예제 #1
0
    def __init__(self,
                 label,
                 classes=None,
                 augmentation=None,
                 preprocessing=None):
        self.gluoncv_dataset = CitySegmentation(split=label)
        self.images_fps = self.gluoncv_dataset.images
        self.masks_fps = self.gluoncv_dataset.mask_paths

        # convert str names to class values on masks
        self.class_values = [
            self.CLASSES.index(cls.lower()) for cls in classes
        ]

        self.augmentation = augmentation
        self.preprocessing = preprocessing
import numpy as np
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, ReLU, BatchNormalization, Softmax, UpSampling2D
from gluoncv.data import CitySegmentation

train_dataset = CitySegmentation(split='train')
val_dataset = CitySegmentation(split='val')

train_examples = len(train_dataset)
val_examples = len(val_dataset)

#####################


def model_add(model, layers):
    for l in layers:
        model.add(l)


#####################
'''
x_train, y_train = zip(*train_dataset)
x_val, y_val = zip(*val_dataset)
'''
'''
count = 0
x_train = []; y_train = []
for (x, y) in train_dataset:
    print (count)
예제 #3
0
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

import numpy as np
import mxnet as mx
import tensorflow as tf
import keras
import queue
import threading

from gluoncv.data import CitySegmentation

from lib.SegNet import SegNet

####################################

train_dataset = CitySegmentation(split='train')
train_examples = len(train_dataset)

val_dataset = CitySegmentation(split='val')
val_examples = len(val_dataset)

batch_size = 5
epochs = 10

train_dataset_np = train_dataset.asnumpy()

####################################


def fill_queue(d, q):
    ii = 0