def test_albert_backbone(static_alloc, static_shape, compute_layout): batch_size = 3 cfg = get_test_cfg() cfg.defrost() cfg.MODEL.compute_layout = compute_layout cfg.freeze() model = AlbertModel.from_cfg(cfg, use_pooler=True) model.initialize() model.hybridize(static_alloc=static_alloc, static_shape=static_shape) cfg_tn = cfg.clone() cfg_tn.defrost() cfg_tn.MODEL.layout = 'TN' cfg_tn.freeze() model_tn = AlbertModel.from_cfg(cfg_tn, use_pooler=True) model_tn.share_parameters(model.collect_params()) model_tn.hybridize(static_alloc=static_alloc, static_shape=static_shape) for seq_length in [64, 96]: valid_length = mx.np.random.randint(seq_length // 2, seq_length, (batch_size, )) inputs = mx.np.random.randint(0, cfg.MODEL.vocab_size, (batch_size, seq_length)) token_types = mx.np.random.randint(0, cfg.MODEL.num_token_types, (batch_size, seq_length)) contextual_embedding, pooled_out = model(inputs, token_types, valid_length) contextual_embedding_tn, pooled_out_tn = model_tn( inputs.T, token_types.T, valid_length) # Verify layout assert_allclose(np.swapaxes(contextual_embedding_tn.asnumpy(), 0, 1), contextual_embedding.asnumpy(), 1E-4, 1E-4) assert_allclose(pooled_out_tn.asnumpy(), pooled_out.asnumpy(), 1E-4, 1E-4) assert contextual_embedding.shape == (batch_size, seq_length, cfg.MODEL.units) assert pooled_out.shape == (batch_size, cfg.MODEL.units) # Ensure the embeddings that exceed valid_length are masked contextual_embedding_np = contextual_embedding.asnumpy() pooled_out_np = pooled_out.asnumpy() for i in range(batch_size): ele_valid_length = valid_length[i].asnumpy() assert_allclose( contextual_embedding_np[i, ele_valid_length:], np.zeros_like(contextual_embedding_np[i, ele_valid_length:]), 1E-5, 1E-5) # Ensure that the content are correctly masked new_inputs = mx.np.concatenate([inputs, inputs[:, :5]], axis=-1) new_token_types = mx.np.concatenate([token_types, token_types[:, :5]], axis=-1) new_contextual_embedding, new_pooled_out = \ model(new_inputs, new_token_types, valid_length) new_contextual_embedding_np = new_contextual_embedding.asnumpy() new_pooled_out_np = new_pooled_out.asnumpy() for i in range(batch_size): ele_valid_length = valid_length[i].asnumpy() assert_allclose(new_contextual_embedding_np[i, :ele_valid_length], contextual_embedding_np[i, :ele_valid_length], 1E-5, 1E-5) assert_allclose(new_pooled_out_np, pooled_out_np, 1E-4, 1E-4)
def test_albert_get_pretrained(model_name): assert len(list_pretrained_albert()) > 0 with tempfile.TemporaryDirectory() as root: cfg, tokenizer, backbone_params_path, mlm_params_path =\ get_pretrained_albert(model_name, load_backbone=True, load_mlm=True, root=root) assert cfg.MODEL.vocab_size == len(tokenizer.vocab) albert_model = AlbertModel.from_cfg(cfg) albert_model.load_parameters(backbone_params_path) albert_mlm_model = AlbertForMLM(cfg) if mlm_params_path is not None: albert_mlm_model.load_parameters(mlm_params_path) # Just load the backbone albert_mlm_model = AlbertForMLM(cfg) albert_mlm_model.backbone_model.load_parameters(backbone_params_path)
def convert_tf_config(json_cfg_path, vocab_size, model_type): """Convert the config file""" with open(json_cfg_path, encoding='utf-8') as f: json_cfg = json.load(f) if model_type == 'bert': # For bert model, the config file are copied from local configuration file # leaving the vocab_size indistinguishable. Actually, the verification of # vocab_size would be done in the process of embedding weights conversion. cfg = BertModel.get_cfg().clone() elif model_type == 'albert': assert vocab_size == json_cfg['vocab_size'] cfg = AlbertModel.get_cfg().clone() else: raise NotImplementedError cfg.defrost() cfg.MODEL.vocab_size = vocab_size cfg.MODEL.units = json_cfg['hidden_size'] cfg.MODEL.hidden_size = json_cfg['intermediate_size'] cfg.MODEL.max_length = json_cfg['max_position_embeddings'] cfg.MODEL.num_heads = json_cfg['num_attention_heads'] cfg.MODEL.num_layers = json_cfg['num_hidden_layers'] cfg.MODEL.pos_embed_type = 'learned' if json_cfg['hidden_act'] == 'gelu': cfg.MODEL.activation = 'gelu(tanh)' else: cfg.MODEL.activation = json_cfg['hidden_act'] cfg.MODEL.layer_norm_eps = 1E-12 cfg.MODEL.num_token_types = json_cfg['type_vocab_size'] cfg.MODEL.hidden_dropout_prob = float(json_cfg['hidden_dropout_prob']) cfg.MODEL.attention_dropout_prob = float( json_cfg['attention_probs_dropout_prob']) cfg.MODEL.dtype = 'float32' cfg.INITIALIZER.weight = ['truncnorm', 0, json_cfg['initializer_range'] ] # TruncNorm(0, 0.02) cfg.INITIALIZER.bias = ['zeros'] cfg.VERSION = 1 if model_type == 'albert': # The below configurations are not supported in bert cfg.MODEL.embed_size = json_cfg['embedding_size'] cfg.MODEL.num_groups = json_cfg['num_hidden_groups'] cfg.freeze() return cfg
def get_test_cfg(): vocab_size = 500 num_token_types = 3 num_layers = 3 num_heads = 2 units = 64 hidden_size = 96 hidden_dropout_prob = 0.0 attention_dropout_prob = 0.0 cfg = AlbertModel.get_cfg().clone() cfg.defrost() cfg.MODEL.vocab_size = vocab_size cfg.MODEL.num_token_types = num_token_types cfg.MODEL.units = units cfg.MODEL.hidden_size = hidden_size cfg.MODEL.num_heads = num_heads cfg.MODEL.num_layers = num_layers cfg.MODEL.hidden_dropout_prob = hidden_dropout_prob cfg.MODEL.attention_dropout_prob = attention_dropout_prob return cfg