def __init__( self, input_names: List[str], prediction_net: BlockType, batch_size: int, prediction_length: int, freq: str, ctx: mx.Context, input_transform: Transformation, lead_time: int = 0, forecast_generator: ForecastGenerator = SampleForecastGenerator(), output_transform: Optional[OutputTransform] = None, dtype: DType = np.float32, ) -> None: super().__init__( freq=freq, lead_time=lead_time, prediction_length=prediction_length, ) self.input_names = input_names self.prediction_net = prediction_net self.batch_size = batch_size self.input_transform = input_transform self.forecast_generator = forecast_generator self.output_transform = output_transform self.ctx = ctx self.dtype = dtype
def __init__( self, prediction_net: BlockType, batch_size: int, prediction_length: int, freq: str, ctx: mx.Context, input_transform: Transformation, lead_time: int = 0, forecast_generator: ForecastGenerator = SampleForecastGenerator(), output_transform: Optional[Callable[[DataEntry, np.ndarray], np.ndarray]] = None, dtype: DType = np.float32, ) -> None: super().__init__( input_names=get_hybrid_forward_input_names(prediction_net), prediction_net=prediction_net, batch_size=batch_size, prediction_length=prediction_length, freq=freq, ctx=ctx, input_transform=input_transform, lead_time=lead_time, forecast_generator=forecast_generator, output_transform=output_transform, dtype=dtype, )
def __init__( self, prediction_net: BlockType, batch_size: int, prediction_length: int, freq: str, ctx: mx.Context, input_transform: Transformation, input_names: Optional[List[str]] = None, lead_time: int = 0, forecast_generator: ForecastGenerator = SampleForecastGenerator(), output_transform: Optional[ Callable[[DataEntry, np.ndarray], np.ndarray]] = DeepRenewalProcessSampleOutputTransform(), dtype: Type = np.float32, ) -> None: super().__init__( prediction_net=prediction_net, batch_size=batch_size, prediction_length=prediction_length, freq=freq, ctx=ctx, input_transform=input_transform, lead_time=lead_time, forecast_generator=forecast_generator, output_transform=output_transform, dtype=dtype, ) if input_names is not None: self.input_names = input_names
def __init__( self, input_names: List[str], prediction_net: nn.Module, batch_size: int, prediction_length: int, freq: str, device: torch.device, input_transform: Transformation, forecast_generator: SampleForecastGenerator = SampleForecastGenerator(), output_transform: Optional[OutputTransform] = None, ) -> None: super().__init__(prediction_length, freq) self.input_names = input_names self.prediction_net = prediction_net self.batch_size = batch_size self.input_transform = input_transform self.forecast_generator = forecast_generator self.output_transform = output_transform self.device = device
def __init__( self, input_names: List[str], prediction_net: nn.Module, batch_size: int, prediction_length: int, freq: str, input_transform: Transformation, forecast_generator: ForecastGenerator = SampleForecastGenerator(), output_transform: Optional[OutputTransform] = None, lead_time: int = 0, device: Optional[torch.device] = torch.device("cpu"), ) -> None: super().__init__(prediction_length, freq=freq, lead_time=lead_time) self.input_names = input_names self.prediction_net = prediction_net.to(device) self.batch_size = batch_size self.input_transform = input_transform self.forecast_generator = forecast_generator self.output_transform = output_transform self.device = device