def test_jr2():
    s = Simulator(mode='gui')
    try:
        scene = BuildingScene('Ohoopee')
        s.import_scene(scene)
        jr2 = JR2_Kinova(config)
        s.import_robot(jr2)
        jr2.set_position([-6, 0, 0.1])
        obj3 = InteractiveObj(os.path.join(gibson2.assets_path, 'models',
                                           'scene_components', 'door.urdf'),
                              scale=2)
        s.import_interactive_object(obj3)
        obj3.set_position_rotation(
            [-5, -1, 0], [0, 0, np.sqrt(0.5), np.sqrt(0.5)])
        jr2.apply_action([0.005, 0.005, 0, 0, 0, 0, 0, 0, 0, 0])
        for _ in range(400):
            s.step()

        jr2.apply_action([
            0, 0, 0, 0, 3.1408197119196117, -1.37402907967774,
            -0.8377005721485424, -1.9804208517373096, 0.09322135043256494,
            2.62937740156038
        ])

        for _ in range(400):
            s.step()
    finally:
        s.disconnect()
예제 #2
0
파일: scene.py 프로젝트: y-veys/iGibson
    def load_scene_objects(self):
        if not self.is_interactive:
            return

        self.scene_objects = []
        self.scene_objects_pos = []
        scene_path = get_model_path(self.model_id)
        urdf_files = [
            item for item in os.listdir(scene_path)
            if item[-4:] == 'urdf' and item != 'scene.urdf'
        ]
        position_files = [
            item[:-4].replace('alignment_centered', 'pos') + 'txt'
            for item in urdf_files
        ]
        for urdf_file, position_file in zip(urdf_files, position_files):
            logging.info('Loading urdf file {}'.format(urdf_file))
            with open(os.path.join(scene_path, position_file)) as f:
                pos = np.array(
                    [float(item) for item in f.readlines()[0].strip().split()])
                obj = InteractiveObj(os.path.join(scene_path, urdf_file))
                obj.load()
                self.scene_objects.append(obj)
                self.scene_objects_pos.append(pos)
예제 #3
0
    def load_interactive_objects(self):
        """
        Load interactive objects
        :return: a list of interactive objects
        """
        interactive_objects = []
        interactive_objects_path = [
            'object_2eZY2JqYPQE.urdf',
            'object_lGzQi2Pk5uC.urdf',
            'object_ZU6u5fvE8Z1.urdf',
            'object_H3ygj6efM8V.urdf',
            'object_RcqC01G24pR.urdf'
        ]

        for _ in range(self.interactive_objects_num_dups):
            for urdf_model in interactive_objects_path:
                obj = InteractiveObj(os.path.join(gibson2.assets_path, 'models/sample_urdfs', urdf_model))
                self.simulator.import_object(obj)
                interactive_objects.append(obj)
        return interactive_objects
예제 #4
0
def test_import_rbo_object():
    s = Simulator(mode='headless')
    try:
        scene = StadiumScene()
        s.import_scene(scene)

        obj = RBOObject('book')
        s.import_articulated_object(obj)

        obj2 = RBOObject('microwave')
        s.import_articulated_object(obj2)

        obj.set_position([0, 0, 2])
        obj2.set_position([0, 1, 2])

        obj3 = InteractiveObj(
            os.path.join(gibson2.assets_path, 'models', 'scene_components', 'door.urdf'))
        s.import_articulated_object(obj3)

        for i in range(100):
            s.step()
    finally:
        s.disconnect()
예제 #5
0
    '--save_yaml',
    action='store_true',
    help='Whether to save orientations and probabilities to yaml.')
parser.add_argument('--threshold',
                    type=float,
                    default=0.02,
                    help='Threshold for including orientations or not.')
args = parser.parse_args()

mesh = trimesh.load(args.object_file)
poses = trimesh.poses.compute_stable_poses(mesh,
                                           n_samples=5,
                                           threshold=args.threshold)

urdf_file = args.object_file.replace('.obj', '.urdf')
obj = InteractiveObj(filename=urdf_file, scale=1.0)
body_id = simulator.import_object(obj)

info_dict = {}
aabb = pb.getAABB(body_id)
print('Showing all stable placement rotations:')
dicts = []


def viz_transform(transform):
    quat = Quaternion(matrix=transform)
    r = quat.real
    v = quat.vector
    obj.set_position_orientation(
        [0, 0, mesh.extents[2] / 2.0],
        [quat.vector[0], quat.vector[1], quat.vector[2], quat.real])
예제 #6
0
    def __init__(self,
                 config_file,
                 model_id=None,
                 mode='headless',
                 action_timestep=1 / 10.0,
                 physics_timestep=1 / 240.0,
                 automatic_reset=False,
                 device_idx=0,
                 render_to_tensor=False):
        """
        :param config_file: config_file path
        :param model_id: override model_id in config file
        :param mode: headless or gui mode
        :param action_timestep: environment executes action per action_timestep second
        :param physics_timestep: physics timestep for pybullet
        :param device_idx: device_idx: which GPU to run the simulation and rendering on
        """
        self.config = parse_config(config_file)
        if model_id is not None:
            self.config['model_id'] = model_id

        # gibson external camera
        self.initial_pos = np.array([0, 1.3, 4])
        self.initial_view_direction = np.array([0, 0, -1])
        self.up = np.array([0, 1, 0])

        # output res for RL
        self.out_image_height = 84
        self.out_image_width = 84

        # class: stadium=0, robot=1, drawer=2, handle=3
        self.num_object_classes = 4
        self.automatic_reset = automatic_reset
        self.mode = mode
        self.action_timestep = action_timestep
        self.physics_timestep = physics_timestep
        self.simulator = Simulator(
            mode=mode,
            gravity=0,
            timestep=physics_timestep,
            use_fisheye=self.config.get('fisheye', False),
            image_width=self.config.get('image_width', 128),
            image_height=self.config.get('image_height', 128),
            vertical_fov=self.config.get('vertical_fov', 90),
            device_idx=device_idx,
            render_to_tensor=render_to_tensor,
            auto_sync=False)
        self.simulator_loop = int(self.action_timestep /
                                  self.simulator.timestep)
        self.load()
        self.hand_start_pos = [0.05, 1, 1.05]
        self.hand_start_orn = p.getQuaternionFromEuler([-np.pi / 2, 0, np.pi])
        self.set_robot_pos_orn(self.robots[0], self.hand_start_pos,
                               self.hand_start_orn)

        # load drawer
        self.drawer_start_pos = [0, 2.2, 1]
        self.drawer_start_orn = p.getQuaternionFromEuler([0, 0, -np.pi / 2])
        self.handle_idx = 3
        self.drawer = InteractiveObj(
            os.path.join(gibson2.assets_path, 'models', 'drawer',
                         'drawer_one_sided_handle.urdf'))
        self.import_drawer_handle()
        self.drawer.set_position_orientation(self.drawer_start_pos,
                                             self.drawer_start_orn)
        self.handle_init_pos = p.getLinkState(self.drawer_id,
                                              self.handle_idx)[0][1]
        self.simulator.sync()
        self._state_id = p.saveState()
예제 #7
0
class HandDrawerEnv(BaseEnv):
    def __init__(self,
                 config_file,
                 model_id=None,
                 mode='headless',
                 action_timestep=1 / 10.0,
                 physics_timestep=1 / 240.0,
                 automatic_reset=False,
                 device_idx=0,
                 render_to_tensor=False):
        """
        :param config_file: config_file path
        :param model_id: override model_id in config file
        :param mode: headless or gui mode
        :param action_timestep: environment executes action per action_timestep second
        :param physics_timestep: physics timestep for pybullet
        :param device_idx: device_idx: which GPU to run the simulation and rendering on
        """
        self.config = parse_config(config_file)
        if model_id is not None:
            self.config['model_id'] = model_id

        # gibson external camera
        self.initial_pos = np.array([0, 1.3, 4])
        self.initial_view_direction = np.array([0, 0, -1])
        self.up = np.array([0, 1, 0])

        # output res for RL
        self.out_image_height = 84
        self.out_image_width = 84

        # class: stadium=0, robot=1, drawer=2, handle=3
        self.num_object_classes = 4
        self.automatic_reset = automatic_reset
        self.mode = mode
        self.action_timestep = action_timestep
        self.physics_timestep = physics_timestep
        self.simulator = Simulator(
            mode=mode,
            gravity=0,
            timestep=physics_timestep,
            use_fisheye=self.config.get('fisheye', False),
            image_width=self.config.get('image_width', 128),
            image_height=self.config.get('image_height', 128),
            vertical_fov=self.config.get('vertical_fov', 90),
            device_idx=device_idx,
            render_to_tensor=render_to_tensor,
            auto_sync=False)
        self.simulator_loop = int(self.action_timestep /
                                  self.simulator.timestep)
        self.load()
        self.hand_start_pos = [0.05, 1, 1.05]
        self.hand_start_orn = p.getQuaternionFromEuler([-np.pi / 2, 0, np.pi])
        self.set_robot_pos_orn(self.robots[0], self.hand_start_pos,
                               self.hand_start_orn)

        # load drawer
        self.drawer_start_pos = [0, 2.2, 1]
        self.drawer_start_orn = p.getQuaternionFromEuler([0, 0, -np.pi / 2])
        self.handle_idx = 3
        self.drawer = InteractiveObj(
            os.path.join(gibson2.assets_path, 'models', 'drawer',
                         'drawer_one_sided_handle.urdf'))
        self.import_drawer_handle()
        self.drawer.set_position_orientation(self.drawer_start_pos,
                                             self.drawer_start_orn)
        self.handle_init_pos = p.getLinkState(self.drawer_id,
                                              self.handle_idx)[0][1]
        self.simulator.sync()
        self._state_id = p.saveState()

    """
    modify import_articulated_object() in simulator.py to
    render drawer and drawer handle separately for semantic inforamtion
    """

    def import_drawer_handle(self):
        self.drawer_id = self.drawer.load()

        # render drawer
        class_id = self.simulator.next_class_id
        self.simulator.next_class_id += 1
        visual_objects = []
        link_ids = []
        poses_rot = []
        poses_trans = []
        for shape in p.getVisualShapeData(self.drawer_id):
            id, link_id, type, dimensions, filename, rel_pos, rel_orn, color = shape[:
                                                                                     8]
            link_name = p.getJointInfo(self.drawer_id, link_id)[12]
            if link_name != b'handle_left' and link_name != b'handle_right' and link_name != b'handle_grip':
                filename = os.path.join(gibson2.assets_path,
                                        'models/mjcf_primitives/cube.obj')
                self.simulator.renderer.load_object(filename,
                                                    transform_orn=rel_orn,
                                                    transform_pos=rel_pos,
                                                    input_kd=color[:3],
                                                    scale=np.array(dimensions))
                visual_objects.append(
                    len(self.simulator.renderer.visual_objects) - 1)
                link_ids.append(link_id)
                _, _, _, _, pos, orn = p.getLinkState(id, link_id)
                poses_rot.append(
                    np.ascontiguousarray(quat2rotmat(xyzw2wxyz(orn))))
                poses_trans.append(np.ascontiguousarray(xyz2mat(pos)))
        self.simulator.renderer.add_instance_group(
            object_ids=visual_objects,
            link_ids=link_ids,
            pybullet_uuid=self.drawer_id,
            class_id=class_id,
            poses_rot=poses_rot,
            poses_trans=poses_trans,
            dynamic=True,
            robot=None)

        # render drawer handle
        class_id = self.simulator.next_class_id
        self.simulator.next_class_id += 1
        visual_objects = []
        link_ids = []
        poses_rot = []
        poses_trans = []
        for shape in p.getVisualShapeData(self.drawer_id):
            id, link_id, type, dimensions, filename, rel_pos, rel_orn, color = shape[:
                                                                                     8]
            link_name = p.getJointInfo(self.drawer_id, link_id)[12]
            if link_name == b'handle_left' or link_name == b'handle_right' or link_name == b'handle_grip':
                filename = os.path.join(gibson2.assets_path,
                                        'models/mjcf_primitives/cube.obj')
                self.simulator.renderer.load_object(filename,
                                                    transform_orn=rel_orn,
                                                    transform_pos=rel_pos,
                                                    input_kd=color[:3],
                                                    scale=np.array(dimensions))
                visual_objects.append(
                    len(self.simulator.renderer.visual_objects) - 1)
                link_ids.append(link_id)
                _, _, _, _, pos, orn = p.getLinkState(id, link_id)
                poses_rot.append(
                    np.ascontiguousarray(quat2rotmat(xyzw2wxyz(orn))))
                poses_trans.append(np.ascontiguousarray(xyz2mat(pos)))
        self.simulator.renderer.add_instance_group(
            object_ids=visual_objects,
            link_ids=link_ids,
            pybullet_uuid=self.drawer_id,
            class_id=class_id,
            poses_rot=poses_rot,
            poses_trans=poses_trans,
            dynamic=True,
            robot=None)

    def set_robot_pos_orn(self, robot, pos, orn):
        robot.set_position_orientation(pos, orn)

    def get_drawer_handle_pos(self):
        return np.array(p.getLinkState(self.drawer_id, self.handle_idx)[0])

    # legacy get state from gibson
    def get_state_legacy(self):
        state = OrderedDict()
        if 'rgb' in self.output:
            state['rgb'] = self.get_rgb()
        if 'depth' in self.output:
            state['depth'] = self.get_depth()
        if 'normal' in self.output:
            state['normal'] = self.get_normal()
        if 'seg' in self.output:
            state['seg'] = self.get_seg()
        return state

    def get_state(self):
        state = np.empty((0, self.image_height, self.image_width),
                         dtype=np.uint8)
        if 'depth' in self.output:
            depth = self.get_depth_external()[..., None].transpose(2, 0, 1)
            state = np.concatenate((state, depth), axis=0)
        if 'seg' in self.output:
            seg = self.get_seg_external()[..., None].transpose(2, 0, 1)
            state = np.concatenate((state, seg), axis=0)
        return state.astype(np.uint8)

    def _sigmoids(self, x, value_at_1, sigmoid):
        if sigmoid in ('cosine', 'linear', 'quadratic'):
            if not 0 <= value_at_1 < 1:
                raise ValueError(
                    '`value_at_1` must be nonnegative and smaller than 1, '
                    'got {}.'.format(value_at_1))
        else:
            if not 0 < value_at_1 < 1:
                raise ValueError(
                    '`value_at_1` must be strictly between 0 and 1, '
                    'got {}.'.format(value_at_1))

        if sigmoid == 'gaussian':
            scale = np.sqrt(-2 * np.log(value_at_1))
            return np.exp(-0.5 * (x * scale)**2)

        elif sigmoid == 'hyperbolic':
            scale = np.arccosh(1 / value_at_1)
            return 1 / np.cosh(x * scale)

        elif sigmoid == 'long_tail':
            scale = np.sqrt(1 / value_at_1 - 1)
            return 1 / ((x * scale)**2 + 1)

        elif sigmoid == 'cosine':
            scale = np.arccos(2 * value_at_1 - 1) / np.pi
            scaled_x = x * scale
            return np.where(
                abs(scaled_x) < 1, (1 + np.cos(np.pi * scaled_x)) / 2, 0.0)

        elif sigmoid == 'linear':
            scale = 1 - value_at_1
            scaled_x = x * scale
            return np.where(abs(scaled_x) < 1, 1 - scaled_x, 0.0)

        elif sigmoid == 'quadratic':
            scale = np.sqrt(1 - value_at_1)
            scaled_x = x * scale
            return np.where(abs(scaled_x) < 1, 1 - scaled_x**2, 0.0)

        elif sigmoid == 'tanh_squared':
            scale = np.arctanh(np.sqrt(1 - value_at_1))
            return 1 - np.tanh(x * scale)**2

        else:
            raise ValueError('Unknown sigmoid type {!r}.'.format(sigmoid))

    def is_close_reward(self,
                        x,
                        bounds=(0.0, 0.0),
                        margin=0.0,
                        sigmoid='gaussian',
                        value_at_margin=_DEFAULT_VALUE_AT_MARGIN):
        lower, upper = bounds
        if lower > upper:
            raise ValueError('Lower bound must be <= upper bound.')
        if margin < 0:
            raise ValueError('`margin` must be non-negative.')
        in_bounds = np.logical_and(lower <= x, x <= upper)
        if margin == 0:
            value = np.where(in_bounds, 1.0, 0.0)
        else:
            d = np.where(x < lower, lower - x, x - upper) / margin
            value = np.where(in_bounds, 1.0,
                             self._sigmoids(d, value_at_margin, sigmoid))

        return float(value) if np.isscalar(x) else value

    def get_reward_new(self):
        handle_center = self.get_drawer_handle_pos()
        grip_center = self.robots[0].get_palm_position()
        reach_dist = np.linalg.norm(grip_center - handle_center)
        pull_dist = self.max_pull_dist - (self.handle_init_pos -
                                          handle_center[1])
        close_threshold = 0.05
        reach_reward = -self.reach_reward_factor * reach_dist
        pull_reward = self.is_close_reward(pull_dist, (0, close_threshold),
                                           close_threshold * 2)
        return reach_reward + pull_reward

    def get_reward(self):
        handle_center = self.get_drawer_handle_pos()
        grip_center = self.robots[0].get_palm_position()
        reach_dist = np.linalg.norm(grip_center - handle_center)
        pull_dist = self.handle_init_pos - handle_center[1]
        reach_rew = -self.reach_reward_factor * reach_dist
        if reach_dist < 0.05:
            self.reach_completed = True
        else:
            self.reach_completed = False

        def pull_reward():
            if self.reach_completed:
                pull_rew = self.pull_reward_factor * pull_dist
                return pull_rew
            else:
                return 0

        pull_rew = pull_reward()
        reward = reach_rew + pull_rew
        return reward

    def is_goal_pulled(self):
        epsilon = 0.01
        return (self.handle_init_pos -
                self.get_drawer_handle_pos()[1]) > self.max_pull_dist - epsilon

    def get_termination(self, info={}):
        done = False

        # if self.is_goal_pulled() and self.reach_completed:
        #     done = True
        #     info['success'] = True
        if self.current_step >= self.max_step:
            done = True
            # info['success'] = False

        if done:
            info['episode_length'] = self.current_step

        return done, info

    def get_depth(self):
        """
        :return: depth sensor reading, normalized to [0.0, 1.0]
        """
        depth = -self.simulator.renderer.render_robot_cameras(
            modes=('3d'))[0][:, :, 2:3]
        # 0.0 is a special value for invalid entries
        depth[depth < self.depth_low] = 0.0
        depth[depth > self.depth_high] = 0.0

        # re-scale depth to [0.0, 1.0]
        depth /= self.depth_high
        return depth

    def get_rgb(self):
        """
        :return: RGB sensor reading, normalized to [0.0, 1.0]
        """
        return self.simulator.renderer.render_robot_cameras(
            modes=('rgb'))[0][:, :, :3]

    def get_normal(self):
        """
        :return: surface normal reading
        """
        return self.simulator.renderer.render_robot_cameras(
            modes='normal')[0][:, :, :3]

    def get_seg(self):
        """
        :return: semantic segmentation mask, normalized to [0.0, 1.0]
        """
        seg = self.simulator.renderer.render_robot_cameras(
            modes='seg')[0][:, :, 0:1]
        if self.num_object_classes is not None:
            seg = np.clip(seg * 255.0 / self.num_object_classes, 0.0, 1.0)
        return seg

    def get_depth_external(self):
        self.simulator.renderer.set_camera(
            self.initial_pos, self.initial_pos + self.initial_view_direction,
            self.up)
        depth = -self.simulator.renderer.render(modes=('3d'))[0][:, :, 2:3]
        depth[depth < self.depth_low] = 0.0
        depth[depth > self.depth_high] = 0.0
        depth /= self.depth_high
        return (depth * 255).astype(np.uint8)[:, :, 0]

    def get_seg_external(self):
        self.simulator.renderer.set_camera(
            self.initial_pos, self.initial_pos + self.initial_view_direction,
            self.up)
        seg = self.simulator.renderer.render(modes='seg')[0][:, :, 0:1]
        if self.num_object_classes is not None:
            seg = seg * 255
            # only mask handle
            seg[seg < 3.1] = 0
            seg = np.clip(seg / self.num_object_classes, 0.0, 1.0)
        return (seg * 255).astype(np.uint8)[:, :, 0]

    def get_external_camera(self):
        """
        pybullet external view rendering
        """
        # pybullet external camera position
        self._view_matrix = [
            0.5708255171775818, -0.6403688788414001, 0.5138930082321167, 0.0,
            0.821071445941925, 0.4451974034309387, -0.3572688400745392, 0.0,
            -0.0, 0.6258810758590698, 0.7799185514450073, 0.0,
            -1.0701078176498413, -0.883043646812439, -1.8267910480499268, 1.0
        ]
        self._projection_matrix = [
            0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
            -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0
        ]
        self._external_width = 1024
        self._external_height = 768

        (_, _, px, _,
         _) = p.getCameraImage(width=self._external_width,
                               height=self._external_height,
                               renderer=p.ER_BULLET_HARDWARE_OPENGL,
                               viewMatrix=self._view_matrix,
                               projectionMatrix=self._projection_matrix)
        rgb_array = np.array(px, dtype=np.uint8)
        rgb_array = np.reshape(
            np.array(px), (self._external_height, self._external_width, -1))
        rgb_array = rgb_array[:, :, :3]
        return rgb_array

    def render(self, mode='rgb_array'):
        self._view_matrix = [
            0.5708255171775818, -0.6403688788414001, 0.5138930082321167, 0.0,
            0.821071445941925, 0.4451974034309387, -0.3572688400745392, 0.0,
            -0.0, 0.6258810758590698, 0.7799185514450073, 0.0,
            -1.0701078176498413, -0.883043646812439, -1.8267910480499268, 1.0
        ]
        self._projection_matrix = [
            0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
            -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0
        ]
        self._external_width = 1024
        self._external_height = 768

        (_, _, px, _,
         _) = p.getCameraImage(width=self._external_width,
                               height=self._external_height,
                               renderer=p.ER_BULLET_HARDWARE_OPENGL,
                               viewMatrix=self._view_matrix,
                               projectionMatrix=self._projection_matrix)
        rgb_array = np.array(px, dtype=np.uint8)
        rgb_array = np.reshape(
            np.array(px), (self._external_height, self._external_width, -1))
        rgb_array = rgb_array[:, :, :3]
        return rgb_array

    def save_rgb_image(self, path):
        rgb = self.get_rgb()
        Image.fromarray((rgb * 255).astype(np.uint8)).save(path)

    def save_depth_image(self, path):
        depth = self.get_depth()
        Image.fromarray((depth * 255).astype(np.uint8)[:, :, 0]).save(path)

    def save_seg_image(self, path):
        seg = self.get_seg()
        Image.fromarray((seg * 255).astype(np.uint8)[:, :, 0]).save(path)

    def save_normal_image(self, path):
        normal = self.get_normal()
        Image.fromarray((normal * 255).astype(np.uint8)).save(path)

    def save_external_image(self, path):
        external = self.get_external_camera()
        Image.fromarray(external).save(path)

    def save_depth_image_external(self, path):
        depth = self.get_depth_external()
        Image.fromarray(depth).save(path)

    def save_seg_image_external(self, path):
        seg = self.get_seg_external()
        Image.fromarray(seg).save(path)

    def load_task_setup(self):
        self.max_pull_dist = 0.5
        self.reach_reward_factor = 1.0
        self.pull_reward_factor = 1.0
        self.max_step = self.config.get('max_step', 500)
        # interface for drq
        self._max_episode_steps = self.max_step

    # legacy observation space from gibson
    def load_observation_space_legacy(self):
        self.output = self.config['output']
        self.image_width = self.config.get('image_width', 128)
        self.image_height = self.config.get('image_height', 128)
        observation_space = OrderedDict()
        if 'rgb' in self.output:
            self.rgb_space = gym.spaces.Box(low=0.0,
                                            high=1.0,
                                            shape=(self.image_height,
                                                   self.image_width, 3),
                                            dtype=np.float32)
            observation_space['rgb'] = self.rgb_space
        if 'depth' in self.output:
            self.depth_low = self.config.get('depth_low', 0.5)
            self.depth_high = self.config.get('depth_high', 5.0)
            self.depth_space = gym.spaces.Box(low=0.0,
                                              high=1.0,
                                              shape=(self.image_height,
                                                     self.image_width, 1),
                                              dtype=np.float32)
            observation_space['depth'] = self.depth_space
        if 'seg' in self.output:
            self.seg_space = gym.spaces.Box(low=0.0,
                                            high=1.0,
                                            shape=(self.image_height,
                                                   self.image_width, 1),
                                            dtype=np.float32)
            observation_space['seg'] = self.seg_space
        if 'normal' in self.output:
            self.normal_space = gym.spaces.Box(low=0.0,
                                               high=1.0,
                                               shape=(self.image_height,
                                                      self.image_width, 3),
                                               dtype=np.float32)
            observation_space['normal'] = self.normal_space

        self.observation_space = gym.spaces.Dict(observation_space)

    # observation space for drq
    def load_observation_space(self):
        self.output = self.config['output']
        self.image_width = self.config.get('image_width', 128)
        self.image_height = self.config.get('image_height', 128)
        self.depth_low = self.config.get('depth_low', 0.5)
        self.depth_high = self.config.get('depth_high', 5.0)
        channels = 0
        if 'rgb' in self.output: channels += 3
        if 'depth' in self.output: channels += 1
        if 'seg' in self.output: channels += 1
        if 'normal' in self.output: channels += 3
        shape = [channels, self.image_height, self.image_width]
        self.observation_space = gym.spaces.Box(low=0,
                                                high=255,
                                                shape=shape,
                                                dtype=np.uint8)

    def load_action_space(self):
        self.action_space = self.robots[0].action_space

    def load_miscellaneous_variables(self):
        self.current_step = 0
        self.current_episode = 0

    def load(self):
        super(HandDrawerEnv, self).load()
        self.load_task_setup()
        self.load_observation_space()
        self.load_action_space()
        self.load_miscellaneous_variables()

    def reset_variables(self):
        self.current_episode += 1
        self.current_step = 0

    def reset(self):
        p.restoreState(self._state_id)
        self.simulator.sync()
        self.reset_variables()
        return self.get_state()

    def run_simulation(self):
        for _ in range(self.simulator_loop):
            self.simulator_step()
        self.simulator.sync()

    def step(self, action):
        self.current_step += 1
        if action is not None:
            self.robots[0].apply_action(action)
        self.run_simulation()

        state = self.get_state()
        info = {}
        reward = self.get_reward()
        done, info = self.get_termination()

        if done and self.automatic_reset:
            info['last_observation'] = state
            state = self.reset()
        return state, reward, done, info
예제 #8
0
    def __init__(self,
                 config_file,
                 mode='headless',
                 action_timestep=1 / 10.0,
                 physics_timestep=1 / 240.0,
                 device_idx=0,
                 automatic_reset=False):
        super(InteractiveNavigateEnv,
              self).__init__(config_file,
                             mode=mode,
                             action_timestep=action_timestep,
                             physics_timestep=physics_timestep,
                             automatic_reset=automatic_reset,
                             device_idx=device_idx)
        door = InteractiveObj(os.path.join(gibson2.assets_path, 'models',
                                           'scene_components',
                                           'realdoor.urdf'),
                              scale=1.35)
        self.simulator.import_interactive_object(door)

        wall1 = InteractiveObj(os.path.join(gibson2.assets_path, 'models',
                                            'scene_components', 'walls.urdf'),
                               scale=1)
        self.simulator.import_interactive_object(wall1)
        wall1.set_position_rotation([0, -1.5, 1], [0, 0, 0, 1])

        wall2 = InteractiveObj(os.path.join(gibson2.assets_path, 'models',
                                            'scene_components', 'walls.urdf'),
                               scale=1)
        self.simulator.import_interactive_object(wall2)
        wall2.set_position_rotation([0, 1.5, 1], [0, 0, 0, 1])
        door.set_position_rotation(
            [0, 0, -0.02],
            [0, 0, np.sqrt(0.5), np.sqrt(0.5)])
예제 #9
0
def main():
    p.connect(p.GUI)
    p.setGravity(0, 0, -9.8)
    p.setTimeStep(1. / 240.)

    floor = os.path.join(pybullet_data.getDataPath(), "mjcf/ground_plane.xml")
    p.loadMJCF(floor)

    cabinet_0007 = os.path.join(gibson2.assets_path,
                                'models/cabinet2/cabinet_0007.urdf')
    cabinet_0004 = os.path.join(gibson2.assets_path,
                                'models/cabinet/cabinet_0004.urdf')

    obj1 = InteractiveObj(filename=cabinet_0007)
    obj1.load()
    obj1.set_position([0, 0, 0.5])

    obj2 = InteractiveObj(filename=cabinet_0004)
    obj2.load()
    obj2.set_position([0, 0, 2])

    obj3 = YCBObject('003_cracker_box')
    obj3.load()
    obj3.set_position_orientation([0, 0, 1.2], [0, 0, 0, 1])

    for _ in range(24000):  # at least 100 seconds
        p.stepSimulation()
        time.sleep(1. / 240.)

    p.disconnect()
예제 #10
0
from gibson2.core.simulator import Simulator
from gibson2.core.physics.scene import BuildingScene, StadiumScene
from gibson2.utils.utils import parse_config
from gibson2.core.physics.interactive_objects import InteractiveObj
import gibson2
import os
import numpy as np
import pybullet as p

if __name__ == '__main__':
    s = Simulator(mode='gui')
    scene = BuildingScene('Ohoopee')
    s.import_scene(scene)

    door = InteractiveObj(os.path.join(gibson2.assets_path, 'models',
                                       'scene_components', 'realdoor.urdf'),
                          scale=0.3)
    s.import_interactive_object(door)

    x = p.addUserDebugParameter('x', -10, 10, 0)
    y = p.addUserDebugParameter('y', -10, 10, 0)
    z = p.addUserDebugParameter('z', -5, 5, 0)
    rotate = p.addUserDebugParameter('rotate', -np.pi, np.pi, 0)

    while True:
        x_pos = p.readUserDebugParameter(x)
        y_pos = p.readUserDebugParameter(y)
        z_pos = p.readUserDebugParameter(z)
        rotate_pos = p.readUserDebugParameter(rotate)
        door.set_position_rotation([x_pos, y_pos, z_pos],
                                   p.getQuaternionFromEuler([0, 0,
예제 #11
0
from gibson2.core.physics.interactive_objects import InteractiveObj
import matplotlib.pyplot as plt
'''
Analyzes a model for heights of surfaces within it.
Assumes model is a cabinet or otherwise has sets of shelves within it, so just need to
find the discrete set of heights the shelves are at.
'''

simulator = Simulator(image_width=640, image_height=640)
parser = argparse.ArgumentParser(
    description='Finds heights of shelves in a container object.')
parser.add_argument('object_file', type=str)
args = parser.parse_args()

out_dict = {}
obj = InteractiveObj(filename=args.object_file, scale=1.0)
body_id = simulator.import_object(obj)
aabb = pb.getAABB(body_id)
size = [
    aabb[1][0] - aabb[0][0], aabb[1][1] - aabb[0][1], aabb[1][2] - aabb[0][2]
]

urdf_dir = os.path.dirname(args.object_file)
with open(args.object_file, 'r') as f:
    past_base_link = False
    past_collision = False
    for line in f:
        if 'base_link' in line:
            past_base_link = True
        if past_base_link and 'collision' in line:
            past_collision = True
예제 #12
0
import pybullet as p
import numpy as np

config = parse_config('../configs/jr_interactive_nav.yaml')
s = Simulator(mode='headless', timestep=1 / 240.0)
scene = EmptyScene()
s.import_scene(scene)
jr = JR2_Kinova(config)
s.import_robot(jr)
jr.robot_body.reset_position([0, 0, 0])
jr.robot_body.reset_orientation([0, 0, 1, 0])
fetch = Fetch(config)
s.import_robot(fetch)
fetch.robot_body.reset_position([0, 1, 0])
fetch.robot_body.reset_orientation([0, 0, 1, 0])
obj = InteractiveObj(
    filename='/data4/mdv0/cabinet/0007/part_objs/cabinet_0007.urdf')
s.import_interactive_object(obj)
obj.set_position([-2, 0, 0.5])
obj = InteractiveObj(
    filename='/data4/mdv0/cabinet/0007/part_objs/cabinet_0007.urdf')
s.import_interactive_object(obj)
obj.set_position([-2, 2, 0.5])
obj = InteractiveObj(
    filename='/data4/mdv0/cabinet/0004/part_objs/cabinet_0004.urdf')
s.import_interactive_object(obj)
obj.set_position([-2.1, 1.6, 2])
obj = InteractiveObj(
    filename='/data4/mdv0/cabinet/0004/part_objs/cabinet_0004.urdf')
s.import_interactive_object(obj)
obj.set_position([-2.1, 0.4, 2])
obj = BoxShape([-2.05, 1, 0.5], [0.35, 0.6, 0.5])