def __init__(self, dataset: Dataset, *, transform: Transformation, is_train: bool, batch_size: int, ctx: mx.Context, dtype: DType = np.float32, cyclic: bool = False, num_workers: Optional[int] = None, num_prefetch: Optional[int] = None, **kwargs) -> None: self.batch_size = batch_size self.ctx = ctx self.dtype = dtype self.is_train = is_train self.transform = transform self.cyclic = cyclic self.parallel_data_loader = ParallelDataLoader( dataset=dataset, transformation=self.transform, cyclic=self.cyclic, is_train=self.is_train, batch_size=self.batch_size, ctx=ctx, dtype=self.dtype, num_workers=num_workers, num_prefetch=num_prefetch, **kwargs, )
def __init__( self, dataset: Dataset, *, transform: Transformation, cyclic: bool, is_train: bool, batch_size: int, ctx: mx.Context, dtype: DType = np.float32, num_workers: Optional[int] = None, num_prefetch: Optional[int] = None, shuffle_buffer_length: Optional[int] = None, **kwargs, ) -> None: self.batch_size = batch_size self.ctx = ctx self.dtype = dtype self.is_train = is_train self.transform = transform self.cyclic = cyclic self.logger = logging.getLogger(__name__) if num_workers is not None and num_workers > mp.cpu_count(): self.logger.warning( f"num_workers is set to {num_workers}, but there are only {mp.cpu_count()} cpus " f"please reduce the number of workers" ) self.num_workers = num_workers self.num_prefetch = num_prefetch self.shuffle_buffer_length = shuffle_buffer_length self.parallel_data_loader = ParallelDataLoader( dataset=dataset, transformation=self.transform, cyclic=self.cyclic, is_train=self.is_train, batch_size=self.batch_size, ctx=self.ctx, dtype=self.dtype, num_workers=self.num_workers, num_prefetch=self.num_prefetch, shuffle_buffer_length=self.shuffle_buffer_length, **kwargs, )
def __init__( self, dataset: Dataset, *, transform: Transformation, cyclic: bool, is_train: bool, batch_size: int, ctx: mx.Context, dtype: DType = np.float32, num_workers: Optional[int] = None, num_prefetch: Optional[int] = None, shuffle_buffer_length: Optional[int] = None, **kwargs, ) -> None: self.batch_size = batch_size self.ctx = ctx self.dtype = dtype self.is_train = is_train self.transform = transform self.cyclic = cyclic self.logger = logging.getLogger(__name__) self.num_workers = num_workers self.num_prefetch = num_prefetch self.shuffle_buffer_length = shuffle_buffer_length self.parallel_data_loader = ParallelDataLoader( dataset=dataset, transformation=self.transform, cyclic=self.cyclic, is_train=self.is_train, batch_size=self.batch_size, ctx=self.ctx, dtype=self.dtype, num_workers=self.num_workers, num_prefetch=self.num_prefetch, shuffle_buffer_length=self.shuffle_buffer_length, **kwargs, )