def gitm_single_3D_image(plot_type, zkey, gdata, title=None, figname=None, draw=True, aindex=-1, nlat=90, slat=-90, linc=6, earth=False, tlon=90, zmax=None, zmin=None, zcolor=None, data_type="contour", faspect=True, meq=False, terminator=False, m=None, *args, **kwargs): ''' Creates a rectangular or polar map projection plot for a specified latitude range. Input: plot_type = key to determine plot type (rectangular, polar) zkey = key for z variable (ie 'Vertical TEC') gData = gitm bin structure title = plot title figname = file name to save figure as (default is none) draw = draw to screen? (default is True) aindex = altitude index (default -1 if it is a 2D parameter) nlat = northern latitude limit (degrees North, default 90) slat = southern latitude limit (degrees North, defalut -90) linc = number of latitude tick incriments (default 6) earth = include continent outlines for Earth (default False) tlon = longitude at the top of a polar dial (degrees east, default 90) zmax = Maximum z range (default None) zmin = Minimum z range (default None) zcolor = Color map for the z variable. If none, will be chosen based on the z range (default=None) data_type = scatter or contour (default=scatter) faspect = Fix the aspect of Earth if using outlines (default=True) meq = Include the geomagnetic equator? (default=False) terminator = Include the solar terminator? (default=False) m = Handle for earth map (default=None) Output: f = figure handle m = map handle (or None) ''' # Set the altitude and latitude limits. For polar plots, latitudes # Above and below 90 degrees will cause the routine to fail ialt = 0 if aindex > 0: ialt = aindex if plot_type.find("polar") >= 0: (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 else: imin = 0 imax = gdata.attrs['nLat'] # If including the solar terminator, extract the UT date tdt = None if terminator: tdt = gdata['time'] # Format title spec_title = "{:} UT".format(gdata['time']) if aindex >= 0: spec_title = "{:s} slice at {:.2f} km".format(spec_title, 1.0e-3 * gdata['Altitude'][0,0, ialt]) if title: title = "{:s}\n{:s}".format(spec_title, title) else: title = spec_title # Output the figure fm = p3g.plot_single_3D_image(plot_type, np.array(gdata['dLat'][:,imin:imax,ialt]), np.array(gdata['dLon'][:,imin:imax,ialt]), np.array(gdata[zkey][:,imin:imax,ialt]), gdata[zkey].attrs['name'], gdata[zkey].attrs['scale'], gdata[zkey].attrs['units'], zmax=zmax, zmin=zmin, zcolor=zcolor, title=title, figname=figname, draw=draw, nlat=nlat, slat=slat, linc=linc, tlon=tlon, data_type=data_type, meq=meq, earth=earth, m=m, faspect=faspect, term_datetime=tdt) return fm
def plot_net_gitm_comp(plot_type, lon_data, lat_data, obs_data, obs_name, obs_scale, obs_units, diff_data, diff_name, diff_scale, diff_units, gitm_key, gitm_alt, gdata, gitm_name, diff_max=None, zmax=None, zmin=None, title=None, color=True, bcolor='#747679', data_coff=False, diff_coff=True, figname=None, draw=True, latlim1=90, latlim2=-90, linc=6, tlon=90, meq=False, earth=False, map_list=[], faspect=True, term_datetime=None, extra_lines=False, *args, **kwargs): ''' Creates three plots of a specified type, one showing the observations, one showing the GITM data, and one showing the difference between the two. Input: plot_type = key to determine plot type (rectangular, polar, nsglobal, or snapshot) lon_data = Numpy array with longitude data for matching model-obs points lat_data = Numpy array with latitude data for matching model-obs points obs_data = Numpy array with observational data for matching model-obs points obs_name = Name portion of the observational data label obs_scale = Scale (linear/exponential) for plotting obs. data obs_units = Unit portion of the observational data label diff_data = Numpy array with differences for matching model-obs points gitm_key = Key for the GITM data gitm_alt = Altitude in km to plot the GITM data at. For a 2D variable like hmF2 or TEC, use 0.0 km. gdata = GitmBin structure with model observations. gitm_name = Name portion of the GITM data label diff_max = Maximum value for the difference (absolute value), if None, will be determined in script (default=None) zmin = minimum value for z variable (default=None) zmax = maximum value for z variable (default=None) title = Plot title (default=None) color = Color (True, default) or black and white (False)? bcolor = Background color (default=) data_coff = Center the data color scale about zero (False, default)? diff_coff = Center the diff color scale about zero (True, default)? figname = Output figure name with a .png suffix (default=None) draw = Draw to screen? (default=True) latlim1 = First latitude limit (degrees North, default=90). Purpose varies depending on plot type. For rectangular, this is the northern latitude limit. For polar, this is the latitude at the center of the dial. For snapshot, this is the lower boundary of polar dials. It is not used for nsglobal. latlim2 = Second latitude limit (degrees North, default=-90). Purpose varies depending on plot type. For rectangular, this is the southern latitude limit. For polar, this is the latitude at the edge of the dial. This option is not used with the snapshot or nsglobal option. linc = Number of latitude tick incriments (default=6) tlon = Longitude on top of the polar dial (degrees East, default=90) meq = Add a line for the geomagnetic equator? (default=False) earth = Include continent outlines for Earth (default=False) map_list = List of map handles for the specified plot_type (default=empty list) faspect = Keep a true aspect ratio for maps? (default=True) term_datetime = Include the solar terminator by shading the night time regions? If so, include a datetime object with the UT for this map. Only used if earth=True. extra_lines = Plot a specified lines (good for showing regional boundaries) (default=False). Provide a list of lists which have the format shown: [x np.array, y np.array, style string (eg 'k-')] where x is in degrees longitude and y is in degrees latitude Output: f = handle to figure ''' rout_name = "plot_net_gitm_comp" # Get the desired color bars data_color = gpr.choose_contour_map(color, data_coff) diff_color = gpr.choose_contour_map(color, diff_coff) # Get the altitude index ialt = 0 if gitm_alt > 0.0: ialt = gpr.find_alt_index(gdata, 0, 0, alt, units="km") # Initialize the z variables, if desired. GITM and Observational data # should share the same scale. if(zmin is None): obsmin = np.nanmin(obs_data) gitmin = np.nanmin(gdata[gitm_key][:,:,ialt]) zmin = min(obsmin,gitmin) if(zmax is None): obsmax = np.nanmax(obs_data) gitmax = np.nanmax(gdata[gitm_key][:,:,ialt]) zmax = max(obsmax, gitmax) zran = round((zmax-zmin)/6.0) if(zran != 0.0): zmin = math.floor(float("{:.14f}".format(zmin / zran))) * zran zmax = math.ceil(float("{:.14f}".format(zmax / zran))) * zran # Set the difference max/min limits, if desired if diff_max is None: diff_max = max(np.nanmax(diff_data), abs(np.nanmin(diff_data))) diff_min = -1.0 * diff_max # Initialize the figure, setting the height for a 3 subfigure stack fwidth = 6 fheight = 12 if(plot_type.find("global") > 0): fwidth *= 1.5 if(plot_type.find("shot") > 0): fwidth *= 1.5 fheight *= 1.5 f = plt.figure(figsize=(fwidth,fheight)) # Plot the three datasets using the desired format if plot_type.find("shot") > 0: if len(map_list) == 3: ml = map_list[0] mn = map_list[1] ms = map_list[2] else: ml = None mn = None ms = None # Output the observations as a scatter plot axl,ml,axn,mn,axs,ms = p3g.plot_snapshot_subfigure(f, 3, 0, lat_data, lon_data, obs_data, obs_name, obs_scale, obs_units, zmax, zmin, data_color, tlon=tlon, blat=latlim1, xl=False, yl=False, xt=False, bcolor=bcolor, meq=meq, earth=earth, ml=ml, mn=mn, ms=ms, faspect=faspect, term_datetime=term_datetime) # Output the gitm data as a contour after ensuring that the GITM array # isn't padded to include unrealistic latitudes (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 p3g.plot_snapshot_subfigure(f, 3, 1, np.array(gdata['dLat'][:,imin:imax,ialt]), np.array(gdata['dLon'][:,imin:imax,ialt]), np.array(gdata[gitm_key][:,imin:imax,ialt]), gitm_name, gdata[gitm_key].attrs["scale"], gdata[gitm_key].attrs["units"], zmax, zmin, data_color, cb=True, cloc="r", tlon=tlon, blat=latlim1, title=False, xl=False, xt=False, bcolor=bcolor, meq=meq, earth=earth, ml=ml, mn=mn, ms=ms, faspect=faspect, data_type="contour", term_datetime=term_datetime) # Output the differences as a scatter plot p3g.plot_snapshot_subfigure(f, 3, 2, lat_data, lon_data, diff_data, diff_name, diff_scale, diff_units, diff_max, diff_min, diff_color, tlon=tlon, blat=latlim1, title=False, yl=False, bcolor=bcolor, meq=meq, earth=earth, ml=ml, mn=mn, ms=ms, faspect=faspect, term_datetime=term_datetime) map_list = list([ml, mn, ms]) elif plot_type.find("nsglobal") >= 0: if len(map_list) == 2: mn = map_list[0] ms = map_list[1] else: mn = None ms = None # Check for boundary lines to plot eline_north = False eline_south = False if type(extra_lines) is list: if len(extra_lines) >= 1: eline_north = extra_lines[0] if len(extra_lines) >= 2: eline_south = extra_lines[1] else: print "Only one boundary provided, plotting in north" else: print "No boundaries provided, better to declare as False" # Output the observations as a scatter plot axn1,mn,axs1,ms = p3g.plot_nsglobal_subfigure(f, 3, 0, lat_data, lon_data, obs_data, obs_name, obs_scale, obs_units, zmax, zmin, data_color, title=True, cb=True, elat=latlim1, tlon=tlon, rl=False, tl=False, bcolor=bcolor, earth=earth, mn=mn, ms=ms, faspect=faspect, term_datetime=term_datetime, extra_line_n=eline_north, extra_line_s=eline_south) # Output the gitm data as a contour after ensuring that the GITM array # isn't padded to include unrealistic latitudes (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 axn2,mn,axs2,ms = p3g.plot_nsglobal_subfigure(f, 3, 1, np.array(gdata['dLat'][:,imin:imax,ialt]), np.array(gdata['dLon'][:,imin:imax,ialt]), np.array(gdata[gitm_key][:,imin:imax,ialt]), gitm_name, gdata[gitm_key].attrs["scale"], gdata[gitm_key].attrs["units"], zmax, zmin, data_color, title=False, cb=True, elat=latlim1, tlon=tlon, tl=False, bcolor=bcolor, earth=earth, mn=mn, ms=ms, data_type="contour", term_datetime=term_datetime, extra_line_n=eline_north, extra_line_s=eline_south) # Output the differences as a scatter plot p3g.plot_nsglobal_subfigure(f, 3, 2, lat_data, lon_data, diff_data, diff_name, diff_scale, diff_units, diff_max, diff_min, diff_color, title=False, cb=True, elat=latlim1, tlon=tlon, rl=False, bcolor=bcolor, earth=earth, mn=mn, ms=ms, faspect=faspect, term_datetime=term_datetime, extra_line_n=eline_north, extra_line_s=eline_south) map_list = list([mn, ms]) elif plot_type.find("rect") >= 0: if len(map_list) == 1: m = map_list[0] else: m = None # Output the observations as a scatter plot ax = f.add_subplot(3,1,1) con1, m = p3g.plot_rectangular_3D_global(ax, lat_data, lon_data, obs_data, obs_name, obs_scale, obs_units, zmin, zmax, data_color, nlat=latlim1, slat=latlim2, linc=linc, cloc="r", xl=False, xt=False, yl=False, meq=meq, bcolor=bcolor, earth=earth, m=m, faspect=faspect, term_datetime=term_datetime) # Output the gitm data as a contour ax = f.add_subplot(3,1,2) con2, m = p3g.plot_rectangular_3D_global(ax, np.array(gdata['dLat'][:,:,ialt]), np.array(gdata['dLon'][:,:,ialt]), np.array(gdata[gitm_key][:,:,ialt]), gitm_name, gdata[gitm_key].attrs["scale"], gdata[gitm_key].attrs["units"], zmin, zmax, data_color, nlat=latlim1, slat=latlim2, linc=linc, cb=True, cloc="r", xl=False, xt=False, bcolor=bcolor, meq=meq, earth=earth, m=m, faspect=faspect, data_type="contour", term_datetime=term_datetime) # Adjust plot dimensions if necessary if not earth: con1_dim = list(con1.axes.get_position().bounds) con2_dim = list(con2.ax.get_position().bounds) con2_dim[2] = con1_dim[2] con2.ax.set_position(con2_dim) # Output the differences as a scatter plot ax = f.add_subplot(3,1,3) p3g.plot_rectangular_3D_global(ax, lat_data, lon_data, diff_data, diff_name, diff_scale, diff_units, diff_min, diff_max, diff_color, nlat=latlim1, slat=latlim2, linc=linc, cloc="r", yl=False, bcolor=bcolor, meq=meq, earth=earth, m=m, faspect=faspect, term_datetime=term_datetime) map_list = list([m]) elif plot_type.find("polar") >= 0: if len(map_list) == 1: m = map_list[0] else: m = None pf = True if earth: pf = False # Output the observations as a scatter plot ax = f.add_subplot(3,1,1, polar=pf) con1,m = p3g.plot_polar_3D_global(ax, 3, lat_data, lon_data, obs_data, obs_name, obs_scale, obs_units, zmin, zmax, data_color, center_lat=latlim1, edge_lat=latlim2, linc=linc, top_lon=tlon, cloc="r", tl=False, rl=False, bcolor=bcolor, earth=earth, m=m, faspect=faspect, term_datetime=term_datetime) # Output the gitm data as a contour after ensuring that the GITM # array isn't padded to include unrealistic latitudes ax = f.add_subplot(3,1,2, polar=pf) (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 con2,m = p3g.plot_polar_3D_global(ax, 3, np.array(gdata['dLat'][:,imin:imax,ialt]), np.array(gdata['dLon'][:,imin:imax,ialt]), np.array(gdata[gitm_key][:,imin:imax,ialt]), gitm_name, gdata[gitm_key].attrs["scale"], gdata[gitm_key].attrs["units"], zmin, zmax, data_color, center_lat=latlim1, edge_lat=latlim2, linc=linc, top_lon=tlon, cb=True, cloc="r", tl=False, bcolor=bcolor, earth=earth, m=m, faspect=faspect, data_type="contour", term_datetime=term_datetime) con1_dim = list(con1.axes.get_position().bounds) con2_dim = list(con2.ax.get_position().bounds) con2_dim[0] = con2_dim[0] - 0.05 con2_dim[2] = con1_dim[2] con2.ax.set_position(con2_dim) # Output the differences as a scatter plot ax = f.add_subplot(3,1,3, polar=pf) p3g.plot_polar_3D_global(ax, 3, lat_data, lon_data, diff_data, diff_name, diff_scale, diff_units, diff_min, diff_max, diff_color, center_lat=latlim1, edge_lat=latlim2, linc=linc, top_lon=tlon, cloc="r", rl=False, bcolor=bcolor, earth=earth, m=m, faspect=faspect, term_datetime=term_datetime) map_list = list([m]) else: print rout_name, "ERROR: uknown plot type [", plot_type, "]" return if title: f.suptitle(title, size="medium") # Adjust subplot locations if plot_type.find("rect") >= 0 or plot_type.find("polar") >= 0: plt.subplots_adjust(left=.15) # Draw to screen if desired if draw: if plt.isinteractive(): plt.draw() #In interactive mode, you just "draw". else: # W/o interactive mode, "show" stops the user from typing more # at the terminal until plots are drawn. plt.show() # Save output file if figname is not None: plt.savefig(figname) return(f, map_list)
def gitm_mult_3D_slices(plot_type, zkey, gdata, aindex, title=None, figname=None, draw=True, nlat=90, slat=-90, linc=6, earth=False, tlon=90, zmax=None, zmin=None, zcolor=None, data_type="contour", meq=False, faspect=True, terminator=False, *args, **kwargs): ''' Creates a rectangular or polar map projection plot for a specified latitude range. Input: plot_type = key to determine plot type (rectangular, polar) zkey = key for z variable (ie 'Vertical TEC') gdata = gitm bin structure aindex = list of altitude indices title = plot title figname = file name to save figure as (default is none) draw = draw to screen? (default is True) nlat = northern latitude limit (degrees North, default 90) slat = southern latitude limit (degrees North, defalut -90) linc = number of latitude tick incriments (default 6) earth = include Earth continent outlines (default False) tlon = longitude on the top, for polar plots (degrees East, default 90) zmax = maximum z range (default None) zmin = minimum z range (default None) zcolor = Color spectrum for z data. If not specified, will be determined by the z range. (default=None) data_type = Contour or scatter plot? (default=scatter) meq = Add a line for the geomagnetic equator? (default=False) earth = include Earth continent outlines (default False) faspect = Fix aspect ratio if using continents (default=True) terminator = Include the solar terminator by shading the night time regions? (default=False) ''' # Set the latitude limits. For polar plots, latitudes above and below # 90 degrees will cause the routine to fail if plot_type.find("polar") >= 0: (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 else: imin = 0 imax = gdata.attrs['nLat'] # If including the solar terminator, extract the UT date tdt = None if terminator: tdt = gdata['time'] # Format title spec_title = "{:} UT slice".format(gdata['time']) if title: title = "{:s}\n{:s}".format(spec_title, title) else: title = spec_title # Output the figure f = p3g.plot_mult_3D_slices(plot_type, 2, aindex, np.array(gdata['dLat'][:,imin:imax,:]), np.array(gdata['dLon'][:,imin:imax,:]), np.array(gdata[zkey][:,imin:imax,:]), gdata[zkey].attrs['name'], gdata[zkey].attrs['scale'], gdata[zkey].attrs['units'], zmax=zmax, zmin=zmin, zcolor=zcolor, title=title, figname=figname, draw=draw, nlat=nlat, slat=slat, linc=linc, tlon=tlon, data_type=data_type, meq=meq, earth=earth, faspect=faspect, term_datetime=tdt) return f
def gitm_global_3D_snapshot(zkey, gdata, title=None, figname=None, draw=True, aindex=-1, tlon=90, polar_blat=45, rect_blat=45, earth=False, zmax=None, zmin=None, zcolor=None, meq=False, data_type="contour", terminator=False, ml=None, mn=None, ms=None, *args, **kwargs): ''' Creates a map projection plot for the entire globe, seperating the polar and central latitude regions. Input: zkey = key for z variable (ie 'Vertical TEC') gData = gitm bin structure title = plot title figname = file name to save figure as (default is none) draw = output a screen image? (default is True) aindex = altitude index (default -1 if it is a 2D parameter) tlon = longitude at the top of the polar dial (degrees East, default 90) polar_blat = co-latitude of the lower boundary of the polar dials (default 45) rect_blat = Upper bounding co-latitude of the rectangular map (default 45) earth = include Earth continent outlines (default False) zmax = maximum z limit (default None) zmin = minimum z limit (default None) zcolor = Color scale for z variable. If not specified, will be determined by the z range (default=None) meq = Add a line for the geomagnetic equator? (default=False) data_type = Type of plot to make scatter/contour (default=contour) terminator = Include the solar terminator by shading the night time regions? (default=False) ml = Low latitude map handle (default=None) mn = Northern latitude map handle (default=None) ms = Southern latitude map handle (default=None) Output: f = Figure handle ml = Low latitude map handle mn = Northern latitude map handle ms = Southern latitude map handle ''' # Set the altitude and latitude limits. For polar plots, latitudes # Above and below 90 degrees will cause the routine to fail ialt = 0 if aindex > 0: ialt = aindex (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 # If including the solar terminator, extract the UT date tdt = None if terminator: tdt = gdata['time'] # Format title spec_title = "{:} UT".format(gdata['time']) if aindex >= 0: spec_title = "{:s} slice at {:.2f} km".format(spec_title, 1.0e-3 * gdata['Altitude'][0,0, ialt]) if title: title = "{:s}\n{:s}".format(spec_title, title) else: title = spec_title # Output figure fm = p3g.plot_global_3D_snapshot(np.array(gdata['dLat'][:,imin:imax,ialt]), np.array(gdata['dLon'][:,imin:imax,ialt]), np.array(gdata[zkey][:,imin:imax,ialt]), gdata[zkey].attrs['name'], gdata[zkey].attrs['scale'], gdata[zkey].attrs['units'], zmax=zmax, zmin=zmin, zcolor=zcolor, title=title, figname=figname, draw=draw, tlon=tlon, polar_blat=polar_blat, rect_blat=rect_blat, meq=meq, earth=earth, ml=ml, mn=mn, ms=ms, data_type=data_type, term_datetime=tdt) return fm
def gitm_single_nsglobal_3D_image(zkey, gdata, title=None, figname=None, draw=True, aindex=-1, plat=90, elat=0, linc=3, tlon=90, earth=False, zmax=None, zmin=None, zcolor=None, data_type="contour", terminator=False, mn=None, ms=None, *args, **kwargs): ''' Creates a figure with two polar map projections for the northern and southern ends of a specified latitude range. Input: zkey = key for z variable (ie 'Vertical TEC') gdata = gitm bin structure title = plot title figname = file name to save figure as (default is none) draw = draw to screen? (default is True) aindex = altitude index (default -1 if it is a 2D parameter) plat = polar latitude limit (degrees North, default +/-90) elat = equatorial latitude limit (degrees North, defalut 0) linc = number of latitude tick incriments (default 6) tlon = longitude to place on the polar dial top (degrees east, default 90) earth = include Earth continent outlines (default False) zmax = maximum z range (default None) zmin = mininimum z range (default None) zcolor = Color scale for plotting the z data. If not specified, this will be determined by the z range (default=None) data_type = Type of plot to make scatter/contour (default=scatter) terminator = Include the solar terminator by shading the night time regions? (default=False) mn = Northern latitude map handle (default=None) ms = Southern latitude map handle (default=None) Output: f = figure handle mn = Northern latitude map handle ms = Southern latitude map handle ''' # Set the altitude and latitude limits. For polar plots, latitudes # Above and below 90 degrees will cause the routine to fail ialt = 0 if aindex > 0: ialt = aindex (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 # If including the solar terminator, extract the UT date tdt = None if terminator: tdt = gdata['time'] # Format title spec_title = "{:} UT".format(gdata['time']) if aindex >= 0: spec_title = "{:s} slice at {:.2f} km".format(spec_title, 1.0e-3 * gdata['Altitude'][0,0, ialt]) if title: title = "{:s}\n{:s}".format(spec_title, title) else: title = spec_title # Output figure fm = p3g.plot_single_nsglobal_3D_image(np.array(gdata['dLat'][:,imin:imax,ialt]), np.array(gdata['dLon'][:,imin:imax,ialt]), np.array(gdata[zkey][:,imin:imax,ialt]), gdata[zkey].attrs['name'], gdata[zkey].attrs['scale'], gdata[zkey].attrs['units'], zmax=zmax, zmin=zmin, zcolor=zcolor, title=title, figname=figname, draw=draw, plat=plat, elat=elat, linc=linc, tlon=tlon, earth=earth, mn=mn, ms=ms, data_type=data_type, term_datetime=tdt) return fm
#--------------------------------------------- # Determine the limits of each z parameter. To do this we need to open # one of the gitm files for z,zkey in enumerate(zkeys): # Find the index for the specified altitude. This will be the same for # all files, longitudes, and latititudes. aindex = gpr.find_alt_index(gitmbins[0], 1, 1, zalts[z], zunits[z]) zindexes.append(aindex) # Find the indexes for the specified latitude limits. The latitude will # be the same for all files and longitudes. The northern limit will be # the same for all plot types. (nlon,nlat) = gpr.find_lon_lat_index(gitmbins[0], -1.0 , nlimits[z], "degrees") if zplot == "nspolar" or zplot == "snapshot": slimit = -1.0 * nlimits[z] else: slimit = slimits[z] (slon,slat) = gpr.find_lon_lat_index(gitmbins[0], 361.0, slimit, "degrees") # Test to ensure the validity of the indexes if nlat == slat: slat += 1 elif nlat < slat: temp = nlat nlat = slat
def plot_net_gitm_comp(plot_type, lon_data, lat_data, obs_data, obs_name, obs_scale, obs_units, diff_data, diff_name, diff_scale, diff_units, gitm_key, gitm_alt, gdata, gitm_name, diff_max=None, zmax=None, zmin=None, title=None, color=True, bcolor='#747679', data_coff=False, diff_coff=True, figname=None, draw=True, latlim1=90, latlim2=-90, linc=6, tlon=90, meq=False, earth=False, map_list=[], faspect=True, term_datetime=None, extra_lines=False, *args, **kwargs): ''' Creates three plots of a specified type, one showing the observations, one showing the GITM data, and one showing the difference between the two. Input: plot_type = key to determine plot type (rectangular, polar, nsglobal, or snapshot) lon_data = Numpy array with longitude data for matching model-obs points lat_data = Numpy array with latitude data for matching model-obs points obs_data = Numpy array with observational data for matching model-obs points obs_name = Name portion of the observational data label obs_scale = Scale (linear/exponential) for plotting obs. data obs_units = Unit portion of the observational data label diff_data = Numpy array with differences for matching model-obs points gitm_key = Key for the GITM data gitm_alt = Altitude in km to plot the GITM data at. For a 2D variable like hmF2 or TEC, use 0.0 km. gdata = GitmBin structure with model observations. gitm_name = Name portion of the GITM data label diff_max = Maximum value for the difference (absolute value), if None, will be determined in script (default=None) zmin = minimum value for z variable (default=None) zmax = maximum value for z variable (default=None) title = Plot title (default=None) color = Color (True, default) or black and white (False)? bcolor = Background color (default=) data_coff = Center the data color scale about zero (False, default)? diff_coff = Center the diff color scale about zero (True, default)? figname = Output figure name with a .png suffix (default=None) draw = Draw to screen? (default=True) latlim1 = First latitude limit (degrees North, default=90). Purpose varies depending on plot type. For rectangular, this is the northern latitude limit. For polar, this is the latitude at the center of the dial. For snapshot, this is the lower boundary of polar dials. It is not used for nsglobal. latlim2 = Second latitude limit (degrees North, default=-90). Purpose varies depending on plot type. For rectangular, this is the southern latitude limit. For polar, this is the latitude at the edge of the dial. This option is not used with the snapshot or nsglobal option. linc = Number of latitude tick incriments (default=6) tlon = Longitude on top of the polar dial (degrees East, default=90) meq = Add a line for the geomagnetic equator? (default=False) earth = Include continent outlines for Earth (default=False) map_list = List of map handles for the specified plot_type (default=empty list) faspect = Keep a true aspect ratio for maps? (default=True) term_datetime = Include the solar terminator by shading the night time regions? If so, include a datetime object with the UT for this map. Only used if earth=True. extra_lines = Plot a specified lines (good for showing regional boundaries) (default=False). Provide a list of lists which have the format shown: [x np.array, y np.array, style string (eg 'k-')] where x is in degrees longitude and y is in degrees latitude Output: f = handle to figure ''' rout_name = "plot_net_gitm_comp" # Get the desired color bars data_color = gpr.choose_contour_map(color, data_coff) diff_color = gpr.choose_contour_map(color, diff_coff) # Get the altitude index ialt = 0 if gitm_alt > 0.0: ialt = gpr.find_alt_index(gdata, 0, 0, alt, units="km") # Initialize the z variables, if desired. GITM and Observational data # should share the same scale. if (zmin is None): obsmin = np.nanmin(obs_data) gitmin = np.nanmin(gdata[gitm_key][:, :, ialt]) zmin = min(obsmin, gitmin) if (zmax is None): obsmax = np.nanmax(obs_data) gitmax = np.nanmax(gdata[gitm_key][:, :, ialt]) zmax = max(obsmax, gitmax) zran = round((zmax - zmin) / 6.0) if (zran != 0.0): zmin = math.floor(float("{:.14f}".format(zmin / zran))) * zran zmax = math.ceil(float("{:.14f}".format(zmax / zran))) * zran # Set the difference max/min limits, if desired if diff_max is None: diff_max = max(np.nanmax(diff_data), abs(np.nanmin(diff_data))) diff_min = -1.0 * diff_max # Initialize the figure, setting the height for a 3 subfigure stack fwidth = 6 fheight = 12 if (plot_type.find("global") > 0): fwidth *= 1.5 if (plot_type.find("shot") > 0): fwidth *= 1.5 fheight *= 1.5 f = plt.figure(figsize=(fwidth, fheight)) # Plot the three datasets using the desired format if plot_type.find("shot") > 0: if len(map_list) == 3: ml = map_list[0] mn = map_list[1] ms = map_list[2] else: ml = None mn = None ms = None # Output the observations as a scatter plot axl, ml, axn, mn, axs, ms = p3g.plot_snapshot_subfigure( f, 3, 0, lat_data, lon_data, obs_data, obs_name, obs_scale, obs_units, zmax, zmin, data_color, tlon=tlon, blat=latlim1, xl=False, yl=False, xt=False, bcolor=bcolor, meq=meq, earth=earth, ml=ml, mn=mn, ms=ms, faspect=faspect, term_datetime=term_datetime) # Output the gitm data as a contour after ensuring that the GITM array # isn't padded to include unrealistic latitudes (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 p3g.plot_snapshot_subfigure(f, 3, 1, np.array(gdata['dLat'][:, imin:imax, ialt]), np.array(gdata['dLon'][:, imin:imax, ialt]), np.array(gdata[gitm_key][:, imin:imax, ialt]), gitm_name, gdata[gitm_key].attrs["scale"], gdata[gitm_key].attrs["units"], zmax, zmin, data_color, cb=True, cloc="r", tlon=tlon, blat=latlim1, title=False, xl=False, xt=False, bcolor=bcolor, meq=meq, earth=earth, ml=ml, mn=mn, ms=ms, faspect=faspect, data_type="contour", term_datetime=term_datetime) # Output the differences as a scatter plot p3g.plot_snapshot_subfigure(f, 3, 2, lat_data, lon_data, diff_data, diff_name, diff_scale, diff_units, diff_max, diff_min, diff_color, tlon=tlon, blat=latlim1, title=False, yl=False, bcolor=bcolor, meq=meq, earth=earth, ml=ml, mn=mn, ms=ms, faspect=faspect, term_datetime=term_datetime) map_list = list([ml, mn, ms]) elif plot_type.find("nsglobal") >= 0: if len(map_list) == 2: mn = map_list[0] ms = map_list[1] else: mn = None ms = None # Check for boundary lines to plot eline_north = False eline_south = False if type(extra_lines) is list: if len(extra_lines) >= 1: eline_north = extra_lines[0] if len(extra_lines) >= 2: eline_south = extra_lines[1] else: print "Only one boundary provided, plotting in north" else: print "No boundaries provided, better to declare as False" # Output the observations as a scatter plot axn1, mn, axs1, ms = p3g.plot_nsglobal_subfigure( f, 3, 0, lat_data, lon_data, obs_data, obs_name, obs_scale, obs_units, zmax, zmin, data_color, title=True, cb=True, elat=latlim1, tlon=tlon, rl=False, tl=False, bcolor=bcolor, earth=earth, mn=mn, ms=ms, faspect=faspect, term_datetime=term_datetime, extra_line_n=eline_north, extra_line_s=eline_south) # Output the gitm data as a contour after ensuring that the GITM array # isn't padded to include unrealistic latitudes (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 axn2, mn, axs2, ms = p3g.plot_nsglobal_subfigure( f, 3, 1, np.array(gdata['dLat'][:, imin:imax, ialt]), np.array(gdata['dLon'][:, imin:imax, ialt]), np.array(gdata[gitm_key][:, imin:imax, ialt]), gitm_name, gdata[gitm_key].attrs["scale"], gdata[gitm_key].attrs["units"], zmax, zmin, data_color, title=False, cb=True, elat=latlim1, tlon=tlon, tl=False, bcolor=bcolor, earth=earth, mn=mn, ms=ms, data_type="contour", term_datetime=term_datetime, extra_line_n=eline_north, extra_line_s=eline_south) # Output the differences as a scatter plot p3g.plot_nsglobal_subfigure(f, 3, 2, lat_data, lon_data, diff_data, diff_name, diff_scale, diff_units, diff_max, diff_min, diff_color, title=False, cb=True, elat=latlim1, tlon=tlon, rl=False, bcolor=bcolor, earth=earth, mn=mn, ms=ms, faspect=faspect, term_datetime=term_datetime, extra_line_n=eline_north, extra_line_s=eline_south) map_list = list([mn, ms]) elif plot_type.find("rect") >= 0: if len(map_list) == 1: m = map_list[0] else: m = None # Output the observations as a scatter plot ax = f.add_subplot(3, 1, 1) con1, m = p3g.plot_rectangular_3D_global(ax, lat_data, lon_data, obs_data, obs_name, obs_scale, obs_units, zmin, zmax, data_color, nlat=latlim1, slat=latlim2, linc=linc, cloc="r", xl=False, xt=False, yl=False, meq=meq, bcolor=bcolor, earth=earth, m=m, faspect=faspect, term_datetime=term_datetime) # Output the gitm data as a contour ax = f.add_subplot(3, 1, 2) con2, m = p3g.plot_rectangular_3D_global( ax, np.array(gdata['dLat'][:, :, ialt]), np.array(gdata['dLon'][:, :, ialt]), np.array(gdata[gitm_key][:, :, ialt]), gitm_name, gdata[gitm_key].attrs["scale"], gdata[gitm_key].attrs["units"], zmin, zmax, data_color, nlat=latlim1, slat=latlim2, linc=linc, cb=True, cloc="r", xl=False, xt=False, bcolor=bcolor, meq=meq, earth=earth, m=m, faspect=faspect, data_type="contour", term_datetime=term_datetime) # Adjust plot dimensions if necessary if not earth: con1_dim = list(con1.axes.get_position().bounds) con2_dim = list(con2.ax.get_position().bounds) con2_dim[2] = con1_dim[2] con2.ax.set_position(con2_dim) # Output the differences as a scatter plot ax = f.add_subplot(3, 1, 3) p3g.plot_rectangular_3D_global(ax, lat_data, lon_data, diff_data, diff_name, diff_scale, diff_units, diff_min, diff_max, diff_color, nlat=latlim1, slat=latlim2, linc=linc, cloc="r", yl=False, bcolor=bcolor, meq=meq, earth=earth, m=m, faspect=faspect, term_datetime=term_datetime) map_list = list([m]) elif plot_type.find("polar") >= 0: if len(map_list) == 1: m = map_list[0] else: m = None pf = True if earth: pf = False # Output the observations as a scatter plot ax = f.add_subplot(3, 1, 1, polar=pf) con1, m = p3g.plot_polar_3D_global(ax, 3, lat_data, lon_data, obs_data, obs_name, obs_scale, obs_units, zmin, zmax, data_color, center_lat=latlim1, edge_lat=latlim2, linc=linc, top_lon=tlon, cloc="r", tl=False, rl=False, bcolor=bcolor, earth=earth, m=m, faspect=faspect, term_datetime=term_datetime) # Output the gitm data as a contour after ensuring that the GITM # array isn't padded to include unrealistic latitudes ax = f.add_subplot(3, 1, 2, polar=pf) (i, imin) = gpr.find_lon_lat_index(gdata, 0.0, -90.0, "degrees") (i, imax) = gpr.find_lon_lat_index(gdata, 0.0, 90.0, "degrees") imax += 1 con2, m = p3g.plot_polar_3D_global(ax, 3, np.array(gdata['dLat'][:, imin:imax, ialt]), np.array(gdata['dLon'][:, imin:imax, ialt]), np.array(gdata[gitm_key][:, imin:imax, ialt]), gitm_name, gdata[gitm_key].attrs["scale"], gdata[gitm_key].attrs["units"], zmin, zmax, data_color, center_lat=latlim1, edge_lat=latlim2, linc=linc, top_lon=tlon, cb=True, cloc="r", tl=False, bcolor=bcolor, earth=earth, m=m, faspect=faspect, data_type="contour", term_datetime=term_datetime) con1_dim = list(con1.axes.get_position().bounds) con2_dim = list(con2.ax.get_position().bounds) con2_dim[0] = con2_dim[0] - 0.05 con2_dim[2] = con1_dim[2] con2.ax.set_position(con2_dim) # Output the differences as a scatter plot ax = f.add_subplot(3, 1, 3, polar=pf) p3g.plot_polar_3D_global(ax, 3, lat_data, lon_data, diff_data, diff_name, diff_scale, diff_units, diff_min, diff_max, diff_color, center_lat=latlim1, edge_lat=latlim2, linc=linc, top_lon=tlon, cloc="r", rl=False, bcolor=bcolor, earth=earth, m=m, faspect=faspect, term_datetime=term_datetime) map_list = list([m]) else: print rout_name, "ERROR: uknown plot type [", plot_type, "]" return if title: f.suptitle(title, size="medium") # Adjust subplot locations if plot_type.find("rect") >= 0 or plot_type.find("polar") >= 0: plt.subplots_adjust(left=.15) # Draw to screen if desired if draw: if plt.isinteractive(): plt.draw() #In interactive mode, you just "draw". else: # W/o interactive mode, "show" stops the user from typing more # at the terminal until plots are drawn. plt.show() # Save output file if figname is not None: plt.savefig(figname) return (f, map_list)