def test_pipeline_time_series(): X_train, y_train, X_test, y_test = split_train_test(data) steps = get_steps() pipeline = Pipeline(steps) X_train_final, y_train_final = pipeline.\ fit_transform_resample(X_train, y_train) # Running the pipeline step by step X_train_temp, y_train_temp = X_train, y_train for _, transformer in steps: if hasattr(transformer, 'fit_transform_resample'): X_train_temp, y_train_temp = transformer.\ fit_transform_resample(X_train_temp, y_train_temp) else: X_train_temp = transformer.\ fit_transform(X_train_temp, y_train_temp) assert_almost_equal(X_train_final, X_train_temp) assert_almost_equal(y_train_final, y_train_temp) pipeline.fit(X_train, y_train) X_test_final, y_test_final = pipeline.transform_resample(X_test, y_test) X_test_temp, y_test_temp = X_test, y_test for _, transformer in steps: if hasattr(transformer, 'transform_resample'): X_test_temp, y_test_temp = transformer.\ transform_resample(X_test_temp, y_test_temp) else: X_test_temp = transformer.transform(X_test_temp) assert_almost_equal(X_test_final, X_test_temp) assert_almost_equal(y_test_final, y_test_temp)
def test_grid_search_time_series(): X_train, y_train, X_test, y_test = split_train_test(data) steps = get_steps() + [('classification', RandomForestClassifier())] pipeline = Pipeline(steps) param_grid = get_param_grid() cv = TimeSeriesSplit(n_splits=2) grid = GridSearchCV(estimator=pipeline, param_grid=param_grid, cv=cv, verbose=0) grid_result = grid.fit(X_train, y_train)
def _validate_k_fold_top(self, model, x_train, y_train, x_test, y_test): validation_quantities = [] for k_min in self.k_mins: for k_max in self.k_maxs: for dist_percentage in self.dist_percentages: print( f"k_min, k_max, dist_percentage: {k_min}, {k_max}, {dist_percentage}" ) pipeline_list = [ ('extract_subspaces', SubSpaceExtraction(dist_percentage=dist_percentage, k_min=k_min, k_max=k_max, metric="euclidean", n_jobs=-1)), ('compute_diagrams', VietorisRipsPersistence(n_jobs=-1)) ] top_pipeline = Pipeline(pipeline_list) diagrams_train, _ = top_pipeline.fit_transform_resample( x_train, y_train) top_features_train = extract_topological_features( diagrams_train) x_train_model = np.concatenate( [x_train, top_features_train], axis=1) model.fit(x_train_model, y_train) x_test_model = extract_features_for_prediction( x_train, y_train, x_test, y_test, top_pipeline) score = model.score(x_test_model, y_test) output_dictionary = { "k_min": k_min, "k_max": k_max, "dist_percentage": dist_percentage, "score": score } validation_quantities.append(output_dictionary) return validation_quantities
def fit(self, X, y=None): """Do nothing and return the estimator unchanged. This method is there to implement the usual scikit-learn API and hence work in pipelines. Parameters ---------- X : ndarray, shape: (n_samples, n_points, n_dimensions) Input data. ``n_samples`` is the number of point clouds, ``n_points`` is the number of points per point cloud and ``n_dimensions`` is the number of features for each point of the point cloud (i.e. the dimension of the point cloud space). y : None Ignored. Returns ------- self : object Returns self. """ steps = [ ('diagram', hl.VietorisRipsPersistence( metric=self.metric, max_edge_length=self.max_edge_length, homology_dimensions=self.homology_dimensions, n_jobs=self.n_jobs)), ('rescaler', diag.Scaler( metric=self.scaler_metric, metric_params=self.scaler_metric_params, function=self.function, n_jobs=self.n_jobs)), ('filter', diag.Filtering( epsilon=self.epsilon, homology_dimensions=self.homology_dimensions)), ('landscape', diag.PersistenceLandscape( n_values=self.n_values, n_layers=self.n_layers))] self._pipeline = Pipeline(steps).fit(X) return self
def fit(self, X, y=None): """Create a giotto :class:`Pipeline` object and fit it. Then, return the estimator. This method is there to implement the usual scikit-learn API and hence work in pipelines. Parameters ---------- X : ndarray, shape (n_samples, n_points, n_dimensions) Input data. ``n_samples`` is the number of point clouds, ``n_points`` is the number of points per point cloud and ``n_dimensions`` is the number of features for each point of the point cloud (i.e. the dimension of the point cloud space) y : None Ignored. Returns ------- self : object """ steps = [('diagram', hl.VietorisRipsPersistence( metric=self.metric, max_edge_length=self.max_edge_length, homology_dimensions=self.homology_dimensions, n_jobs=self.n_jobs)), ('scaler', diag.Scaler(metric=self.scaler_metric, metric_params=self.scaler_metric_params, function=self.scaler_function, n_jobs=self.n_jobs)), ('filter', diag.Filtering(epsilon=self.filter_epsilon)), ('betticurve', diag.BettiCurve(n_values=self.n_values))] self._pipeline = Pipeline(steps).fit(X) return self
class EntropyGenerator(BaseEstimator, TransformerMixin): r"""Meta transformer that returns the persistent entropy. Parameters ---------- metric : string or callable, optional, default: ``'euclidean'`` If set to ``'precomputed'``, input data is to be interpreted as a collection of distance matrices. Otherwise, input data is to be interpreted as a collection of point clouds (i.e. feature arrays), and ``metric`` determines a rule with which to calculate distances between pairs of instances (i.e. rows) in these arrays. If ``metric`` is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS, including "euclidean", "manhattan", or "cosine". If ``metric`` is a callable function, it is called on each pair of instances and the resulting value recorded. The callable should take two arrays from the entry in X as input, and return a value indicating the distance between them. scaler_metric : ``'bottleneck'`` | ``'wasserstein'`` | ``'landscape'`` | \ ``'betti'`` | ``'heat'``, optional, default: \ ``'bottleneck'`` Which notion of distance between (sub)diagrams to use: - ``'bottleneck'`` and ``'wasserstein'`` refer to the identically named perfect-matching--based notions of distance. - ``'landscape'`` refers to the :math:`L^p` distance between persistence landscapes. - ``'betti'`` refers to the :math:`L^p` distance between Betti curves. - ``'heat'`` refers to the :math:`L^p` distance between Gaussian-smoothed diagrams. scaler_metric_params : dict, optional, default: {'n_samples': 200} Additional keyword arguments for the norm function: - If ``metric == 'bottleneck'`` there are no available arguments. - If ``metric == 'wasserstein'`` the only argument is `p` (int, default: ``2``). - If ``metric == 'betti'`` the available arguments are `p` (float, default: ``2.``) and `n_values` (int, default: ``100``). - If ``metric == 'landscape'`` the available arguments are `p` (float, default: ``2.``), `n_values` (int, default: ``100``) and `n_layers` (int, default: ``1``). - If ``metric == 'heat'`` the available arguments are `p` (float, default: ``2.``), `sigma` (float, default: ``1.``) and `n_values` (int, default: ``100``). max_edge_length : float, optional, default: np.inf Upper bound on the maximum value of the Vietoris-Rips filtration parameter. Points whose distance is greater than this value will never be connected by an edge, and topological features at scales larger than this value will not be detected. function : callable, optional, default: numpy.max Function used to extract a single positive scalar from the collection of norms of diagrams. n_jobs : int or None, optional, default: None The number of jobs to use for the computation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. homology_dimensions : list or None, optional, default: None When set to ``None``, all available (sub)diagrams will be filtered. When set to a list, it is interpreted as the list of those homology dimensions for which (sub)diagrams should be filtered. epsilon : float, optional, default: 0. The cutoff value controlling the amount of filtering. len_vector : int, optional, default: 8 Used for performance optimization by exploiting numpy's vectorization capabilities. Attributes ---------- _n_features : int Number of features (i.e. number of time series) passed as an input of the resampler. Examples -------- >>> from giotto.meta_transformers import EntropyGenerator as eg >>> import numpy as np >>> ent = eg() >>> X = np.asarray([[[1,2],[2,1],[1,1]]]) >>> X_tr = ent.fit_transform(X) >>> X_tr ... array([[ 0.69314718, -0. ]]) """ def __init__(self, metric='euclidean', max_edge_length=np.inf, homology_dimensions=(0, 1), scaler_metric='bottleneck', scaler_metric_params=None, epsilon=0., n_jobs=None, function=np.max): self.metric = metric self.max_edge_length = max_edge_length self.homology_dimensions = homology_dimensions self.n_jobs = n_jobs self.epsilon = epsilon self.function = function self.scaler_metric = scaler_metric self.scaler_metric_params = scaler_metric_params def fit(self, X, y=None): """Do nothing and return the estimator unchanged. This method is there to implement the usual scikit-learn API and hence work in pipelines. Parameters ---------- X : ndarray, shape: (n_samples, n_points, n_dimensions) Input data. ``n_samples`` is the number of point clouds, ``n_points`` is the number of points per point cloud and ``n_dimensions`` is the number of features for each point of the point cloud (i.e. the dimension of the point cloud space). y : None Ignored. Returns ------- self : object Returns self. """ steps = [ ('diagram', hl.VietorisRipsPersistence( metric=self.metric, max_edge_length=self.max_edge_length, homology_dimensions=self.homology_dimensions, n_jobs=self.n_jobs)), ('rescaler', diag.Scaler( metric=self.scaler_metric, metric_params=self.scaler_metric_params, function=self.function, n_jobs=self.n_jobs)), ('filter', diag.Filtering( epsilon=self.epsilon, homology_dimensions=self.homology_dimensions)), ('entropy', diag.PersistenceEntropy(n_jobs=self.n_jobs))] self._pipeline = Pipeline(steps).fit(X) return self def transform(self, X, y=None): """Extract the persistent entropy from X. Parameters ---------- X : ndarray, shape: (n_samples, n_points, n_dimensions) Input data. ``n_samples`` is the number of point clouds, ``n_points`` is the number of points per point cloud and ``n_dimensions`` is the number of features for each point of the point cloud (i.e. the dimension of the point cloud space) y : None There is no need of a target in a transformer, yet the pipeline API requires this parameter. Returns ------- Xt : ndarray, shape: (n_samples, n_homology_dimensions) The Persistent Entropy. ``n_samples`` is not modified by the algorithm: the Persistent Entropy is computed per point cloud. ``n_homology_dimensions`` is the number of homology dimensions considered, i.e. the length of ``homology_dimensions``. """ Xt = self._pipeline.transform(X) return Xt
def get_pipeline(top_feat_params): pipeline = Pipeline([ ('extract_point_clouds', SubSpaceExtraction(**top_feat_params)), ('create_diagrams', VietorisRipsPersistence(n_jobs=-1)) ]) return pipeline
def cross_validate(self, full_x, full_y, splitting_dates): train_split_date = splitting_dates[0] val_split_date = splitting_dates[1] end_date = splitting_dates[2] train_x = full_x[(full_x.date < train_split_date) | (full_x.date >= end_date)] train_y = full_y[(full_x.date < train_split_date) | (full_x.date >= end_date)] val_x = full_x[(full_x.date >= train_split_date) & (full_x.date < val_split_date)] val_y = full_y[(full_x.date >= train_split_date) & (full_x.date < val_split_date)] test_x = full_x[(full_x.date >= val_split_date) & (full_x.date < end_date)] test_y = full_y[(full_x.date >= val_split_date) & (full_x.date < end_date)] train_x.pop("date") val_x.pop("date") test_x.pop("date") train_x = train_x.values train_y = train_y.values val_x = val_x.values val_y = val_y.values test_x = test_x.values test_y = test_y.values print("START VALIDATING MODEL") models_cv = self._validate_k_fold_model(train_x, train_y, val_x, val_y) best_model_params = best_combination(models_cv) best_model_params.pop("score") best_model = RandomForestClassifier(**best_model_params) best_model.fit(train_x, train_y) score = best_model.score(test_x, test_y) print(f'score no_top {score}') print(f'best model parameters no_top {best_model_params}') print("START VALIDATING PARAMS") topo_cv = self._validate_k_fold_top(best_model, train_x, train_y, val_x, val_y) best_topo = best_combination(topo_cv) best_topo.pop("score") best_topo_pipeline_list = [ ('extract_subspaces', SubSpaceExtraction(**best_topo)), ('compute_diagrams', VietorisRipsPersistence(n_jobs=-1)) ] best_topo_pipeline = Pipeline(best_topo_pipeline_list) train_x_for_test = np.concatenate([train_x, val_x], axis=0) train_y_for_test = np.concatenate([train_y, val_y], axis=0) diagrams_train, _ = best_topo_pipeline.fit_transform_resample( train_x_for_test, train_y_for_test) print("EXTRACTING TOPOLOGICAL FEATURES TRAIN") top_features_train = extract_topological_features(diagrams_train) x_train_model = np.concatenate([train_x_for_test, top_features_train], axis=1) best_model.fit(x_train_model, train_y_for_test) print("EXTRACTING TOPOLOGICAL FEATURES TEST") x_test_model = extract_features_for_prediction(x_train_model, train_y_for_test, test_x, test_y, best_topo_pipeline) score_top = best_model.score(x_test_model, test_y) val_x_with_topo = extract_features_for_prediction( train_x, train_y, val_x, val_y, best_topo_pipeline) print('START VALIDATING MODEL WITH OPTIMAL TOPOLOGY') model_config_with_topo = self._validate_k_fold_model( x_train_model, train_y, val_x_with_topo, val_y) best_model_config_with_topo = best_combination(model_config_with_topo) best_model_config_with_topo.pop('score') best_model_with_topo = RandomForestClassifier( **best_model_config_with_topo) best_model_with_topo.fit(x_train_model, train_y_for_test) score_best_topo_and_model = best_model_with_topo.score( x_test_model, test_y) print(f'score best model and topo_feat {score_best_topo_and_model}') return best_model_params, best_topo, best_model_config_with_topo, score, score_top, score_best_topo_and_model
class EntropyGenerator(BaseEstimator, TransformerMixin): """Persistence entropies directly from point clouds. Implements a feature generation pipeline which computes persistence diagrams, scales and filters them, and then computes their persistence entropies. Parameters ---------- metric : string or callable, optional, default: ``'euclidean'`` If set to ``'precomputed'``, each entry in `X` along axis 0 is interpreted to be a distance matrix. Otherwise, entries are interpreted as feature arrays, and `metric` determines a rule with which to calculate distances between pairs of instances (i.e. rows) in these arrays. If `metric` is a string, it must be one of the options allowed by :obj:`scipy.spatial.distance.pdist` for its metric parameter, or a metric listed in :obj:`sklearn.pairwise.PAIRWISE_DISTANCE_FUNCTIONS`, including "euclidean", "manhattan" or "cosine". If `metric` is a callable function, it is called on each pair of instances and the resulting value recorded. The callable should take two arrays from the entry in `X` as input, and return a value indicating the distance between them. max_edge_length : float, optional, default: ``numpy.inf`` Upper bound on the maximum value of the Vietoris-Rips filtration parameter. Points whose distance is greater than this value will never be connected by an edge, and topological features at scales larger than this value will not be detected. homology_dimensions : iterable, optional, default: ``(0, 1)`` Dimensions (non-negative integers) of the topological features to be detected. scaler_metric : ``'bottleneck'`` | ``'wasserstein'`` | ``'landscape'`` | \ ``'betti'`` | ``'heat'``, optional, default: \ ``'bottleneck'`` Distance or dissimilarity function used to define the amplitude of a subdiagram as its distance from the diagonal diagram: - ``'bottleneck'`` and ``'wasserstein'`` refer to the identically named perfect-matching--based notions of distance. - ``'landscape'`` refers to the :math:`L^p` distance between persistence landscapes. - ``'betti'`` refers to the :math:`L^p` distance between Betti curves. - ``'heat'`` refers to the :math:`L^p` distance between Gaussian-smoothed diagrams. scaler_metric_params : dict or None, optional, default: ``None`` Additional keyword arguments for `scaler_metric`: - If ``metric == 'bottleneck'`` there are no available arguments. - If ``metric == 'wasserstein'`` the only argument is `p` (int, default: ``2``). - If ``metric == 'betti'`` the available arguments are `p` (float, default: ``2.``) and `n_values` (int, default: ``100``). - If ``metric == 'landscape'`` the available arguments are `p` (float, default: ``2.``), `n_values` (int, default: ``100``) and `n_layers` (int, default: ``1``). - If ``metric == 'heat'`` the available arguments are `p` (float, default: ``2.``), `sigma` (float, default: ``1.``) and `n_values` (int, default: ``100``). scaler_function : callable, optional, default: ``numpy.max`` Function used to extract a single positive scalar from the collection of norms of diagrams. filter_epsilon : float, optional, default: ``0.`` The cutoff value controlling the amount of filtering. n_jobs : int or None, optional, default: ``None`` The number of jobs to use for the computation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. Examples -------- >>> from giotto.meta_transformers import EntropyGenerator as eg >>> import numpy as np >>> ent = eg() >>> X = np.asarray([[[1, 2], [2, 1], [1, 1]]]) >>> Xt = ent.fit_transform(X) >>> print(Xt) [[0.69314718, -0.]] """ def __init__(self, metric='euclidean', max_edge_length=np.inf, homology_dimensions=(0, 1), scaler_metric='bottleneck', scaler_metric_params=None, scaler_function=np.max, filter_epsilon=0., n_jobs=None): self.metric = metric self.max_edge_length = max_edge_length self.homology_dimensions = homology_dimensions self.scaler_metric = scaler_metric self.scaler_metric_params = scaler_metric_params self.scaler_function = scaler_function self.filter_epsilon = filter_epsilon self.n_jobs = n_jobs def fit(self, X, y=None): """Do nothing and return the estimator unchanged. This method is there to implement the usual scikit-learn API and hence work in pipelines. Parameters ---------- X : ndarray, shape (n_samples, n_points, n_dimensions) Input data. ``n_samples`` is the number of point clouds, ``n_points`` is the number of points per point cloud and ``n_dimensions`` is the number of features for each point of the point cloud (i.e. the dimension of the point cloud space). y : None Ignored. Returns ------- self : object """ steps = [('diagram', hl.VietorisRipsPersistence( metric=self.metric, max_edge_length=self.max_edge_length, homology_dimensions=self.homology_dimensions, n_jobs=self.n_jobs)), ('scaler', diag.Scaler(metric=self.scaler_metric, metric_params=self.scaler_metric_params, function=self.scaler_function, n_jobs=self.n_jobs)), ('filter', diag.Filtering(epsilon=self.filter_epsilon)), ('entropy', diag.PersistenceEntropy(n_jobs=self.n_jobs))] self._pipeline = Pipeline(steps).fit(X) return self def transform(self, X, y=None): """Extract persistence entropies from the sample point clouds in `X`. Parameters ---------- X : ndarray, shape (n_samples, n_points, n_dimensions) Input data. ``n_samples`` is the number of point clouds, ``n_points`` is the number of points per point cloud and ``n_dimensions`` is the number of features for each point of the point cloud (i.e. the dimension of the point cloud space). y : None There is no need for a target in a transformer, yet the pipeline API requires this parameter. Returns ------- Xt : ndarray, shape (n_samples, n_homology_dimensions) For each point cloud in `X`, one persistence entropy per homology dimension in `homology_dimensions`. """ Xt = self._pipeline.transform(X) return Xt
def varying_noise(n_steps, n_series, args_stable, args_aperiodic): # noise parameters min_noise = 0.0 max_noise = 2.1 step_size = 0.1 std = 0.1 parameters_type = "fixed" embedding_dimension = 2 embedding_time_delay = 3 n_jobs = 1 window_width = 121 - ((embedding_dimension - 1) * embedding_time_delay + 1) # window_stride = 1 metric = "euclidean" max_edge_length = 10 homology_dimensions = [0, 1] epsilon = 0.0 steps = [ ( "embedding", ts.TakensEmbedding( parameters_type=parameters_type, dimension=embedding_dimension, time_delay=embedding_time_delay, n_jobs=n_jobs, ), ), ("window", ts.SlidingWindow(width=window_width, stride=1)), ( "diagrams", hl.VietorisRipsPersistence( metric=metric, max_edge_length=max_edge_length, homology_dimensions=homology_dimensions, n_jobs=n_jobs, ), ), ("diagrams_scaler", diag.Scaler()), ("diagrams_filter", diag.Filtering(epsilon=epsilon)), ] pipeline = Pipeline(steps) # maximal number of repetitions per noise level (for confidence intervals) max_itr = 5 # data frames to save performance perf_train = pd.DataFrame( columns={"Score", "Type", "Mean Standard Deviation of Noise"} ) perf_test = pd.DataFrame( columns={"Score", "Type", "Mean Standard Deviation of Noise"} ) mb = master_bar(np.arange(min_noise, max_noise, step_size)) for noise in mb: for _ in progress_bar(range(max_itr), parent=mb): mb.child.comment = "Repetitions per noise level" data = simulate_data( noise, std, n_steps, n_series, args_stable, args_aperiodic ) # group data by type and series id grouped_data = data.groupby(["type", "series_id"]) y_true = np.repeat([1, 0], n_series) id_train, id_test, y_train, y_test = train_test_split( range(2 * n_series), y_true, train_size=0.7, random_state=0 ) # classical k-means ########################################################### X = data["adults"].values.reshape((2 * n_series, -1)) # train/test data X_train = X[id_train, :] X_test = X[id_test, :] # k means kmeans = KMeans(n_clusters=2, random_state=0) kmeans.fit(X_train) perf_train = perf_train.append( { "Score": homogeneity_score(y_train, kmeans.labels_), "Type": "Classic", "Mean Standard Deviation of Noise": noise, }, ignore_index=True, ) perf_test = perf_test.append( { "Score": homogeneity_score(y_test, kmeans.predict(X_test)), "Type": "Classic", "Mean Standard Deviation of Noise": noise, }, ignore_index=True, ) # threshold to determine whether a hole is relevant or not frac = 0.7 # TDA k-means features = [] for name, _ in grouped_data: X_filtered = pipeline.fit_transform( grouped_data.get_group(name)["adults"].values ) n_windows, n_points, _ = X_filtered.shape features.append( get_mean_lifetime(X_filtered, n_windows, n_points) + get_n_rel_holes(X_filtered, n_windows, n_points, frac=frac) + get_n_rel_holes(X_filtered, n_windows, n_points, frac=0.0) + get_max_lifetime(X_filtered, n_windows, n_points) + get_amplitude(X_filtered) ) # define data matrix for k-means X_tda = np.array(features) X_tda_train = X_tda[id_train, :] X_tda_test = X_tda[id_test, :] # k means kmeans_tda = KMeans(n_clusters=2, random_state=0) kmeans_tda.fit(X_tda_train) perf_train = perf_train.append( { "Score": homogeneity_score(y_train, kmeans_tda.labels_), "Type": "TDA", "Mean Standard Deviation of Noise": noise, }, ignore_index=True, ) perf_test = perf_test.append( { "Score": homogeneity_score(y_test, kmeans_tda.predict(X_tda_test)), "Type": "TDA", "Mean Standard Deviation of Noise": noise, }, ignore_index=True, ) mb.first_bar.comment = "Noise level" # write performance metrics to disk with open("models/performance_metrics_train.pkl", "wb") as file: pickle.dump(perf_train, file) with open("models/performance_metrics_test.pkl", "wb") as file: pickle.dump(perf_test, file)