def dummy_result(): """Dummy result for testing.""" model = suite.model model.is_grouped = False model.is_index_dependent = False wanted_parameters = suite.wanted_parameters data = {} for i in range(3): e_axis = getattr(suite, "e_axis" if i == 0 else f"e_axis{i+1}") c_axis = getattr(suite, "c_axis" if i == 0 else f"c_axis{i+1}") data[f"dataset{i+1}"] = simulate( suite.sim_model, f"dataset{i+1}", wanted_parameters, {"e": e_axis, "c": c_axis} ) scheme = Scheme( model=suite.model, parameters=suite.initial_parameters, data=data, maximum_number_function_evaluations=1, ) yield optimize(scheme)
def test_decay_model(suite, nnls): model = suite.model print(model.validate()) assert model.valid() model.dataset_group_models["default"].link_clp = False model.dataset_group_models["default"].method = ( "non_negative_least_squares" if nnls else "variable_projection") wanted_parameters = suite.wanted_parameters print(model.validate(wanted_parameters)) print(wanted_parameters) assert model.valid(wanted_parameters) initial_parameters = suite.initial_parameters print(model.validate(initial_parameters)) assert model.valid(initial_parameters) print(model.markdown(wanted_parameters)) dataset = simulate(model, "dataset1", wanted_parameters, suite.axis) assert dataset.data.shape == (suite.axis["time"].size, suite.axis["spectral"].size) data = {"dataset1": dataset} scheme = Scheme( model=model, parameters=initial_parameters, data=data, maximum_number_function_evaluations=20, ) result = optimize(scheme) print(result.optimized_parameters) for label, param in result.optimized_parameters.all(): assert np.allclose(param.value, wanted_parameters.get(label).value) resultdata = result.data["dataset1"] print(resultdata) assert np.array_equal(dataset["time"], resultdata["time"]) assert np.array_equal(dataset["spectral"], resultdata["spectral"]) assert dataset.data.shape == resultdata.data.shape assert dataset.data.shape == resultdata.fitted_data.shape assert np.allclose(dataset.data, resultdata.fitted_data, rtol=1e-1) assert "species_spectra" in resultdata spectra = resultdata.species_spectra assert "spectral_species" in spectra.coords assert "spectral" in spectra.coords assert spectra.shape == (suite.axis["spectral"].size, 3) assert "species_concentration" in resultdata concentration = resultdata.species_concentration assert "species" in concentration.coords assert "time" in concentration.coords assert concentration.shape == (suite.axis["time"].size, 3)
def test_optimization_full_model(index_dependent): model = FullModel.model model.megacomplex["m1"].is_index_dependent = index_dependent print(model.validate()) assert model.valid() parameters = FullModel.parameters assert model.valid(parameters) dataset = simulate(model, "dataset1", parameters, FullModel.coordinates) scheme = Scheme( model=model, parameters=parameters, data={"dataset1": dataset}, maximum_number_function_evaluations=10, ) result = optimize(scheme, raise_exception=True) assert result.success optimized_scheme = result.get_scheme() assert result.optimized_parameters == optimized_scheme.parameters result_data = result.data["dataset1"] assert "fitted_data" in result_data for label, param in result.optimized_parameters.all(): if param.vary: assert np.allclose(param.value, parameters.get(label).value, rtol=1e-1) clp = result_data.clp print(clp) assert clp.shape == (4, 4) assert all(np.isclose(1.0, c) for c in np.diagonal(clp))
def setup_scheme(model): return Scheme( model=model, parameters=TEST_PARAMETERS, data={ "dataset1": TEST_DATA, "dataset2": TEST_DATA, "dataset3": TEST_DATA, }, )
def test_spectral_model(suite): model = suite.spectral_model print(model.validate()) assert model.valid() wanted_parameters = suite.spectral_parameters print(model.validate(wanted_parameters)) print(wanted_parameters) assert model.valid(wanted_parameters) initial_parameters = suite.spectral_parameters print(model.validate(initial_parameters)) assert model.valid(initial_parameters) print(model.markdown(initial_parameters)) dataset = simulate(model, "dataset1", wanted_parameters, suite.axis, suite.clp) assert dataset.data.shape == (suite.axis["time"].size, suite.axis["spectral"].size) data = {"dataset1": dataset} scheme = Scheme( model=model, parameters=initial_parameters, data=data, maximum_number_function_evaluations=20, ) result = optimize(scheme) print(result.optimized_parameters) for label, param in result.optimized_parameters.all(): assert np.allclose(param.value, wanted_parameters.get(label).value, rtol=1e-1) resultdata = result.data["dataset1"] assert np.array_equal(dataset["time"], resultdata["time"]) assert np.array_equal(dataset["spectral"], resultdata["spectral"]) assert dataset.data.shape == resultdata.data.shape assert dataset.data.shape == resultdata.fitted_data.shape assert np.allclose(dataset.data, resultdata.fitted_data, rtol=1e-2) assert "species_associated_concentrations" in resultdata assert resultdata.species_associated_concentrations.shape == ( suite.axis["time"].size, len(suite.decay_compartments), ) assert "species_spectra" in resultdata assert resultdata.species_spectra.shape == ( suite.axis["spectral"].size, len(suite.decay_compartments), )
def test_scheme_ipython_rendering(mock_scheme: Scheme): """Autorendering in ipython""" rendered_obj = format_display_data(mock_scheme)[0] assert "text/markdown" in rendered_obj assert rendered_obj["text/markdown"].startswith("# Model") rendered_markdown_return = format_display_data(mock_scheme.markdown())[0] assert "text/markdown" in rendered_markdown_return assert rendered_markdown_return["text/markdown"].startswith("# Model")
def test_kinetic_model(suite, nnls): model = suite.model print(model.validate()) assert model.valid() wanted_parameters = suite.wanted_parameters print(model.validate(wanted_parameters)) print(wanted_parameters) assert model.valid(wanted_parameters) initial_parameters = suite.initial_parameters print(model.validate(initial_parameters)) assert model.valid(initial_parameters) print(model.markdown(initial_parameters)) dataset = model.simulate("dataset1", wanted_parameters, suite.axis, suite.clp) assert dataset.data.shape == (suite.axis["time"].size, suite.axis["pixel"].size) data = {"dataset1": dataset} scheme = Scheme( model=model, parameters=initial_parameters, data=data, maximum_number_function_evaluations=20, non_negative_least_squares=nnls, ) result = optimize(scheme) print(result.optimized_parameters) for label, param in result.optimized_parameters.all(): assert np.allclose(param.value, wanted_parameters.get(label).value, rtol=1e-1) resultdata = result.data["dataset1"] assert np.array_equal(dataset["time"], resultdata["time"]) assert np.array_equal(dataset["pixel"], resultdata["pixel"]) assert dataset.data.shape == resultdata.data.shape assert dataset.data.shape == resultdata.fitted_data.shape assert np.allclose(dataset.data, resultdata.fitted_data, rtol=1e-2) assert "species_associated_images" in resultdata assert "decay_associated_images" in resultdata if len(model.irf) != 0: assert "irf" in resultdata
def test_kinetic_model(suite, nnls): model = suite.model print(model.validate()) assert model.valid() model.dataset_group_models["default"].method = ( "non_negative_least_squares" if nnls else "variable_projection") wanted_parameters = suite.wanted_parameters print(model.validate(wanted_parameters)) print(wanted_parameters) assert model.valid(wanted_parameters) initial_parameters = suite.initial_parameters print(model.validate(initial_parameters)) assert model.valid(initial_parameters) print(model.markdown(wanted_parameters)) dataset = simulate(model, "dataset1", wanted_parameters, suite.axis) assert dataset.data.shape == (suite.axis["time"].size, suite.axis["spectral"].size) data = {f"dataset{i}": dataset for i in range(1, 5)} scheme = Scheme( model=model, parameters=initial_parameters, data=data, maximum_number_function_evaluations=20, ) result = optimize(scheme) print(result.optimized_parameters) for label, param in result.optimized_parameters.all(): print(label, param.value, wanted_parameters.get(label).value) assert np.allclose(param.value, wanted_parameters.get(label).value, rtol=1e-1) resultdata = result.data["dataset1"] print(resultdata) assert np.array_equal(dataset["time"], resultdata["time"]) assert np.array_equal(dataset["spectral"], resultdata["spectral"]) assert dataset.data.shape == resultdata.data.shape assert dataset.data.shape == resultdata.fitted_data.shape assert np.allclose(dataset.data, resultdata.fitted_data, rtol=1e-2)
def test_single_dataset(): model = SimpleTestModel.from_dict({ "megacomplex": { "m1": { "is_index_dependent": False } }, "dataset_groups": { "default": { "link_clp": True } }, "dataset": { "dataset1": { "megacomplex": ["m1"], }, }, }) print(model.validate()) assert model.valid() parameters = ParameterGroup.from_list([1, 10]) print(model.validate(parameters)) assert model.valid(parameters) global_axis = [1, 2, 3] model_axis = [5, 7, 9, 12] data = { "dataset1": xr.DataArray(np.ones((3, 4)), coords=[("global", global_axis), ("model", model_axis)]).to_dataset(name="data") } scheme = Scheme(model, parameters, data) optimization_group = OptimizationGroup( scheme, model.get_dataset_groups()["default"]) bag = optimization_group._calculator.bag datasets = optimization_group._calculator.groups assert len(datasets) == 1 assert len(bag) == 3 assert all(p.data.size == 4 for p in bag) assert all(p.dataset_models[0].label == "dataset1" for p in bag) assert all( all(p.dataset_models[0].axis["model"] == model_axis) for p in bag) assert all( all(p.dataset_models[0].axis["global"] == global_axis) for p in bag) assert [p.dataset_models[0].indices["global"] for p in bag] == [0, 1, 2]
def test_doas_model(suite): print(suite.sim_model.validate()) assert suite.sim_model.valid() print(suite.model.validate()) assert suite.model.valid() print(suite.sim_model.validate(suite.wanted_parameter)) assert suite.sim_model.valid(suite.wanted_parameter) print(suite.model.validate(suite.parameter)) assert suite.model.valid(suite.parameter) dataset = simulate(suite.sim_model, "dataset1", suite.wanted_parameter, suite.axis) print(dataset) assert dataset.data.shape == (suite.axis["time"].size, suite.axis["spectral"].size) print(suite.parameter) print(suite.wanted_parameter) data = {"dataset1": dataset} scheme = Scheme( model=suite.model, parameters=suite.parameter, data=data, maximum_number_function_evaluations=20, ) result = optimize(scheme, raise_exception=True) print(result.optimized_parameters) for label, param in result.optimized_parameters.all(): assert np.allclose(param.value, suite.wanted_parameter.get(label).value, rtol=1e-1) resultdata = result.data["dataset1"] assert np.array_equal(dataset["time"], resultdata["time"]) assert np.array_equal(dataset["spectral"], resultdata["spectral"]) assert dataset.data.shape == resultdata.fitted_data.shape assert np.allclose(dataset.data, resultdata.fitted_data) assert "damped_oscillation_cos" in resultdata assert "damped_oscillation_sin" in resultdata assert "damped_oscillation_associated_spectra" in resultdata assert "damped_oscillation_phase" in resultdata
def setup(self, index_dependent, grouped, weight): suite = MultichannelMulticomponentDecay model = suite.model # 0.4.0 API compat model.is_grouped = grouped model.megacomplex["m1"].is_index_dependent = index_dependent sim_model = suite.sim_model suite.sim_model.megacomplex["m1"].is_index_dependent = index_dependent wanted_parameters = suite.wanted_parameters initial_parameters = suite.initial_parameters model.dataset["dataset1"].fill(model, initial_parameters) if hasattr(suite, "global_axis"): axes_dict = { "global": getattr(suite, "global_axis"), "model": getattr(suite, "model_axis"), } else: # 0.4.0 API compat axes_dict = { "e": getattr(suite, "e_axis"), "c": getattr(suite, "c_axis"), } dataset = simulate(sim_model, "dataset1", wanted_parameters, axes_dict) if weight: dataset["weight"] = xr.DataArray( np.ones_like(dataset.data) * 0.5, coords=dataset.data.coords ) data = {"dataset1": dataset} self.scheme = Scheme( model=model, parameters=initial_parameters, data=data, maximum_number_function_evaluations=10, group_tolerance=0.1, optimization_method="TrustRegionReflection", ) # 0.4.0 API compat if hasattr(self.scheme, "group"): self.scheme.group = grouped
def test_spectral_irf(suite): model = suite.model print(model.validate()) assert model.valid() parameters = suite.parameters print(model.validate(parameters)) assert model.valid(parameters) dataset = model.simulate("dataset1", parameters, suite.axis) assert dataset.data.shape == (suite.axis["time"].size, suite.axis["spectral"].size) data = {"dataset1": dataset} scheme = Scheme( model=model, parameters=parameters, data=data, maximum_number_function_evaluations=20, ) result = optimize(scheme) print(result.optimized_parameters) for label, param in result.optimized_parameters.all(): assert np.allclose(param.value, parameters.get(label).value, rtol=1e-1) resultdata = result.data["dataset1"] # print(resultdata) assert np.array_equal(dataset["time"], resultdata["time"]) assert np.array_equal(dataset["spectral"], resultdata["spectral"]) assert dataset.data.shape == resultdata.data.shape assert dataset.data.shape == resultdata.fitted_data.shape assert np.allclose(dataset.data, resultdata.fitted_data, atol=1e-14) irf_max_at_start = resultdata.fitted_data.isel(spectral=0).argmax(axis=0) irf_max_at_end = resultdata.fitted_data.isel(spectral=-1).argmax(axis=0) print(f" irf_max_at_start: {irf_max_at_start}\n irf_max_at_end: {irf_max_at_end}") # These should not be equal due to dispersion: assert irf_max_at_start != irf_max_at_end assert "species_associated_spectra" in resultdata assert "decay_associated_spectra" in resultdata
def test_relations(index_dependent, link_clp): model = deepcopy(suite.model) model.dataset_group_models["default"].link_clp = link_clp model.megacomplex["m1"].is_index_dependent = index_dependent model.clp_relations.append( Relation.from_dict({ "source": "s1", "target": "s2", "parameter": "3" })) parameters = ParameterGroup.from_list([11e-4, 22e-5, 2]) print("link_clp", link_clp, "index_dependent", index_dependent) dataset = simulate( suite.sim_model, "dataset1", parameters, { "global": suite.global_axis, "model": suite.model_axis }, ) scheme = Scheme(model=model, parameters=parameters, data={"dataset1": dataset}) optimization_group = OptimizationGroup( scheme, model.get_dataset_groups()["default"]) if index_dependent: reduced_matrix = (optimization_group.reduced_matrices[0] if link_clp else optimization_group.reduced_matrices["dataset1"][0]) else: reduced_matrix = optimization_group.reduced_matrices["dataset1"] matrix = (optimization_group.matrices["dataset1"][0] if index_dependent else optimization_group.matrices["dataset1"]) result_data = optimization_group.create_result_data() print(result_data) clps = result_data["dataset1"].clp assert "s2" not in reduced_matrix.clp_labels assert "s2" in clps.coords["clp_label"] assert clps.sel(clp_label="s2") == clps.sel(clp_label="s1") * 2 assert "s2" in matrix.clp_labels
def test_save_scheme(tmp_path: Path): save_model(MODEL, tmp_path / "m.yml") save_parameters(PARAMETERS, tmp_path / "p.csv") save_dataset(DATASET, tmp_path / "d.nc") scheme = Scheme( MODEL, PARAMETERS, {"dataset_1": DATASET}, ) scheme_path = tmp_path / "testscheme.yml" save_scheme(file_name=scheme_path, format_name="yml", scheme=scheme) assert scheme_path.is_file() assert scheme_path.read_text() == want loaded = load_scheme(scheme_path) print(loaded.model.validate(loaded.parameters)) assert loaded.model.valid(loaded.parameters) assert isinstance(scheme.data["dataset_1"], xr.Dataset)
def problem(request) -> Problem: model = suite.model model.is_grouped = request.param[0] model.is_index_dependent = request.param[1] dataset = simulate( suite.sim_model, "dataset1", suite.wanted_parameters, { "e": suite.e_axis, "c": suite.c_axis }, ) scheme = Scheme(model=model, parameters=suite.initial_parameters, data={"dataset1": dataset}) return Problem(scheme)
def test_full_model_problem(): dataset = simulate(FullModel.model, "dataset1", FullModel.parameters, FullModel.coordinates) scheme = Scheme(model=FullModel.model, parameters=FullModel.parameters, data={"dataset1": dataset}) optimization_group = OptimizationGroup( scheme, FullModel.model.get_dataset_groups()["default"]) result = optimization_group.create_result_data()["dataset1"] assert "global_matrix" in result assert "global_clp_label" in result clp = result.clp assert clp.shape == (4, 4) print(np.diagonal(clp)) assert all(np.isclose(1.0, c) for c in np.diagonal(clp))
def optimization_group(request) -> OptimizationGroup: model = suite.model model.megacomplex["m1"].is_index_dependent = request.param[1] model.is_index_dependent = request.param[1] model.dataset_group_models["default"].link_clp = request.param[0] dataset = simulate( suite.sim_model, "dataset1", suite.wanted_parameters, { "global": suite.global_axis, "model": suite.model_axis }, ) scheme = Scheme(model=model, parameters=suite.initial_parameters, data={"dataset1": dataset}) return OptimizationGroup(scheme, model.get_dataset_groups()["default"])
def test_penalties(index_dependent, link_clp): model = deepcopy(suite.model) model.dataset_group_models["default"].link_clp = link_clp model.megacomplex["m1"].is_index_dependent = index_dependent model.clp_area_penalties.append( EqualAreaPenalty.from_dict({ "source": "s1", "source_intervals": [(1, 20)], "target": "s2", "target_intervals": [(20, 45)], "parameter": "3", "weight": 10, })) parameters = ParameterGroup.from_list([11e-4, 22e-5, 2]) global_axis = np.arange(50) print(f"{link_clp=}\n{index_dependent=}") dataset = simulate( suite.sim_model, "dataset1", parameters, { "global": global_axis, "model": suite.model_axis }, ) scheme = Scheme(model=model, parameters=parameters, data={"dataset1": dataset}) optimization_group = OptimizationGroup( scheme, model.get_dataset_groups()["default"]) assert isinstance(optimization_group.additional_penalty, np.ndarray) assert optimization_group.additional_penalty.size == 1 assert optimization_group.additional_penalty[0] != 0 assert isinstance(optimization_group.full_penalty, np.ndarray) assert (optimization_group.full_penalty.size == (suite.model_axis.size * global_axis.size) + optimization_group.additional_penalty.size)
def save_scheme( scheme: Scheme, file_name: StrOrPath, format_name: str = None, *, allow_overwrite: bool = False, update_source_path: bool = True, **kwargs: Any, ) -> None: """Save a :class:`Scheme` instance to a spec file. Parameters ---------- scheme : Scheme :class:`Scheme` instance to save to specs file. file_name : StrOrPath File to write the scheme specs to. format_name : str Format the file should be in, if not provided it will be inferred from the file extension. allow_overwrite : bool Whether or not to allow overwriting existing files, by default False update_source_path: bool Whether or not to update the ``source_path`` attribute to ``file_name`` when saving. by default True **kwargs : Any Additional keyword arguments passes to the ``save_scheme`` implementation of the project io plugin. """ protect_from_overwrite(file_name, allow_overwrite=allow_overwrite) io = get_project_io(format_name or inferr_file_format(file_name, needs_to_exist=False)) io.save_scheme( # type: ignore[call-arg] file_name=Path(file_name).as_posix(), scheme=scheme, **kwargs, ) if update_source_path is True: scheme.source_path = Path(file_name).as_posix()
def test_optimization(suite, is_index_dependent, link_clp, weight, method): model = suite.model model.megacomplex["m1"].is_index_dependent = is_index_dependent print("Link CLP:", link_clp) print("Index dependent:", is_index_dependent) sim_model = suite.sim_model sim_model.megacomplex["m1"].is_index_dependent = is_index_dependent print(model.validate()) assert model.valid() print(sim_model.validate()) assert sim_model.valid() wanted_parameters = suite.wanted_parameters print(wanted_parameters) print(sim_model.validate(wanted_parameters)) assert sim_model.valid(wanted_parameters) initial_parameters = suite.initial_parameters print(initial_parameters) print(model.validate(initial_parameters)) assert model.valid(initial_parameters) assert ( model.dataset["dataset1"].fill(model, initial_parameters).is_index_dependent() == is_index_dependent ) nr_datasets = 3 if issubclass(suite, ThreeDatasetDecay) else 1 data = {} for i in range(nr_datasets): global_axis = getattr(suite, "global_axis" if i == 0 else f"global_axis{i+1}") model_axis = getattr(suite, "model_axis" if i == 0 else f"model_axis{i+1}") dataset = simulate( sim_model, f"dataset{i+1}", wanted_parameters, {"global": global_axis, "model": model_axis}, ) print(f"Dataset {i+1}") print("=============") print(dataset) if hasattr(suite, "scale"): dataset["data"] /= suite.scale if weight: dataset["weight"] = xr.DataArray( np.ones_like(dataset.data) * 0.5, coords=dataset.data.coords ) assert dataset.data.shape == (model_axis.size, global_axis.size) data[f"dataset{i+1}"] = dataset scheme = Scheme( model=model, parameters=initial_parameters, data=data, maximum_number_function_evaluations=10, clp_link_tolerance=0.1, optimization_method=method, ) model.dataset_group_models["default"].link_clp = link_clp result = optimize(scheme, raise_exception=True) print(result.optimized_parameters) assert result.success optimized_scheme = result.get_scheme() assert result.optimized_parameters == optimized_scheme.parameters for dataset in optimized_scheme.data.values(): assert "fitted_data" not in dataset if weight: assert "weight" in dataset for label, param in result.optimized_parameters.all(): if param.vary: assert np.allclose(param.value, wanted_parameters.get(label).value, rtol=1e-1) for i, dataset in enumerate(data.values()): resultdata = result.data[f"dataset{i+1}"] print(f"Result Data {i+1}") print("=================") print(resultdata) assert "residual" in resultdata assert "residual_left_singular_vectors" in resultdata assert "residual_right_singular_vectors" in resultdata assert "residual_singular_values" in resultdata assert np.array_equal(dataset.coords["model"], resultdata.coords["model"]) assert np.array_equal(dataset.coords["global"], resultdata.coords["global"]) assert dataset.data.shape == resultdata.data.shape print(dataset.data[0, 0], resultdata.data[0, 0]) assert np.allclose(dataset.data, resultdata.data) if weight: assert "weight" in resultdata assert "weighted_residual" in resultdata assert "weighted_residual_left_singular_vectors" in resultdata assert "weighted_residual_right_singular_vectors" in resultdata assert "weighted_residual_singular_values" in resultdata
def test_spectral_constraint(): model = KineticSpectrumModel.from_dict({ "initial_concentration": { "j1": { "compartments": ["s1", "s2"], "parameters": ["i.1", "i.2"], }, }, "megacomplex": { "mc1": { "k_matrix": ["k1"] }, }, "k_matrix": { "k1": { "matrix": { ("s2", "s1"): "kinetic.1", ("s2", "s2"): "kinetic.2", } } }, "spectral_constraints": [ { "type": "zero", "compartment": "s2", "interval": (float("-inf"), float("inf")) }, ], "dataset": { "dataset1": { "initial_concentration": "j1", "megacomplex": ["mc1"], }, }, }) print(model) wanted_parameters = ParameterGroup.from_dict({ "kinetic": [1e-4, 1e-5], "i": [1, 2], }) initial_parameters = ParameterGroup.from_dict({ "kinetic": [2e-4, 2e-5], "i": [1, 2, { "vary": False }], }) time = np.asarray(np.arange(0, 50, 1.5)) dataset = model.dataset["dataset1"].fill(model, wanted_parameters) compartments, matrix = kinetic_image_matrix(dataset, time, 0) assert len(compartments) == 2 assert matrix.shape == (time.size, 2) reduced_compartments, reduced_matrix = apply_spectral_constraints( model, compartments, matrix, 1) print(reduced_matrix) assert len(reduced_compartments) == 1 assert reduced_matrix.shape == (time.size, 1) reduced_compartments, reduced_matrix = model.constrain_matrix_function( "dataset1", wanted_parameters, compartments, matrix, 1) assert reduced_matrix.shape == (time.size, 1) clp = xr.DataArray([[1.0, 10.0, 20.0, 1]], coords=(("spectral", [1]), ("clp_label", ["s1", "s2", "s3", "s4"]))) data = model.simulate("dataset1", wanted_parameters, clp=clp, axes={ "time": time, "spectral": np.array([1]) }) dataset = {"dataset1": data} scheme = Scheme( model=model, parameters=initial_parameters, data=dataset, maximum_number_function_evaluations=20, ) # the resulting jacobian is singular with pytest.warns(UserWarning): result = optimize(scheme) result_data = result.data["dataset1"] print(result_data.clp_label) print(result_data.clp) # TODO: save reduced clp # assert result_data.clp.shape == (1, 1) print(result_data.species_associated_spectra) assert result_data.species_associated_spectra.shape == (1, 2) assert result_data.species_associated_spectra[0, 1] == 0
def test_multi_dataset_overlap(): model = SimpleTestModel.from_dict({ "megacomplex": { "m1": { "is_index_dependent": False } }, "dataset_groups": { "default": { "link_clp": True } }, "dataset": { "dataset1": { "megacomplex": ["m1"], }, "dataset2": { "megacomplex": ["m1"], }, }, }) model.grouped = lambda: True print(model.validate()) assert model.valid() assert model.grouped() parameters = ParameterGroup.from_list([1, 10]) print(model.validate(parameters)) assert model.valid(parameters) global_axis_1 = [1, 2, 3, 5] model_axis_1 = [5, 7] global_axis_2 = [0, 1.4, 2.4, 3.4, 9] model_axis_2 = [5, 7, 9, 12] data = { "dataset1": xr.DataArray(np.ones((4, 2)), coords=[("global", global_axis_1), ("model", model_axis_1)]).to_dataset(name="data"), "dataset2": xr.DataArray(np.ones((5, 4)), coords=[("global", global_axis_2), ("model", model_axis_2)]).to_dataset(name="data"), } scheme = Scheme(model, parameters, data, clp_link_tolerance=5e-1) optimization_group = OptimizationGroup( scheme, model.get_dataset_groups()["default"]) bag = list(optimization_group._calculator.bag) assert len(optimization_group._calculator.groups) == 3 assert "dataset1dataset2" in optimization_group._calculator.groups assert optimization_group._calculator.groups["dataset1dataset2"] == [ "dataset1", "dataset2" ] assert len(bag) == 6 assert all(p.data.size == 4 for p in bag[:1]) assert all(p.dataset_models[0].label == "dataset1" for p in bag[1:5]) assert all( all(p.dataset_models[0].axis["model"] == model_axis_1) for p in bag[1:5]) assert all( all(p.dataset_models[0].axis["global"] == global_axis_1) for p in bag[1:5]) assert [p.dataset_models[0].indices["global"] for p in bag[1:5]] == [0, 1, 2, 3] assert all(p.data.size == 6 for p in bag[1:4]) assert all(p.dataset_models[1].label == "dataset2" for p in bag[1:4]) assert all( all(p.dataset_models[1].axis["model"] == model_axis_2) for p in bag[1:4]) assert all( all(p.dataset_models[1].axis["global"] == global_axis_2) for p in bag[1:4]) assert [p.dataset_models[1].indices["global"] for p in bag[1:4]] == [1, 2, 3] assert all(p.data.size == 4 for p in bag[5:]) assert bag[4].dataset_models[0].label == "dataset1" assert bag[5].dataset_models[0].label == "dataset2" assert np.array_equal(bag[4].dataset_models[0].axis["model"], model_axis_1) assert np.array_equal(bag[5].dataset_models[0].axis["model"], model_axis_2) assert [p.dataset_models[0].indices["global"] for p in bag[1:4]] == [0, 1, 2]
def test_equal_area_penalties(debug=False): # %% optim_spec = OptimizationSpec(nnls=True, max_nfev=999) noise_spec = NoiseSpec(active=True, seed=1, std_dev=1e-8) wavelengths = np.arange(650, 670, 2) time_p1 = np.linspace(-1, 2, 50, endpoint=False) time_p2 = np.linspace(2, 10, 30, endpoint=False) time_p3 = np.geomspace(10, 50, num=20) times = np.concatenate([time_p1, time_p2, time_p3]) irf_loc = float(times[20]) irf_width = float((times[1] - times[0]) * 10) irf = IrfSpec(irf_loc, irf_width) amplitude = 1 location1 = float(wavelengths[2]) # 2 location2 = float(wavelengths[-3]) # -3 width1 = float((wavelengths[1] - wavelengths[0]) * 5) width2 = float((wavelengths[1] - wavelengths[0]) * 3) shape1 = ShapeSpec(amplitude, location1, width1) shape2 = ShapeSpec(amplitude, location2, width2) dataset_spec = DatasetSpec(times, wavelengths, irf, [shape1, shape2]) wavelengths = dataset_spec.wavelengths equ_interval = [(min(wavelengths), max(wavelengths))] weight = 0.01 # %% The base model specification (mspec) base = { "initial_concentration": { "j1": { "compartments": ["s1", "s2"], "parameters": ["i.1", "i.2"], }, }, "megacomplex": { "mc1": {"k_matrix": ["k1"]}, }, "k_matrix": { "k1": { "matrix": { ("s1", "s1"): "kinetic.1", ("s2", "s2"): "kinetic.2", } } }, "irf": { "irf1": {"type": "gaussian", "center": "irf.center", "width": "irf.width"}, }, "dataset": { "dataset1": { "initial_concentration": "j1", "megacomplex": ["mc1"], "irf": "irf1", }, }, } shape = { "shape": { "sh1": { "type": "gaussian", "amplitude": "shapes.amps.1", "location": "shapes.locs.1", "width": "shapes.width.1", }, "sh2": { "type": "gaussian", "amplitude": "shapes.amps.2", "location": "shapes.locs.2", "width": "shapes.width.2", }, } } dataset_shape = { "shape": { "s1": "sh1", "s2": "sh2", } } equ_area = { "equal_area_penalties": [ { "source": "s1", "target": "s2", "parameter": "rela.1", "source_intervals": equ_interval, "target_intervals": equ_interval, "weight": weight, }, ], } mspec = ModelSpec(base, shape, dataset_shape, equ_area) rela = 1.0 # relation between areas irf = dataset_spec.irf [sh1, sh2] = dataset_spec.shapes pspec_base = { "kinetic": [1e-1, 5e-3], "i": [0.5, 0.5, {"vary": False}], "irf": [["center", irf.location], ["width", irf.width]], } pspec_equa_area = { "rela": [rela, {"vary": False}], } pspec_shape = { "shapes": { "amps": [sh1.amplitude, sh2.amplitude], "locs": [sh1.location, sh2.location], "width": [sh1.width, sh2.width], }, } pspec = ParameterSpec(pspec_base, pspec_equa_area, pspec_shape) # derivates: mspec_sim = dict(deepcopy(mspec.base), **mspec.shape) mspec_sim["dataset"]["dataset1"].update(mspec.dataset_shape) mspec_fit_wp = dict(deepcopy(mspec.base), **mspec.equ_area) mspec_fit_np = dict(deepcopy(mspec.base)) model_sim = KineticSpectrumModel.from_dict(mspec_sim) model_wp = KineticSpectrumModel.from_dict(mspec_fit_wp) model_np = KineticSpectrumModel.from_dict(mspec_fit_np) print(model_np) # %% Parameter specification (pspec) pspec_sim = dict(deepcopy(pspec.base), **pspec.shapes) param_sim = ParameterGroup.from_dict(pspec_sim) # For the wp model we create two version of the parameter specification # One has all inputs fixed, the other has all but the first free # for both we perturb kinetic parameters a bit to give the optimizer some work pspec_wp = dict(deepcopy(pspec.base), **pspec.equal_area) pspec_wp["kinetic"] = [v * 1.01 for v in pspec_wp["kinetic"]] pspec_wp.update({"i": [[1, {"vary": False}], 1]}) pspec_np = dict(deepcopy(pspec.base)) param_wp = ParameterGroup.from_dict(pspec_wp) param_np = ParameterGroup.from_dict(pspec_np) # %% Print models with parameters print(model_sim.markdown(param_sim)) print(model_wp.markdown(param_wp)) print(model_np.markdown(param_np)) # %% simulated_data = model_sim.simulate( "dataset1", param_sim, axes={"time": times, "spectral": wavelengths}, noise=noise_spec.active, noise_std_dev=noise_spec.std_dev, noise_seed=noise_spec.seed, ) # %% simulated_data = prepare_time_trace_dataset(simulated_data) # make a copy to keep an intact reference data = deepcopy(simulated_data) # %% Optimizing model without penalty (np) dataset = {"dataset1": data} scheme_np = Scheme( model=model_np, parameters=param_np, data=dataset, non_negative_least_squares=optim_spec.nnls, maximum_number_function_evaluations=optim_spec.max_nfev, ) result_np = optimize(scheme_np) print(result_np) # %% Optimizing model with penalty fixed inputs (wp_ifix) scheme_wp = Scheme( model=model_wp, parameters=param_wp, data=dataset, non_negative_least_squares=optim_spec.nnls, maximum_number_function_evaluations=optim_spec.max_nfev, ) result_wp = optimize(scheme_wp) print(result_wp) if debug: # %% Plot results plt_spec = importlib.util.find_spec("matplotlib") if plt_spec is not None: import matplotlib.pyplot as plt plot_overview(result_np.data["dataset1"], "no penalties") plot_overview(result_wp.data["dataset1"], "with penalties") plt.show() # %% Test calculation print(result_wp.data["dataset1"]) area1_np = np.sum(result_np.data["dataset1"].species_associated_spectra.sel(species="s1")) area2_np = np.sum(result_np.data["dataset1"].species_associated_spectra.sel(species="s2")) assert not np.isclose(area1_np, area2_np) area1_wp = np.sum(result_wp.data["dataset1"].species_associated_spectra.sel(species="s1")) area2_wp = np.sum(result_wp.data["dataset1"].species_associated_spectra.sel(species="s2")) assert np.isclose(area1_wp, area2_wp) input_ratio = result_wp.optimized_parameters.get("i.1") / result_wp.optimized_parameters.get( "i.2" ) assert np.isclose(input_ratio, 1.5038858115)
def test_coherent_artifact(): model_dict = { "initial_concentration": { "j1": { "compartments": ["s1"], "parameters": ["2"] }, }, "megacomplex": { "mc1": { "k_matrix": ["k1"] }, }, "k_matrix": { "k1": { "matrix": { ("s1", "s1"): "1", } } }, "irf": { "irf1": { "type": "gaussian-coherent-artifact", "center": "2", "width": "3", "coherent_artifact_order": 3, }, }, "dataset": { "dataset1": { "initial_concentration": "j1", "megacomplex": ["mc1"], "irf": "irf1", }, }, } model = KineticSpectrumModel.from_dict(model_dict.copy()) parameters = ParameterGroup.from_list([ 101e-4, [10, { "vary": False, "non-negative": False }], [20, { "vary": False, "non-negative": False }], [30, { "vary": False, "non-negative": False }], ]) time = np.asarray(np.arange(0, 50, 1.5)) irf = model.irf["irf1"].fill(model, parameters) irf_same_width = irf.calculate_coherent_artifact(time) model_dict["irf"]["irf1"]["coherent_artifact_width"] = "4" model = KineticSpectrumModel.from_dict(model_dict) irf = model.irf["irf1"].fill(model, parameters) irf_diff_width = irf.calculate_coherent_artifact(time) assert np.array_equal(irf_same_width[0], irf_diff_width[0]) # labels the same assert not np.array_equal(irf_same_width[1], irf_diff_width[1]) # but content is not data = model.dataset["dataset1"].fill(model, parameters) compartments, matrix = kinetic_spectrum_matrix(data, time, 0) assert len(compartments) == 4 for i in range(1, 4): assert compartments[i] == f"coherent_artifact_{i}" assert matrix.shape == (time.size, 4) clp = xr.DataArray( [[1, 1, 1, 1]], coords=[ ("spectral", [0]), ( "clp_label", [ "s1", "coherent_artifact_1", "coherent_artifact_2", "coherent_artifact_3", ], ), ], ) axis = {"time": time, "spectral": clp.spectral} data = model.simulate("dataset1", parameters, axis, clp) dataset = {"dataset1": data} scheme = Scheme(model=model, parameters=parameters, data=dataset, maximum_number_function_evaluations=20) result = optimize(scheme) print(result.optimized_parameters) for label, param in result.optimized_parameters.all(): assert np.allclose(param.value, parameters.get(label).value, rtol=1e-1) resultdata = result.data["dataset1"] assert np.array_equal(data.time, resultdata.time) assert np.array_equal(data.spectral, resultdata.spectral) assert data.data.shape == resultdata.data.shape assert data.data.shape == resultdata.fitted_data.shape assert np.allclose(data.data, resultdata.fitted_data, rtol=1e-2) assert "coherent_artifact_concentration" in resultdata assert resultdata["coherent_artifact_concentration"].shape == (time.size, 3) assert "coherent_artifact_associated_spectra" in resultdata assert resultdata["coherent_artifact_associated_spectra"].shape == (1, 3)
def test_multiple_groups(): wanted_parameters = ParameterGroup.from_list([101e-4]) initial_parameters = ParameterGroup.from_list([100e-5]) global_axis = np.asarray([1.0]) model_axis = np.arange(0, 150, 1.5) sim_model_dict = { "megacomplex": { "m1": { "is_index_dependent": False }, "m2": { "type": "global_complex" } }, "dataset": { "dataset1": { "initial_concentration": [], "megacomplex": ["m1"], "global_megacomplex": ["m2"], "kinetic": ["1"], } }, } sim_model = DecayModel.from_dict(sim_model_dict) model_dict = { "dataset_groups": { "g1": {}, "g2": { "residual_function": "non_negative_least_squares" } }, "megacomplex": { "m1": { "is_index_dependent": False } }, "dataset": { "dataset1": { "group": "g1", "initial_concentration": [], "megacomplex": ["m1"], "kinetic": ["1"], }, "dataset2": { "group": "g2", "initial_concentration": [], "megacomplex": ["m1"], "kinetic": ["1"], }, }, } model = DecayModel.from_dict(model_dict) dataset = simulate( sim_model, "dataset1", wanted_parameters, { "global": global_axis, "model": model_axis }, ) scheme = Scheme( model=model, parameters=initial_parameters, data={ "dataset1": dataset, "dataset2": dataset }, maximum_number_function_evaluations=10, clp_link_tolerance=0.1, ) result = optimize(scheme, raise_exception=True) print(result.optimized_parameters) assert result.success for label, param in result.optimized_parameters.all(): if param.vary: assert np.allclose(param.value, wanted_parameters.get(label).value, rtol=1e-1)
def test_coherent_artifact(spectral_dependence: str): model_dict = { "initial_concentration": { "j1": {"compartments": ["s1"], "parameters": ["irf_center"]}, }, "megacomplex": { "mc1": {"type": "decay", "k_matrix": ["k1"]}, "mc2": {"type": "coherent-artifact", "order": 3}, }, "k_matrix": { "k1": { "matrix": { ("s1", "s1"): "rate", } } }, "irf": { "irf1": { "type": "spectral-multi-gaussian", "center": ["irf_center"], "width": ["irf_width"], }, }, "dataset": { "dataset1": { "initial_concentration": "j1", "megacomplex": ["mc1", "mc2"], "irf": "irf1", }, }, } parameter_list = [ ["rate", 101e-4], ["irf_center", 10, {"vary": False, "non-negative": False}], ["irf_width", 20, {"vary": False, "non-negative": False}], ] irf_spec = model_dict["irf"]["irf1"] if spectral_dependence == "dispersed": irf_spec["dispersion_center"] = "irf_dispc" irf_spec["center_dispersion"] = ["irf_disp1", "irf_disp2"] parameter_list += [ ["irf_dispc", 300, {"vary": False, "non-negative": False}], ["irf_disp1", 0.01, {"vary": False, "non-negative": False}], ["irf_disp2", 0.001, {"vary": False, "non-negative": False}], ] elif spectral_dependence == "shifted": irf_spec["shift"] = ["irf_shift1", "irf_shift2", "irf_shift3"] parameter_list += [ ["irf_shift1", -2], ["irf_shift2", 0], ["irf_shift3", 2], ] model = Model.from_dict( model_dict.copy(), megacomplex_types={ "decay": DecayMegacomplex, "coherent-artifact": CoherentArtifactMegacomplex, }, ) parameters = ParameterGroup.from_list(parameter_list) time = np.arange(0, 50, 1.5) spectral = np.asarray([200, 300, 400]) coords = {"time": time, "spectral": spectral} dataset_model = model.dataset["dataset1"].fill(model, parameters) dataset_model.overwrite_global_dimension("spectral") dataset_model.set_coordinates(coords) matrix = calculate_matrix(dataset_model, {"spectral": 1}) compartments = matrix.clp_labels print(compartments) assert len(compartments) == 4 for i in range(1, 4): assert compartments[i] == f"coherent_artifact_{i}" assert matrix.matrix.shape == (time.size, 4) clp = xr.DataArray( np.ones((3, 4)), coords=[ ("spectral", spectral), ( "clp_label", [ "s1", "coherent_artifact_1", "coherent_artifact_2", "coherent_artifact_3", ], ), ], ) axis = {"time": time, "spectral": clp.spectral} data = simulate(model, "dataset1", parameters, axis, clp) dataset = {"dataset1": data} scheme = Scheme( model=model, parameters=parameters, data=dataset, maximum_number_function_evaluations=20 ) result = optimize(scheme) print(result.optimized_parameters) for label, param in result.optimized_parameters.all(): assert np.allclose(param.value, parameters.get(label).value, rtol=1e-8) resultdata = result.data["dataset1"] assert np.array_equal(data.time, resultdata.time) assert np.array_equal(data.spectral, resultdata.spectral) assert data.data.shape == resultdata.data.shape assert data.data.shape == resultdata.fitted_data.shape assert np.allclose(data.data, resultdata.fitted_data) assert "coherent_artifact_response" in resultdata if spectral_dependence == "none": assert resultdata["coherent_artifact_response"].shape == (time.size, 3) else: assert resultdata["coherent_artifact_response"].shape == (spectral.size, time.size, 3) assert "coherent_artifact_associated_spectra" in resultdata assert resultdata["coherent_artifact_associated_spectra"].shape == (3, 3)
SIMULATION_MODEL_YML = generate_model_yml( generator_name="spectral_decay_parallel", generator_arguments={ "nr_compartments": 3, "irf": True }, ) SIMULATION_MODEL = load_model(SIMULATION_MODEL_YML, format_name="yml_str") MODEL_YML = generate_model_yml( generator_name="decay_parallel", generator_arguments={ "nr_compartments": 3, "irf": True }, ) MODEL = load_model(MODEL_YML, format_name="yml_str") DATASET = simulate( SIMULATION_MODEL, "dataset_1", SIMULATION_PARAMETERS, SIMULATION_COORDINATES, noise=True, noise_std_dev=1e-2, ) SCHEME = Scheme(model=MODEL, parameters=PARAMETERS, data={"dataset_1": DATASET})
def test_spectral_relation(): model = KineticSpectrumModel.from_dict({ "initial_concentration": { "j1": { "compartments": ["s1", "s2", "s3", "s4"], "parameters": ["i.1", "i.2", "i.3", "i.4"], }, }, "megacomplex": { "mc1": { "k_matrix": ["k1"] }, }, "k_matrix": { "k1": { "matrix": { ("s1", "s1"): "kinetic.1", ("s2", "s2"): "kinetic.1", ("s3", "s3"): "kinetic.1", ("s4", "s4"): "kinetic.1", } } }, "spectral_relations": [ { "compartment": "s1", "target": "s2", "parameter": "rel.1", "interval": [(0, 2)], }, { "compartment": "s1", "target": "s3", "parameter": "rel.2", "interval": [(0, 2)], }, ], "dataset": { "dataset1": { "initial_concentration": "j1", "megacomplex": ["mc1"], }, }, }) print(model) rel1, rel2 = 10, 20 parameters = ParameterGroup.from_dict({ "kinetic": [1e-4], "i": [1, 2, 3, 4], "rel": [rel1, rel2], }) time = np.asarray(np.arange(0, 50, 1.5)) dataset = model.dataset["dataset1"].fill(model, parameters) compartments, matrix = kinetic_image_matrix(dataset, time, 0) assert len(compartments) == 4 assert matrix.shape == (time.size, 4) reduced_compartments, relation_matrix = create_spectral_relation_matrix( model, "dataset1", parameters, compartments, matrix, 1) print(relation_matrix) assert len(reduced_compartments) == 2 assert relation_matrix.shape == (4, 2) assert np.array_equal( relation_matrix, [ [1.0, 0.0], [10.0, 0.0], [20.0, 0.0], [0.0, 1.0], ], ) reduced_compartments, reduced_matrix = model.constrain_matrix_function( "dataset1", parameters, compartments, matrix, 1) assert reduced_matrix.shape == (time.size, 2) print(reduced_matrix[0, 0], matrix[0, 0], matrix[0, 1], matrix[0, 2]) assert np.allclose( reduced_matrix[:, 0], matrix[:, 0] + rel1 * matrix[:, 1] + rel2 * matrix[:, 2]) clp = xr.DataArray([[1.0, 10.0, 20.0, 1]], coords=(("spectral", [1]), ("clp_label", ["s1", "s2", "s3", "s4"]))) data = model.simulate("dataset1", parameters, clp=clp, axes={ "time": time, "spectral": np.array([1]) }) dataset = {"dataset1": data} scheme = Scheme(model=model, parameters=parameters, data=dataset, maximum_number_function_evaluations=20) result = optimize(scheme) for label, param in result.optimized_parameters.all(): if param.vary: assert np.allclose(param.value, parameters.get(label).value, rtol=1e-1) result_data = result.data["dataset1"] print(result_data.species_associated_spectra) assert result_data.species_associated_spectra.shape == (1, 4) assert (result_data.species_associated_spectra[0, 1] == rel1 * result_data.species_associated_spectra[0, 0]) assert np.allclose( result_data.species_associated_spectra[0, 2].values, rel2 * result_data.species_associated_spectra[0, 0].values, )
def test_spectral_irf(suite): model = suite.model assert model.valid(), model.validate() parameters = suite.parameters assert model.valid(parameters), model.validate(parameters) sim_model = deepcopy(model) sim_model.dataset["dataset1"].global_megacomplex = ["mc2"] dataset = simulate(sim_model, "dataset1", parameters, suite.axis) assert dataset.data.shape == (suite.axis["time"].size, suite.axis["spectral"].size) data = {"dataset1": dataset} scheme = Scheme( model=model, parameters=parameters, data=data, maximum_number_function_evaluations=20, ) result = optimize(scheme) for label, param in result.optimized_parameters.all(): assert np.allclose(param.value, parameters.get(label).value), dedent(f""" Error in {suite.__name__} comparing {param.full_label}, - diff={param.value-parameters.get(label).value} """) resultdata = result.data["dataset1"] # print(resultdata) assert np.array_equal(dataset["time"], resultdata["time"]) assert np.array_equal(dataset["spectral"], resultdata["spectral"]) assert dataset.data.shape == resultdata.data.shape assert dataset.data.shape == resultdata.fitted_data.shape # assert np.allclose(dataset.data, resultdata.fitted_data, atol=1e-14) fit_data_max_at_start = resultdata.fitted_data.isel(spectral=0).argmax( axis=0) fit_data_max_at_end = resultdata.fitted_data.isel(spectral=-1).argmax( axis=0) if suite is NoIrfDispersion: assert "center_dispersion_1" not in resultdata assert fit_data_max_at_start == fit_data_max_at_end else: assert "center_dispersion_1" in resultdata assert fit_data_max_at_start != fit_data_max_at_end if abs(fit_data_max_at_start - fit_data_max_at_end) < 3: warnings.warn( dedent(""" Bad test, one of the following could be the case: - dispersion too small - spectral window to small - time resolution (around the maximum of the IRF) too low" """)) for x in suite.axis["spectral"]: # calculated irf location model_irf_center = suite.model.irf["irf1"].center model_dispersion_center = suite.model.irf["irf1"].dispersion_center model_center_dispersion_coefficients = suite.model.irf[ "irf1"].center_dispersion_coefficients calc_irf_location_at_x = _calculate_irf_position( x, model_irf_center, model_dispersion_center, model_center_dispersion_coefficients) # fitted irf location fitted_irf_loc_at_x = resultdata["irf_center_location"].sel( spectral=x) assert np.allclose(calc_irf_location_at_x, fitted_irf_loc_at_x.values), dedent(f""" Error in {suite.__name__} comparing irf_center_location, - diff={calc_irf_location_at_x-fitted_irf_loc_at_x.values} """) assert "species_associated_spectra" in resultdata assert "decay_associated_spectra" in resultdata assert "irf_center" in resultdata
def test_multi_dataset_no_overlap(): model = SimpleTestModel.from_dict({ "megacomplex": { "m1": { "is_index_dependent": False } }, "dataset_groups": { "default": { "link_clp": True } }, "dataset": { "dataset1": { "megacomplex": ["m1"], }, "dataset2": { "megacomplex": ["m1"], }, }, }) model.grouped = lambda: True print(model.validate()) assert model.valid() assert model.grouped() parameters = ParameterGroup.from_list([1, 10]) print(model.validate(parameters)) assert model.valid(parameters) global_axis_1 = [1, 2, 3] model_axis_1 = [5, 7] global_axis_2 = [4, 5, 6] model_axis_2 = [5, 7, 9] data = { "dataset1": xr.DataArray(np.ones((3, 2)), coords=[("global", global_axis_1), ("model", model_axis_1)]).to_dataset(name="data"), "dataset2": xr.DataArray(np.ones((3, 3)), coords=[("global", global_axis_2), ("model", model_axis_2)]).to_dataset(name="data"), } scheme = Scheme(model, parameters, data) optimization_group = OptimizationGroup( scheme, model.get_dataset_groups()["default"]) bag = list(optimization_group._calculator.bag) assert len(optimization_group._calculator.groups) == 2 assert len(bag) == 6 assert all(p.data.size == 2 for p in bag[:3]) assert all(p.dataset_models[0].label == "dataset1" for p in bag[:3]) assert all( all(p.dataset_models[0].axis["model"] == model_axis_1) for p in bag[:3]) assert all( all(p.dataset_models[0].axis["global"] == global_axis_1) for p in bag[:3]) assert [p.dataset_models[0].indices["global"] for p in bag[:3]] == [0, 1, 2] assert all(p.data.size == 3 for p in bag[3:]) assert all(p.dataset_models[0].label == "dataset2" for p in bag[3:]) assert all( all(p.dataset_models[0].axis["model"] == model_axis_2) for p in bag[3:]) assert all( all(p.dataset_models[0].axis["global"] == global_axis_2) for p in bag[3:]) assert [p.dataset_models[0].indices["global"] for p in bag[3:]] == [0, 1, 2]