예제 #1
0
def test_ssd_estimator():
    from gluoncv.auto.estimators import SSDEstimator
    est = SSDEstimator({'train': {'epochs': 1, 'batch_size': 8}, 'gpus': list(range(get_gpu_count()))})
    res = est.fit(OBJECT_DETCTION_DATASET)
    assert res.get('valid_map', 0) > 0
    _, _, test_data = OBJECT_DETCTION_DATASET.random_split()
    test_result = est.predict(test_data)
    evaluate_result = est.evaluate(test_data)
예제 #2
0
def test_ssd_estimator():
    from gluoncv.auto.estimators import SSDEstimator
    est = SSDEstimator({
        'train': {
            'epochs': 1,
            'batch_size': 8
        },
        'gpus': list(range(get_gpu_count()))
    })
    res = est.fit(OBJECT_DETCTION_DATASET)
    assert res.get('valid_map', 0) > 0
예제 #3
0
def test_ssd_estimator():
    from gluoncv.auto.estimators import SSDEstimator
    est = SSDEstimator({
        'train': {
            'epochs': 1,
            'batch_size': 8
        },
        'gpus': list(range(get_gpu_count()))
    })
    res = est.fit(OBJECT_DETECTION_TRAIN)
    assert res.get('valid_map', 0) > 0
    test_result = est.predict(OBJECT_DETECTION_TEST)
    evaluate_result = est.evaluate(OBJECT_DETECTION_VAL)
예제 #4
0
def test_ssd_estimator():
    from gluoncv.auto.estimators import SSDEstimator
    est = SSDEstimator({'train': {'epochs': 1, 'batch_size': 8}, 'gpus': list(range(get_gpu_count()))})
    res = est.fit(OBJECT_DETECTION_TRAIN)
    assert res.get('valid_map', 0) > 0
    test_result = est.predict(OBJECT_DETECTION_TEST)
    est.predict(OBJECT_DETECTION_TEST.iloc[0]['image'])
    with Image.open(OBJECT_DETECTION_TEST.iloc[0]['image']) as pil_image:
        est.predict(pil_image)
    evaluate_result = est.evaluate(OBJECT_DETECTION_VAL)
    # test save/load
    est2 = _save_load_test(est, 'ssd.pkl')
    evaluate_result2 = est2.evaluate(OBJECT_DETECTION_VAL)
    np.testing.assert_array_equal(evaluate_result, evaluate_result2, err_msg=f'{evaluate_result} != \n {evaluate_result2}')
예제 #5
0
from gluoncv.auto.tasks.utils import config_to_nested
from d8.object_detection import Dataset

if __name__ == '__main__':
    # specify hyperparameters
    config = {
        'dataset': 'sheep',
        'gpus': [0, 1, 2, 3, 4, 5, 6, 7],
        'estimator': 'ssd',
        'base_network': 'resnet50_v1',
        'data_shape': 512,
        'batch_size': 64,  # range [8, 16, 32, 64]
        'epochs': 3
    }
    config = config_to_nested(config)
    config.pop('estimator')

    # specify dataset
    dataset = Dataset.get('sheep')
    train_data, valid_data = dataset.split(0.8)

    # specify estimator
    estimator = SSDEstimator(config)

    # fit estimator
    estimator.fit(train_data, valid_data)

    # evaluate auto estimator
    eval_map = estimator.evaluate(valid_data)
    logging.info('evaluation: mAP={}'.format(eval_map[-1][-1]))