def __init__(self, dir_path='dataset/data'): self.image_size = tuple((500, 500)) self.features = [] self.image_path_list = [] self.mse_all = [] self.labels = [] #object of feature extractor self.fe_obj = fe.Global_feature_extraction() self.dir_path = dir_path self.lables = os.listdir(dir_path) self.lables.sort()
def __init__(self, csv_path): self.image_size = tuple((500, 500)) self.features = [] self.image_path_list = [] self.mse_all = [] self.labels = [] #object of feature extractor self.fe_obj = fe.Global_feature_extraction() #self.dir_path = dir_path self.csv_path = csv_path self.data = pd.read_csv(csv_path, index_col=0)
#|_________________________| import numpy as np import cv2 import global_feature_extractor as fe import os import glob import pickle as pkl #****************************** hiper parameters image_size = tuple((500, 500)) features = [] image_path_list = [] mse_all = [] labels = [] #object of feature extractor fe_obj = fe.Global_feature_extraction() dir_path = 'dataset/data' lables = os.listdir(dir_path) lables.sort() #****************************** print("\n\n [INFO] successfully loaded hiper parameters ...") # loop over all the labels in the folder count = 1 for i, label in enumerate(lables): cur_path = dir_path + "/" + label count = 1 features = [] labels = [] image_path_list = []