ax = fig.add_subplot(1, 1, 1) ax = viz.plot_bbox(train_image, bboxes, labels=cids, class_names=train_dataset.classes, ax=ax) plt.show() ############################################################################## # To actually see the object segmentation, we need to convert polygons to masks import numpy as np from gluoncv.data.transforms import mask as tmask width, height = train_image.shape[1], train_image.shape[0] train_masks = np.stack( [tmask.to_mask(polys, (width, height)) for polys in train_segm]) plt_image = viz.plot_mask(train_image, train_masks) ############################################################################## # Now plot the image with boxes, labels and masks fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(1, 1, 1) ax = viz.plot_bbox(plt_image, bboxes, labels=cids, class_names=train_dataset.classes, ax=ax) plt.show() ############################################################################## # Data transforms, i.e. decoding and transformation, are identical to Faster R-CNN
############################################################################## # Plot the image with boxes and labels: from matplotlib import pyplot as plt from gluoncv.utils import viz fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(1, 1, 1) ax = viz.plot_bbox(train_image, bboxes, labels=cids, class_names=train_dataset.classes, ax=ax) plt.show() ############################################################################## # To actually see the object segmentation, we need to convert polygons to masks import numpy as np from gluoncv.data.transforms import mask as tmask width, height = train_image.shape[1], train_image.shape[0] train_masks = np.stack([tmask.to_mask(polys, (width, height)) for polys in train_segm]) plt_image = viz.plot_mask(train_image, train_masks) ############################################################################## # Now plot the image with boxes, labels and masks fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(1, 1, 1) ax = viz.plot_bbox(plt_image, bboxes, labels=cids, class_names=train_dataset.classes, ax=ax) plt.show() ############################################################################## # Data transforms, i.e. decoding and transformation, are identical to Faster R-CNN # with the exception of segmentation polygons as an additional input. # :py:class:`gluoncv.data.transforms.presets.rcnn.MaskRCNNDefaultTrainTransform` # converts the segmentation polygons to binary segmentation mask. # :py:class:`gluoncv.data.transforms.presets.rcnn.MaskRCNNDefaultValTransform`