def test_frcnn_estimator(): from gluoncv.auto.estimators import FasterRCNNEstimator est = FasterRCNNEstimator({'train': {'epochs': 1}, 'gpus': list(range(get_gpu_count()))}) OBJECT_DETECTION_TRAIN_MINI, OBJECT_DETECTION_VAL_MINI, OBJECT_DETECTION_TEST_MINI = OBJECT_DETECTION_TRAIN.random_split( val_size=0.3, test_size=0.2) res = est.fit(OBJECT_DETECTION_TRAIN_MINI) assert res.get('valid_map', 0) > 0 test_result = est.predict(OBJECT_DETECTION_TEST_MINI) est.predict(OBJECT_DETECTION_TEST.iloc[0]['image']) with Image.open(OBJECT_DETECTION_TEST.iloc[0]['image']) as pil_image: est.predict(pil_image) evaluate_result = est.evaluate(OBJECT_DETECTION_VAL_MINI) # test save/load _save_load_test(est, 'frcnn.pkl')
def test_frcnn_estimator(): from gluoncv.auto.estimators import FasterRCNNEstimator est = FasterRCNNEstimator({'train': {'epochs': 1}, 'gpus': list(range(get_gpu_count()))}) res = est.fit(OBJECT_DETCTION_DATASET) assert res.get('valid_map', 0) > 0 _, _, test_data = OBJECT_DETCTION_DATASET.random_split() test_result = est.predict(test_data) evaluate_result = est.evaluate(test_data)
def test_frcnn_estimator(): from gluoncv.auto.estimators import FasterRCNNEstimator est = FasterRCNNEstimator({ 'train': { 'epochs': 1 }, 'gpus': list(range(get_gpu_count())) }) OBJECT_DETECTION_TRAIN_MINI, OBJECT_DETECTION_VAL_MINI, OBJECT_DETECTION_TEST_MINI = OBJECT_DETECTION_TRAIN.random_split( val_size=0.3, test_size=0.2) res = est.fit(OBJECT_DETECTION_TRAIN_MINI) assert res.get('valid_map', 0) > 0 test_result = est.predict(OBJECT_DETECTION_TEST_MINI) evaluate_result = est.evaluate(OBJECT_DETECTION_VAL_MINI)