg * 255 # only mask handle seg[seg < 3.1] = 0 seg = np.clip(seg / self.num_object_classes, 0.0, 1.0) return (seg * 255).astype(np.uint8)[:, :, 0] def get_external_camera(self): """ pybullet external view rendering """ # pybullet external camera position self._view_matrix = [ 0.5708255171775818, -0.6403688788414001, 0.5138930082321167, 0.0, 0.821071445941925, 0.4451974034309387, -0.3572688400745392, 0.0, -0.0, 0.6258810758590698, 0.7799185514450073, 0.0, -1.0701078176498413, -0.883043646812439, -1.8267910480499268, 1.0 ] self._projection_matrix = [ 0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0 ] self._external_width = 1024 self._external_height = 768 (_, _, px, _, _) = p.getCameraImage(width=self._external_width, height=self._external_height, renderer=p.ER_BULLET_HARDWARE_OPENGL, viewMatrix=self._view_matrix, projectionMatrix=self._projection_matrix) rgb_array = np.array(px, dtype=np.uint8) rgb_array = np.reshape( np.array(px), (self._external_height, self._external_width, -1)) rgb_array = rgb_array[:, :, :3] return rgb_array def render(self, mode='rgb_array'): self._view_matrix = [ 0.5708255171775818, -0.6403688788414001, 0.5138930082321167, 0.0, 0.821071445941925, 0.4451974034309387, -0.3572688400745392, 0.0, -0.0, 0.6258810758590698, 0.7799185514450073, 0.0, -1.0701078176498413, -0.883043646812439, -1.8267910480499268, 1.0 ] self._projection_matrix = [ 0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0 ] self._external_width = 1024 self._external_height = 768 (_, _, px, _, _) = p.getCameraImage(width=self._external_width, height=self._external_height, renderer=p.ER_BULLET_HARDWARE_OPENGL, viewMatrix=self._view_matrix, projectionMatrix=self._projection_matrix) rgb_array = np.array(px, dtype=np.uint8) rgb_array = np.reshape( np.array(px), (self._external_height, self._external_width, -1)) rgb_array = rgb_array[:, :, :3] return rgb_array def save_rgb_image(self, path): rgb = self.get_rgb() Image.fromarray((rgb * 255).astype(np.uint8)).save(path) def save_depth_image(self, path): depth = self.get_depth() Image.fromarray((depth * 255).astype(np.uint8)[:, :, 0]).save(path) def save_seg_image(self, path): seg = self.get_seg() Image.fromarray((seg * 255).astype(np.uint8)[:, :, 0]).save(path) def save_normal_image(self, path): normal = self.get_normal() Image.fromarray((normal * 255).astype(np.uint8)).save(path) def save_external_image(self, path): external = self.get_external_camera() Image.fromarray(external).save(path) def save_depth_image_external(self, path): depth = self.get_depth_external() Image.fromarray(depth).save(path) def save_seg_image_external(self, path): seg = self.get_seg_external() Image.fromarray(seg).save(path) def load_task_setup(self): self.max_pull_dist = 0.5 self.reach_reward_factor = 1.0 self.pull_reward_factor = 1.0 self.max_step = self.config.get('max_step', 500) # interface for drq self._max_episode_steps = self.max_step # legacy observation space from gibson def load_observation_space_legacy(self): self.output = self.config['output'] self.image_width = self.config.get('image_width', 128) self.image_height = self.config.get('image_height', 128) observation_space = OrderedDict() if 'rgb' in self.output: self.rgb_space = gym.spaces.Box(low=0.0, high=1.0, shape=(self.image_height, self.image_width, 3), dtype=np.float32) observation_space['rgb'] = self.rgb_space if 'depth' in self.output: self.depth_low = self.config.get('depth_low', 0.5) self.depth_high = self.config.get('depth_high', 5.0) self.depth_space = gym.spaces.Box(low=0.0, high=1.0, shape=(self.image_height, self.image_width, 1), dtype=np.float32) observation_space['depth'] = self.depth_space if 'seg' in self.output: self.seg_space = gym.spaces.Box(low=0.0, high=1.0, shape=(self.image_height, self.image_width, 1), dtype=np.float32) observation_space['seg'] = self.seg_space if 'normal' in self.output: self.normal_space = gym.spaces.Box(low=0.0, high=1.0, shape=(self.image_height, self.image_width, 3), dtype=np.float32) observation_space['normal'] = self.normal_space self.observation_space = gym.spaces.Dict(observation_space) # observation space for drq def load_observation_space(self): self.output = self.config['output'] self.image_width = self.config.get('image_width', 128) self.image_height = self.config.get('image_height', 128) self.depth_low = self.config.get('depth_low', 0.5) self.depth_high = self.config.get('depth_high', 5.0) channels = 0 if 'rgb' in self.output: channels += 3 if 'depth' in self.output: channels += 1 if 'seg' in self.output: channels += 1 if 'normal' in self.output: channels += 3 shape = [channels, self.image_height, self.image_width] self.observation_space = gym.spaces.Box(low=0, high=255, shape=shape, dtype=np.uint8) def load_action_space(self): self.action_space = self.robots[0].action_space def load_miscellaneous_variables(self): self.current_step = 0 self.current_episode = 0 def load(self): super(HandDrawerEnv, self).load() self.load_task_setup() self.load_observation_space() self.load_action_space() self.load_miscellaneous_variables() def reset_variables(self): self.current_episode += 1 self.current_step = 0 def reset(self): p.restoreState(self._state_id) self.simulator.sync() self.reset_variables() return self.get_state() def run_simulation(self): for _ in range(self.simulator_loop): self.simulator_step() self.simulator.sync() def step(self, action): self.current_step += 1 if action is not None: self.robots[0].apply_action(action) self.run_simulation() state = self.get_state() info = {} reward = self.get_reward() done, info = self.get_termination() if done and self.automatic_reset: info['last_observation'] = state state = self.reset() return state, reward, done, info
def __init__(self, config_file, mode='headless', action_timestep=1 / 10.0, physics_timestep=1 / 240.0, device_idx=0, automatic_reset=False): super(InteractiveNavigateEnv, self).__init__(config_file, mode=mode, action_timestep=action_timestep, physics_timestep=physics_timestep, automatic_reset=automatic_reset, device_idx=device_idx) door = InteractiveObj(os.path.join(gibson2.assets_path, 'models', 'scene_components', 'realdoor.urdf'), scale=1.35) self.simulator.import_interactive_object(door) wall1 = InteractiveObj(os.path.join(gibson2.assets_path, 'models', 'scene_components', 'walls.urdf'), scale=1) self.simulator.import_interactive_object(wall1) wall1.set_position_rotation([0, -1.5, 1], [0, 0, 0, 1]) wall2 = InteractiveObj(os.path.join(gibson2.assets_path, 'models', 'scene_components', 'walls.urdf'), scale=1) self.simulator.import_interactive_object(wall2) wall2.set_position_rotation([0, 1.5, 1], [0, 0, 0, 1]) door.set_position_rotation( [0, 0, -0.02], [0, 0, np.sqrt(0.5), np.sqrt(0.5)])
def main(): p.connect(p.GUI) p.setGravity(0, 0, -9.8) p.setTimeStep(1. / 240.) floor = os.path.join(pybullet_data.getDataPath(), "mjcf/ground_plane.xml") p.loadMJCF(floor) cabinet_0007 = os.path.join(gibson2.assets_path, 'models/cabinet2/cabinet_0007.urdf') cabinet_0004 = os.path.join(gibson2.assets_path, 'models/cabinet/cabinet_0004.urdf') obj1 = InteractiveObj(filename=cabinet_0007) obj1.load() obj1.set_position([0, 0, 0.5]) obj2 = InteractiveObj(filename=cabinet_0004) obj2.load() obj2.set_position([0, 0, 2]) obj3 = YCBObject('003_cracker_box') obj3.load() obj3.set_position_orientation([0, 0, 1.2], [0, 0, 0, 1]) for _ in range(24000): # at least 100 seconds p.stepSimulation() time.sleep(1. / 240.) p.disconnect()
from gibson2.core.simulator import Simulator from gibson2.core.physics.scene import BuildingScene, StadiumScene from gibson2.utils.utils import parse_config from gibson2.core.physics.interactive_objects import InteractiveObj import gibson2 import os import numpy as np import pybullet as p if __name__ == '__main__': s = Simulator(mode='gui') scene = BuildingScene('Ohoopee') s.import_scene(scene) door = InteractiveObj(os.path.join(gibson2.assets_path, 'models', 'scene_components', 'realdoor.urdf'), scale=0.3) s.import_interactive_object(door) x = p.addUserDebugParameter('x', -10, 10, 0) y = p.addUserDebugParameter('y', -10, 10, 0) z = p.addUserDebugParameter('z', -5, 5, 0) rotate = p.addUserDebugParameter('rotate', -np.pi, np.pi, 0) while True: x_pos = p.readUserDebugParameter(x) y_pos = p.readUserDebugParameter(y) z_pos = p.readUserDebugParameter(z) rotate_pos = p.readUserDebugParameter(rotate) door.set_position_rotation([x_pos, y_pos, z_pos], p.getQuaternionFromEuler([0, 0,
from gibson2.core.physics.interactive_objects import InteractiveObj import matplotlib.pyplot as plt ''' Analyzes a model for heights of surfaces within it. Assumes model is a cabinet or otherwise has sets of shelves within it, so just need to find the discrete set of heights the shelves are at. ''' simulator = Simulator(image_width=640, image_height=640) parser = argparse.ArgumentParser( description='Finds heights of shelves in a container object.') parser.add_argument('object_file', type=str) args = parser.parse_args() out_dict = {} obj = InteractiveObj(filename=args.object_file, scale=1.0) body_id = simulator.import_object(obj) aabb = pb.getAABB(body_id) size = [ aabb[1][0] - aabb[0][0], aabb[1][1] - aabb[0][1], aabb[1][2] - aabb[0][2] ] urdf_dir = os.path.dirname(args.object_file) with open(args.object_file, 'r') as f: past_base_link = False past_collision = False for line in f: if 'base_link' in line: past_base_link = True if past_base_link and 'collision' in line: past_collision = True
import pybullet as p import numpy as np config = parse_config('../configs/jr_interactive_nav.yaml') s = Simulator(mode='headless', timestep=1 / 240.0) scene = EmptyScene() s.import_scene(scene) jr = JR2_Kinova(config) s.import_robot(jr) jr.robot_body.reset_position([0, 0, 0]) jr.robot_body.reset_orientation([0, 0, 1, 0]) fetch = Fetch(config) s.import_robot(fetch) fetch.robot_body.reset_position([0, 1, 0]) fetch.robot_body.reset_orientation([0, 0, 1, 0]) obj = InteractiveObj( filename='/data4/mdv0/cabinet/0007/part_objs/cabinet_0007.urdf') s.import_interactive_object(obj) obj.set_position([-2, 0, 0.5]) obj = InteractiveObj( filename='/data4/mdv0/cabinet/0007/part_objs/cabinet_0007.urdf') s.import_interactive_object(obj) obj.set_position([-2, 2, 0.5]) obj = InteractiveObj( filename='/data4/mdv0/cabinet/0004/part_objs/cabinet_0004.urdf') s.import_interactive_object(obj) obj.set_position([-2.1, 1.6, 2]) obj = InteractiveObj( filename='/data4/mdv0/cabinet/0004/part_objs/cabinet_0004.urdf') s.import_interactive_object(obj) obj.set_position([-2.1, 0.4, 2]) obj = BoxShape([-2.05, 1, 0.5], [0.35, 0.6, 0.5])