예제 #1
0
파일: misc.py 프로젝트: jmikulka/hpni
def set_precision(number):
    """
    Set the global gmpy2 precision.

    Set the global precision for all gmpy2 computations and numbers in current
    context. The gmpy2 precision is a bit width of stored numbers and it is
    approximately 3 to 5 bits per digits (take 5 bits per digits into account).

    Parameters
    ----------
    number : int or str
        Global gmpy2 precision in number of displayed digits.

    Raises
    ------
    error.PrecisionError
        If `precision` has not acceptable format for precision.

    """

    try:
        gmpy2.get_context().precision = 5 * int(number)
        debug("gmpy2 precision: {} bits".format(gmpy2.get_context().precision))
    except:
        raise error.PrecisionError
예제 #2
0
def N(value, prec=6):
    pre_prec = gmp.get_context().precision
    adj_prec = int((prec * (gmp.log(2) + gmp.log(5))) / gmp.log(2))
    gmp.get_context().precision = adj_prec
    try:
        x, y = getattr(value, 'numerator'), getattr(value, 'denominator')
        return x / y
    except AttributeError:
        return value
예제 #3
0
 def compute(self):
     gmpy2.get_context().precision = self.precision
     x = mpfr(self.threshold)
     ceilx = gmpy2.next_above(x)
     gmpy2.get_context().precision = 53
     ceilx = (x + ceilx) / 2
     X = UniformDistr(self.lowerbound, self.upperbound)
     self.error_prob = (X.get_piecewise_pdf().integrate(
         x, ceilx)) / (X.get_piecewise_pdf().integrate(x, self.upperbound))
예제 #4
0
 def compute(self):
     gmpy2.get_context().precision = self.precision
     x = mpfr(self.threshold)
     ceilx = gmpy2.next_above(x)
     floorx = gmpy2.next_below(x)
     gmpy2.get_context().precision = 53
     ceilx = (x + ceilx) / 2
     floorx = (floorx + x) / 2
     X = UniformDistr(self.lowerbound1, self.upperbound1)
     Y = UniformDistr(self.lowerbound2, self.upperbound2)
     Z = X + Y
     self.error_prob = (((ceilx - x) / (ceilx - floorx)) *
                        Z.get_piecewise_pdf().integrate(x, ceilx))
예제 #5
0
    def factorization(n, delta):
        gmpy2.get_context().precision = 1000000
        t = gmpy2.mpz(gmpy2.sqrt(n))
        res = gmpy2.mpfr('0.0', 1000000)
        steps = delta - t
        print "Steps: %d" % steps

        while True:

            res = gmpy2.sqrt(t**2 - n)

            if gmpy2.is_integer(res):
                break
            if res >= n / 2:
                sys.stderr.write('I can\'t solve')
                exit()

            t += 1
            steps -= 1
            if steps % 1000 == 0:
                print steps

        p = t - gmpy2.mpz(res)
        q = n / p

        return {'p': int(q), 'q': int(p)}
예제 #6
0
    def test1(self,n,p,prec,matrix_type,method):
        '''
        check the quality of tridiagonalization.
        '''
        if p==2:
            assert(method=='qr' or method=='sqrtm')
        else:
            assert(method=='qr')
        if prec is not None:
            gmpy2.get_context().precision=prec
        assert(matrix_type in ['array','sparse','mpc'])

        v0=self.gen_randv0(n,p,matrix_type='array')
        H0=self.gen_randomH(n,p,matrix_type=matrix_type)
        if p is not None:
            if method=='qr':
                data,offset=tridiagonalize_qr(H0,q=v0,prec=prec)
            else:
                data,offset=tridiagonalize2(H0,q=v0,prec=prec)
        else:
            data,offset=tridiagonalize(H0,q=v0,prec=prec)
        B=construct_tridmat(data,offset).toarray()
        if sps.issparse(H0):
            H0=H0.toarray()
        H0=complex128(H0)
        e1=eigvalsh(H0)
        e2=eigvalsh(B)
        assert_allclose(e1,e2)
예제 #7
0
    def factorization(n, delta):
        gmpy2.get_context().precision=1000000
        t = gmpy2.mpz(gmpy2.sqrt(n))
        res = gmpy2.mpfr('0.0', 1000000)
        steps = delta-t
        print "Steps: %d" % steps

        while True:

            res = gmpy2.sqrt(t**2 - n)

            if gmpy2.is_integer(res):
                break
            if res >= n/2:
                sys.stderr.write('I can\'t solve')
                exit()

            t += 1
            steps -= 1
            if steps % 1000 == 0:
                print steps

        p = t - gmpy2.mpz(res)
        q = n/p

        return {
            'p': int(q),
            'q': int(p)
        }
예제 #8
0
파일: PyPi.py 프로젝트: wxv/PiCalc
def chudnovsky(digits):
    # 20 safety digits because lots of calculations (only about 3 are needed)
    scale = 10**(mpz(digits+20))  

    gmpy2.get_context().precision = int(math.log2(10) * (digits + 20)) 
    
    k = mpz(1)
    a_k = scale
    a_sum = scale
    b_sum = mpz(0)
    C = mpz(640320)
    C_cubed_over_24 = C**3 // 24
    
    while True:
        a_k *= -(6*k-5) * (2*k-1) * (6*k-1)
        a_k //= k**3 * C_cubed_over_24
        a_sum += a_k
        b_sum += k * a_k
        k += 1
        if a_k == 0:
            break
    
    total_sum = mpfr(13591409 * a_sum + 545140134 * b_sum)
    pi = (426880 * gmpy2.sqrt(mpfr(10005))) / total_sum
 
    return pi*scale
예제 #9
0
def modulus_inutilis():
    n = 17258212916191948536348548470938004244269544560039009244721959293554822498047075403658429865201816363311805874117705688359853941515579440852166618074161313773416434156467811969628473425365608002907061241714688204565170146117869742910273064909154666642642308154422770994836108669814632309362483307560217924183202838588431342622551598499747369771295105890359290073146330677383341121242366368309126850094371525078749496850520075015636716490087482193603562501577348571256210991732071282478547626856068209192987351212490642903450263288650415552403935705444809043563866466823492258216747445926536608548665086042098252335883
    e = 3
    ct = 243251053617903760309941844835411292373350655973075480264001352919865180151222189820473358411037759381328642957324889519192337152355302808400638052620580409813222660643570085177957
    gmpy2.get_context().precision = 1000
    plaintext = int(gmpy2.cbrt(ct))
    return trans(plaintext)
예제 #10
0
    def get_snapped_noise(self):
        """
        Generates noise for Snapping Mechanism

        See section 5.2 of Mironov (2012) for the definition of the snapping mechanism implemented below.
        """
        gmpy2.get_context().precision = self.precision

        # scale mechanism input by sensitivity
        mechanism_input_scaled = self.mechanism_input / self.sensitivity

        # generate random sign and draw from Unif(0,1)
        sign = gmpy2.mpfr(
            2 * secrets.randbits(1) - 1
        )  # using mpfr precision here, even though it's an integer, so that the
        # precision carries through in later steps
        u_star_sample = self._sample_from_uniform()
        inner_result = self._clamp(mechanism_input_scaled, self._B_scaled) + (
            sign * 1 / self.epsilon_prime * crlibm.log_rn(u_star_sample))

        # perform rounding/snapping
        inner_result_rounded = self._get_closest_multiple_of_Lambda(
            inner_result, self._m)
        private_estimate = self._clamp(
            self.sensitivity * inner_result_rounded,
            self.B)  # put private estimate back on original scale
        snapped_noise = private_estimate - self.mechanism_input

        return (snapped_noise)
예제 #11
0
def aks_test(n):
    """
    Implement the AKS primality test.
    """
    get_context().precision = bit_length(n)
    # Check if n is a perfect power. If so, return composite.
    if is_power(n):
        return "composite"

    # Find the smallest r such that the multiplicative order of n modulo r
    # is greater than log(n, 2)^2
    r = get_r(n)

    # If 1 < gcd(a, n) < n for some a <= r, return composite
    for a in range(1, r):
        if gcd(a, n) > 1 and gcd(a, n) < n:
            return "composite"

    # If n <= r, return prime
    if n <= r:
        return "prime"

    # Check if (x + a)^n mod (x^r - 1, n) != (x^n + a) mod (x^r - 1, n)
    if False in ray.get([
            is_congruent.remote(a, n, r)
            for a in range(1, mpz(floor(sqrt(phi(r)) * log2(n))))
    ]):
        return "composite"

    return "prime"
def solve_first(N):
  gmpy2.get_context().precision = 1000
  Nsqrt = gmpy2.sqrt(N)
  A = gmpy2.mpz(gmpy2.rint_ceil(Nsqrt))
  A2 = A*A
  x = gmpy2.isqrt(A2 - N)
  print "#1 ----> P is: " + str(A-x)
예제 #13
0
def _ptwise_vals_equal(mp_val, np_val, epsilon):
    """Pointwise value comparison"""
    ptwise_diff = abs(mp_val - mpfr(np_val))
    if epsilon == None:
        P = gmpy2.get_context().precision
        epsilon = mpfr("0b" + "0" * P + "1")
    return ptwise_diff < epsilon
예제 #14
0
def legendre_symbol():
    p = 101524035174539890485408575671085261788758965189060164484385690801466167356667036677932998889725476582421738788500738738503134356158197247473850273565349249573867251280253564698939768700489401960767007716413932851838937641880157263936985954881657889497583485535527613578457628399173971810541670838543309159139
    ints = [
        25081841204695904475894082974192007718642931811040324543182130088804239047149283334700530600468528298920930150221871666297194395061462592781551275161695411167049544771049769000895119729307495913024360169904315078028798025169985966732789207320203861858234048872508633514498384390497048416012928086480326832803,
        45471765180330439060504647480621449634904192839383897212809808339619841633826534856109999027962620381874878086991125854247108359699799913776917227058286090426484548349388138935504299609200377899052716663351188664096302672712078508601311725863678223874157861163196340391008634419348573975841578359355931590555,
        17364140182001694956465593533200623738590196990236340894554145562517924989208719245429557645254953527658049246737589538280332010533027062477684237933221198639948938784244510469138826808187365678322547992099715229218615475923754896960363138890331502811292427146595752813297603265829581292183917027983351121325,
        14388109104985808487337749876058284426747816961971581447380608277949200244660381570568531129775053684256071819837294436069133592772543582735985855506250660938574234958754211349215293281645205354069970790155237033436065434572020652955666855773232074749487007626050323967496732359278657193580493324467258802863,
        4379499308310772821004090447650785095356643590411706358119239166662089428685562719233435615196994728767593223519226235062647670077854687031681041462632566890129595506430188602238753450337691441293042716909901692570971955078924699306873191983953501093343423248482960643055943413031768521782634679536276233318,
        85256449776780591202928235662805033201684571648990042997557084658000067050672130152734911919581661523957075992761662315262685030115255938352540032297113615687815976039390537716707854569980516690246592112936796917504034711418465442893323439490171095447109457355598873230115172636184525449905022174536414781771,
        50576597458517451578431293746926099486388286246142012476814190030935689430726042810458344828563913001012415702876199708216875020997112089693759638454900092580746638631062117961876611545851157613835724635005253792316142379239047654392970415343694657580353333217547079551304961116837545648785312490665576832987,
        96868738830341112368094632337476840272563704408573054404213766500407517251810212494515862176356916912627172280446141202661640191237336568731069327906100896178776245311689857997012187599140875912026589672629935267844696976980890380730867520071059572350667913710344648377601017758188404474812654737363275994871,
        4881261656846638800623549662943393234361061827128610120046315649707078244180313661063004390750821317096754282796876479695558644108492317407662131441224257537276274962372021273583478509416358764706098471849536036184924640593888902859441388472856822541452041181244337124767666161645827145408781917658423571721,
        18237936726367556664171427575475596460727369368246286138804284742124256700367133250078608537129877968287885457417957868580553371999414227484737603688992620953200143688061024092623556471053006464123205133894607923801371986027458274343737860395496260538663183193877539815179246700525865152165600985105257601565
    ]
    x = -1
    for i in ints:
        if euler_criterion(
                i, p) == 1:  # 1 means that the number is a quadratic residue
            x = i  # this is the quadratic residue

    # a^2 = x mod p
    # b^p cong b mod p
    gmpy2.get_context().precision = 10000
    # temp = gmpy2.div(p+1, 4)
    # print(temp)
    a = pow(x, int(gmpy2.div(p + 1, 4)), p)
    # a = (pow(x, p/2, p))
    # print(int(a) == a)
    print(a)
예제 #15
0
def verif_quadra(phi, N):
    # coefficients are initialized
    a = 1
    b = phi - N - 1
    c = N

    #calculation of the determinant
    delta = b * b - 4 * a * c
    if delta < 0:
        return False

    #processing the roots
    n = gmpy2.mpz(delta)
    gmpy2.get_context().precision = 2048
    det = gmpy2.sqrt(n)

    num1 = (-b + det)
    num2 = (-b - det)
    den = 2 * a

    k1 = int(num1 // den)
    r1 = num1 - k1 * den

    k2 = int(num2 // den)
    r2 = num2 - k2 * den

    if r1 == 0.0 and r2 == 0.0:
        return True
    else:
        return False
def worker(number, data, ppc):
    gmpy2.get_context().precision = 100
    m = 1
    setup(ppc)
    temp_data = [[0 for i in range(N)] for i in range(N)]
    mm = [[gmpy2.mpfr(0.0) for i in range(N)] for ii in range(N)]
    ss = [[0 for i in range(N)] for ii in range(N)]
    v0 = 0.0  #v([])
    vector = list(range(N))
    while (True):
        for i in range(0, m, N):
            shuffle(vector)
            prev_v = v0
            spruik_solver()
            for ii, vv in enumerate(vector):  #size ii, player vv
                new_v = v(vector[0:ii + 1])
                x = new_v - prev_v
                prev_v = new_v
                mm[ii][vv] += x
                mm[N - ii - 1][vv] += x
                ss[ii][vv] += 1
                ss[N - ii - 1][vv] += 1
        for i in range(N):
            for ii in range(N):
                temp_data[i][ii] = mm[i][ii] / ss[i][ii] if ss[i][
                    ii] > 0 else 0  #indsplus*random()*2.0/N #random()*1000
        data[number] = [
            float(sum([temp_data[o][i] for o in range(N)]) / N)
            for i in range(N)
        ]
예제 #17
0
파일: sig.py 프로젝트: joseph8th/mandelbrat
    def _read_sighash_config(self, sig_cfgf):

        # get pool/poolkey config from given .mbrat file
        self.cfgparser.read(path.abspath(sig_cfgf))

        print path.abspath(sig_cfgf)


        # set precision try
        try:
            prec = self.cfgparser.getint('poolkey', 'prec')
        except ConfigParser.NoOptionError:
            return None

        gmpy2.get_context().precision = prec

        # check to see if the poolkey already exists, else create it
#        sig_pool = 

        sig_d = {}
        for sec in self.cfgparser.sections():
            if sec == 'poolkey':
                sig_d[sec] = { 'name': self.cfgparser.get(sec, 'name'), 
                               'prec': prec,
                               'iters': self.cfgparser.getint(sec, 'iters'),
                               'mpoint': mpc( self.cfgparser.get(sec, 'mpoint') ),
                               }
            elif sec == 'signature':
                hash_sig_s = self.cfgparser.get(sec, 'hash_sig')
                sig_d[sec] = { 'hash_sig': [mpc(pt) for pt in hash_sig_s.split('\n')] }

        return sig_d
예제 #18
0
def callfunc2(a, b):
    # print("Number of arguments", emb.numargs())

    gmpy2.get_context().precision = 100
    print(gmpy2.sqrt(5))

    mp.dps = 50
    print(mpf(2) ** mpf("0.5"))

    x = 21.3
    s = "a*x+1 * math.sin(3)"
    result = eval(s)
    print(result)

    mycode = """print ('hello world from mycode')"""

    exec(mycode)

    def f(x):
        x = x + 12
        return x

    print(f(4))

    print("Will compute", a, "times", b)
    c = 0
    for i in range(0, a):
        c = c + b
    return c
예제 #19
0
    def Run_MFun(self, itermax, Z_0):
        """ Expects gmpy2.mpc type for Z_0. """

        if not gmpy2.get_context().precision == self.prec:
            gmpy2.get_context().precision = self.prec

        Z = Z_0

        while self.iters < itermax:
            Z = add( gmpy2.mul(Z,Z), self.C )
            if norm(Z) > 4.0:
                break
            self.iters += 1
            
        if self.iters == itermax:
            self.inmset = True
예제 #20
0
파일: bfp.py 프로젝트: mstram/SATK
 def create(self, string, round=0):
     ctx = gmpy2.ieee(self.format)
     ctx.round = MPFR_Data.rounding[round]
     gmpy2.set_context(ctx)
     fpo = gmpy2.mpfr(string)
     ctx = gmpy2.get_context()  # Get the results
     self.ctx = ctx.copy()  # Copy the context for later status
     return fpo
예제 #21
0
 def precision_hook(self, value):
     fp_format = {'single': 32, 'double': 64}.get(value, None)
     if fp_format is not None:
         value = gmpy2.ieee(fp_format).precision - 1
     if isinstance(value, str):
         value = int(value)
     gmpy2.get_context().precision = value + 1
     return value
예제 #22
0
def testSquare(num):
    gmpy2.get_context().precision = 100000
    sqrt = int(gmpy2.sqrt(num))
    # print("Square: " + str(sqrt))
    for i in range(sqrt, 1, -1):
        if (num % i) == 0:
            print("Result: " + str(i) + " q: " + str(num // i))
            return i, num // i
예제 #23
0
파일: laba5.py 프로젝트: boggad/labs
def main():
    from sys import argv
    if len(argv) > 1:
        gmpy2.get_context().precision = 5000
        if argv[1] == '--sign':
            sign()
        if argv[1] == '--check':
            check()
예제 #24
0
파일: bfp.py 프로젝트: mstram/SATK
 def create(self,string,round=0):
     ctx=gmpy2.ieee(self.format)
     ctx.round=MPFR_Data.rounding[round]
     gmpy2.set_context(ctx)
     fpo=gmpy2.mpfr(string)
     ctx=gmpy2.get_context()     # Get the results
     self.ctx=ctx.copy()         # Copy the context for later status
     return fpo
예제 #25
0
def is_square(integer):
    itg = gmpy2.mpz(integer)
    gmpy2.get_context().precision = 2048
    root = gmpy2.sqrt(itg)
    # root = math.sqrt(integer)
    if int(root) ** 2 == integer:
        return True
    else:
        return False
예제 #26
0
def set_context_precision(mantissa, exponent):
    ctx = gmpy2.get_context()
    #precision is already +1, meaning in single precision is 24 (and not 23)
    ctx.precision = mantissa
    ctx.emax = 2**(exponent - 1)
    # 4-emax-precision
    #https://github.com/aleaxit/gmpy/issues/103
    ctx.emin = 4 - ctx.emax - ctx.precision
    return ctx
예제 #27
0
def avg_error(coeffs, trials, max):
    gmpy2.get_context().precision = 256
    total_error = 0
    for i in range(trials):
        x = random.random()*max
        expected = gmpy2.log(x) * 2**64
        result = fxp_ln(int(x*2**64), coeffs)
        total_error += abs(result - expected)/expected
    return total_error/trials
예제 #28
0
def fib_eig(k):
    import gmpy2
    ctx = gmpy2.get_context()
    ctx.precision += 1000
    sqrt5 = gmpy2.sqrt(5)

    lambda1 = (1 + sqrt5) / 2
    lambda2 = (1 - sqrt5) / 2
    fk = (lambda1**k - lambda2**k) / (lambda1 - lambda2)
    return int(fk)
예제 #29
0
def calc():
    # gmpy2.get_context().precision = 3321925
    start = time.time()
    for i in range(3321925, 3321930):
        t = time.time()
        gmpy2.get_context().precision = i
        res = str(gmpy2.sqrt(2))
        print("精度设置为{}, 运算长度为{}, 第一百万位数字是{}, 本次用时{}".format(i, len(res), res[-1], time.time() - t))
    end = time.time()
    print("总用时{}秒".format(end - start))
예제 #30
0
def main():
    gmpy2.set_context(gmpy2.context())
    gmpy2.get_context().precision = 75
    T = int(input())
    if T < 1 or T > 100:
        raise RuntimeError("T is not within the valid range")
    for i in range(T):
        n = int(input())
        r = Numbers(n)
        print("Case #" + str(i + 1) + ": " + r)
예제 #31
0
 def __init__(self):
     #set the precision for gmpy to very high
     gmpy2.get_context().precision=5000
     self.N = 0
     self.p = 0
     self.q = 0
     self.e = 0
     self.d = 0
     self.pi_of_N = 0
     self.pkcsByte = "02"
     self.separatorByte = "00"
예제 #32
0
def recover_msg(N1, N2, N3, C1, C2, C3):

    m = 42
    # your code starts here: to calculate the original message - m
    # Note 'm' should be an integer
    N = N1 * N2 * N3
    #y1 = N / N1
    #y2 = N / N2
    #y3 = N / N3

    s = [1, 0]
    r = [(N / N1), N1]
    i = 2
    temp = (N / N1) % N1
    while (temp > 0):
        temp = r[i - 2] % r[i - 1]
        r.append(temp)
        s.append(s[i - 2] - (r[i - 2] / r[i - 1]) * s[i - 1])
        i += 1
    z1 = s[i - 2]

    s = [1, 0]
    r = [(N / N2), N2]
    i = 2
    temp = (N / N2) % N2
    while (temp > 0):
        temp = r[i - 2] % r[i - 1]
        r.append(temp)
        s.append(s[i - 2] - (r[i - 2] / r[i - 1]) * s[i - 1])
        i += 1
    z2 = s[i - 2]

    s = [1, 0]
    r = [(N / N3), N3]
    i = 2
    temp = (N / N3) % N3
    while (temp > 0):
        temp = r[i - 2] % r[i - 1]
        r.append(r[i - 2] % r[i - 1])
        s.append(s[i - 2] - (r[i - 2] / r[i - 1]) * s[i - 1])
        i += 1
    z3 = s[i - 2]
    if z1 < 0: z1 += N1
    if z2 < 0: z2 += N2
    if z3 < 0: z3 += N3
    x = (z1 * C1 * (N / N1) + z2 * C2 * (N / N2) + z3 * C3 * (N / N3)) % N
    gmpy2.set_context(gmpy2.context())
    gmpy2.get_context().precision = 1000000
    m = int(gmpy2.cbrt(x))
    # your code ends here

    # convert the int to message string
    msg = hex(m).rstrip('L')[2:].decode('hex')
    return msg
예제 #33
0
파일: PyPi.py 프로젝트: wxv/PiCalc
def machin_gmpy2(digits):
    # Precision + 20 bits for safety
    gmpy2.get_context().precision = int(math.log2(10) * digits) + 20
        
    one_5th = mpfr("1") / 5
    one_239th = mpfr("1") / 239
        
    pi_fourths = 4*gmpy2.atan(one_5th) - gmpy2.atan(one_239th)
    pi = 4*pi_fourths
        
    return pi
예제 #34
0
 def __init__(self):
     # Set number of bits to keep around
     gmpy2.get_context().precision = 2000
     # These are values taken from the OEIS which I use when
     # checking my results.
     self.lambdainf = mpfr(
         "3.5699456718709449018420051513864989367638369115148323781079755299213628875001367775263210342163"
     )
     self.delta = mpfr(
         "4.669201609102990671853203820466201617258185577475768632745651343004134330211314"
     )
예제 #35
0
def get_prec():
    prec = 3000000
    while True:
        gmpy2.get_context().precision = prec
        res = str(gmpy2.sqrt(2))
        print(prec, len(res))
        if len(res) >= 1000002:
            print(res[-1], len(res), prec)
            break
        else:
            prec += 1
    return prec
예제 #36
0
파일: draw.py 프로젝트: dzhang314/PCREO
def main():
    gmpy2.get_context().precision = 100
    for dir_entry in os.scandir():
        try:
            run_record = read_pcreo_file(dir_entry)
            print("Successfully read PCreo output file:", dir_entry.name)
        except:
            print("File", dir_entry.name, "is not a PCreo output file.")
            sys.exit(0)
            continue
        print(len(defect_classes(run_record)))
        povray_draw(run_record, 800, dir_entry.name)
예제 #37
0
def find_nearest_power(number):
    gmpy2.get_context().precision = 10000
    smallest_r = number
    nearest_xy = 0
    for i in range(2, int(math.log(number, 2))):
        floor = int(gmpy2.root(mpfr(number), i))**i
        if number - floor < smallest_r:
            if floor > number:
                print("error at %d" % i)
            smallest_r = number - floor
            nearest_xy = floor
    return smallest_r
 def check_context(self):
     """ Check that the context settings including precision and inexact arithmetic
     flags are set properly. """
     if self.precision_set != True:
         return False
     ctx = gmpy2.get_context()
     if ctx.precision != self.context.precision:
         return False
     else:
         return (ctx.trap_inexact and ctx.trap_overflow and ctx.trap_erange \
                and ctx.trap_divzero and ctx.trap_invalid and ctx.trap_expbound \
                and ctx.trap_underflow)
예제 #39
0
파일: sig.py 프로젝트: joseph8th/mandelbrat
    def run_sign(self, args, return_dict=False):
        """ 
        Method to sign a hash of a given file, returning either True or a dict if return_dict==True.
        """

        from mbrat.spi.sign import SignSPI
        spi = SignSPI(mandelfun)

        print "Signing '{0}' with profile '{1}:{2}' and pool '{3}:{4}' ...".format(
            args.file, self.config.get('name'), self.privkey_cfg.get('name'),
            self.pool_cfg.get('name'), self.poolkey_cfg.get('name')
            )

        # put together arguments for the SPI
        args.spi['iters'] = int(self.pool_cfg.get('iters')) + \
            int(self.privkey_cfg.get_from_section('pool', 'iters'))

        # set the precision
        args.spi['prec'] = int(self.privkey_cfg.get('prec'))

        gmpy2.get_context().precision = args.spi['prec']

        # format the keys for mpc
        args.spi['poolkey'] = mpc( self.poolkey_cfg.get('real') + " " \
                                   + self.poolkey_cfg.get('imag') )
        args.spi['privkey'] = mpc( self.privkey_cfg.get('real') + " " \
                                   + self.privkey_cfg.get('imag') )

        ######## sign the hash ########
        hash_sig = spi.run(args)

        # init a ConfigParser compat dict with a top-section of 'mhash'
        sig_d = {'mhash': {'prec': args.spi['prec']}}

        for sec in ['pool', 'poolkey']:
            sig_d[sec] = self.cfgmgr.secmgr[sec].get_as_args(
                subsection=sec, return_dict=True)

        sig_d['signature'] = { 'hash_sig': hash_sig }        # add hash_sig

        # return a dict if desired ...
        if return_dict:
            return sig_d

        # ... or get the filename for the signature 'BASENAME.mbrat' file
        sig_cfgf = path.splitext(path.basename(args.file))[0] + ".mbrat"
        sig_cfgf = path.join( path.dirname(path.abspath(args.file)), 
                              sig_cfgf )

        self._write_sig_config(sig_d, sig_cfgf)

        return True
def solve_second(N):
  gmpy2.get_context().precision = 1000
  Nsqrt = gmpy2.isqrt(N)
  for A in range(Nsqrt , Nsqrt+2**20):
    A2 = A*A
    diff = A2 - N
    if diff > 0:
      possible_x = gmpy2.isqrt(A2 - N)
      if (A-possible_x) * (A+possible_x) == N:
        print "#2 ----> P is: " + str(A-possible_x)
        break
  else:
    print "Error: P not found!"
 def test_roundings(self):
     gmpy2.get_context().real_round = gmpy2.RoundToNearest
     for test_vector in scalar_decomp_test_vectors:
         scalar = test_vector[0]
         # alpha_tilde = floor(ell_i * m / mu) ~ round((alpha_hat_i / N) * scalar)
         alpha_tildes = scalar_decomposition.calculate_alpha_tildes(scalar)
         alpha_hats = scalar_decomposition.calculate_alpha_hats()
         # the values of alpha_tilde should be equal to round((alpha_hat / N) * m)
         for alpha_tilde, alpha_hat in zip(alpha_tildes, alpha_hats):
             alpha_rounded = round(mpq(alpha_hat * scalar, constants.N))
             # computing the rounding in this way means the answer can be out by 1 in some cases
             diff = alpha_rounded - alpha_tilde
             self.assertTrue(0 <= diff <= 1)
예제 #42
0
def fermat_factorization(n):
    factor_list = []
    gmpy2.get_context().precision = 2048
    a = int(gmpy2.sqrt(n))

    a2 = a * a
    b2 = gmpy2.sub(a2, n)

    while True:
        a += 1
        b2 = a * a - n

        if gmpy2.is_square(b2):
            b2 = gmpy2.mpz(b2)
            gmpy2.get_context().precision = 2048
            b = int(gmpy2.sqrt(b2))
            factor_list.append([a + b, a - b])

        if len(factor_list) == 2:
            break

    return factor_list
예제 #43
0
def main():
    gmpy2.get_context().precision = 10000

    p = 0x16498bf7cc48a7465416e0f9ec8034f4030991e73aff9524ef74cc574228e36e6e1944c7686f69f0d1186a69b7aa77d7e954edc8a6932f006786f4648ecc8d4f4d3f6c03d9a1ee9fe61b28b6dd2791a63be581b8811a8ac90a387241ea68b7d36b4a274f64c7a721ad55cfcef23cd14c72542f576e4b507c11c4fa198e80021d484691b
    e = 0x69420
    ct1 = 0xa82b37d57b6476fa98f6ee7c278d934bd96c49aa1c5399552d25211230d76cb16ade049572bf631e3849903638d41c884957b9592d0aa072b2bdc3105fe0e3253284f85286ec613966f9cde77ae06e2053dc2254e44ca673b4c76879eff84e5fc32af976c1bfafe147a277d72aad674db749ed8f34d2ebe8189cf12afc9baa17764e4b
    phi = p - 1
    const = 32
    e //= const
    d = gmpy2.invert(e, phi)
    # print(d)
    p32 = pow(ct1, d, p)
    # print(p32)

    while (const != 1):
        const //= 2
        p32 = tonelli_shanks(p32, p)
    # print(trans(-p32%p))

    # FIRST PART OF THE FLAG BABY: HTB{why_d1d_y0u_m3ss_3v3ryth1ng_up_1ts_n0t_th4t_h4rd
    p = 0x16498bf7cc48a7465416e0f9ec8034f4030991e73aff9524ef74cc574228e36e6e1944c7686f69f0d1186a69b7aa77d7e954edc8a6932f006786f4648ecc8d4f4d3f6c03d9a1ee9fe61b28b6dd2791a63be581b8811a8ac90a387241ea68b7d36b4a274f64c7a721ad55cfcef23cd14c72542f576e4b507c11c4fa198e80021d484691b
    n = 0xbe30ccaf896c16f53515e298df25df9158d0a95295c119f0444398b94fae26c0b4cf3a43b120cf0fb657069e0621eb1d2dd832eef3065e80ddbc35854dd4585cc41fd6a5b36339c0d9fcc066272be6818be6a624f75482bbb9c408010ac8c27b20397d870bfcb14e6318097b1601f99e391c9b68c5c586f8da561ff8507be9212713b910b748370ce692c11afa09b74ce80c5f5dd72046415aeed85e1ecedca14abe17ed19ab97729b859120699d9f80dd13f8483773df15b938b8399702a6e846b8728a70f1940d4c6e5835a06a89925eb1ec91a796f270e2d9be1a2c4bee5517109c161f04333d9c0d4034fbbd2dcf69fe734b759a89937f4d8ea0ee6b8385aae14a2cce361
    # generator
    g = 0x69420
    ct2 = 0x65d57a564b8a8667a956705442063392b9b975b8ef869a6dbed04d6e585351f559fe6f5d96823f60b7306740fe2cf5aa81e4a12736d4f0a4826cbc8b4312643af19c75432b4ab222837031851f312df5d707b39bdf2d272f25c1947f3e2943f3592cb0519fee8f4b458021b6b8ee4eabeeae5127d412df4f6a88f66d7cc34c6bb77e0a1440737d0e167f9489f0c7fbfd7f6a5870b4b2865d29b91f6c2b375951e85b1b9f03887d4d3c4a6218111a95021ed1d554c57269e7830c3e7b8e17d13e1fb75ee9f305833d0cb6bfab738572cdbbc8b33b878ad25f78d47d7f449a6c348f5f9f1df3e09f924534a3669b4e69bd0411d154ec756b210691e2efc4a55aa664d938a868f4d
    # print(n)
    # print(g)
    # print(ct2)
    q = n // p
    # print(q)

    # found using alpertron for g^xp = ct2 mod p
    kp = 0
    xp = 1333647771826129906056278980508785116695001357398405010264712880010822066437928270470093887443647579332557329757513503832688236838814545646539928049413880950956136391197700699813257009513030650710096103937450573603079886862042789301653172344151731360918260335579808862271014412080624561537897979314727207446470188301\
    + 2100597191236862411973123184673222390029361412634375676811383630091967723602897705208854139513327705418840522104410271985778087477636285771639551773018473451844243204190875248518748762236574766561778114516538828518726261981381313004189199195300204873125911752732961129454366019842676645748294495098918135199007126669 * kp

    kq = 0
    xq = 2248237925279582319646346402167252499424555860028602832387207824347301477610684362756745372458799004275280799304910420404269790625413034441525997676464275232206297649095612480172888211521015846455387388707653809767187874172857528680924943045273311447383766726890650161662310150531795567852223701545458237821806704227\
    + 25737553036453033170874873232492616472696251153498345345893349066914349319700028526259065151440470760781885101651616163782998343068021108194360596481454344775056268387636520767391616783538213196153998980567585557740463660083917063025907541863194906635695830144597030344814258845557193440907517374289359866191267367218 * kq

    assert (pow(g, xp, p) == ct2 % p)
    assert (pow(g, xq, q) == ct2 % q)

    m = [p - 1, q - 1]  # modulo
    v = [xp, xq]
    ret = crt(m, v)
    print(ret[0])  # gives x in g^x
    # # check
    assert (xp == ret[0] % (p - 1))
    assert (xq == ret[0] % (q - 1))
    print(trans(ret[0]))
예제 #44
0
    def getFinalMaxValue(self, supVal):
        if not gmpy2.is_finite(supVal):
            print("Error cannot compute intervals with infinity")
            exit(-1)
        bkpCtx = gmpy2.get_context().copy()

        i = 0
        while not gmpy2.is_finite(gmpy2.next_above(supVal)):
            set_context_precision(self.precision + i, self.exponent + i)
            i = i + 1

        prec = printMPFRExactly(gmpy2.next_above(supVal))
        gmpy2.set_context(bkpCtx)
        return prec
예제 #45
0
def _assert_mp_equals_np(mp_array, np_array):
    """Compares an MPMatrix and np array, checking for equality.
    Returns an equality bool and an error string."""
    m, n = np_array.shape
    coordinates = itertools.product(range(m), range(n))
    P = gmpy2.get_context().precision  # TODO: need this to be relative
    epsilon = mpfr("0b" + "0" * P + "1")
    for coord in coordinates:
        mp_val = mp_array[coord]
        np_val = np_array[coord]
        if not _ptwise_vals_equal(mp_val, np_val, epsilon):
            return (False, "Distinct values mp: {}, np: {} at coord {}".format(
                mp_val, np_val, coord))
    return (True, "")
예제 #46
0
파일: repos.py 프로젝트: xqzy/Crypto
def main():
    # Configure precision to deal with large integers
    # The right factor(3) must be found by trial and error; turns out that to solve these
    # problems a precision of around 900 digits is necessary
    num_digits = len(N1)
    precision = 3 * num_digits
    print "The required precision is {} digits".format(precision)
    gmpy2.get_context().precision = precision
    print "Q1)"
    solve_q1()
    print "Q2)"
    solve_q2()
    print "Q3)"
    solve_q3()
    print "Decrpyt:", decrypt()
예제 #47
0
def FermatFacotorization(n):
    # a = math.ceil(math.sqrt(N))
    N = gmpy2.mpz(n)
    gmpy2.get_context().precision = 2048
    a = gmpy2.sqrt(N)
    # print a
    b2 = a ** 2 - N
    # print b2
    while not is_sqr(b2):
        a += 1
        b2 = a ** 2 - N
        print a
    print "a is " + str(a)
    print "b2 is " + str(b2)
    # a = math.sqrt(a2)
    b = math.sqrt(b2)
    return (a + b, a - b)
예제 #48
0
파일: bfp_gmpy2.py 프로젝트: s390guy/SATK
    def display(self, modes=False, indent="", string=False):
        s = "%s MPFR Data:" % indent
        lcl = "%s    " % indent
        if modes:
            s = "%s\n%sRoundAwayZero:  %s" % (s, lcl, gmpy2.RoundAwayZero)
            s = "%s\n%sRoundDown:      %s" % (s, lcl, gmpy2.RoundDown)
            s = "%s\n%sRoundToNearest: %s" % (s, lcl, gmpy2.RoundToNearest)
            s = "%s\n%sRoundToZero:    %s" % (s, lcl, gmpy2.RoundToZero)
            s = "%s\n%sRoundUp:        %s" % (s, lcl, gmpy2.RoundUp)
        s = "%s\n%sfpo:      %s" % (s, lcl, self.fpo)
        s = "%s\n%sformat:   %s" % (s, lcl, self.format)

        # Get Base 2 mantissa and base 10 exponent
        # man,exp,mpfr_prec=self.fpo.digits(2)
        s = "%s\n%smpfr prec:%s 0x%X" % (s, lcl, self.dprec, self.dprec)
        s = "%s\n%smpfr sign: %s" % (s, lcl, self.isign)

        if not self.ic:
            s = "%s\n%smpfr man: %s (%s digits)" % (s, lcl, self.digits, len(self.digits))
            #    % (s,lcl,digits[0],len(digits[0]))
            s = "%s\n%smpfr exp:  %s 0x%X" % (s, lcl, self.dexp, self.dexp)
        else:
            l = self.format // 8
            dcd = bfp.BFPRound.decode[l]
            s = "%s\n%sdecode:   %s" % (s, lcl, dcd)
            byts = fp.FP.str2bytes(self.ic)
            ic_sign, ic_frac, ic_exp, ic_attr = dcd.decode(byts)
            ic_frac = fp.rounding_mode.list2str(ic_frac, 2)
            s = "%s\n%sifmt big: %s" % (s, lcl, fp.FP.bytes2str(byts))
            b = int.from_bytes(byts, byteorder="big", signed=False)
            s = "%s\n%sifmt sign:%s" % (s, lcl, ic_sign)
            s = "%s\n%sifmt exp: %s" % (s, lcl, ic_exp)
            bexp = exp + dcd.bias
            s = "%s\n%sifmt bias:%s 0x%X" % (s, lcl, bexp, bexp)
            s = "%s\n%smpfr exp: %s 0x%X" % (s, lcl, exp, exp)
            s = "%s\n%smpfr man: %s (%s digits)" % (s, lcl, man, len(man))
            #% (s,lcl,digits[0],len(digits[0]))
            s = "%s\n%sifmt frac: %s (%s digits)" % (s, lcl, ic_frac, len(ic_frac))
            s = "%s\n%sattr:     %s" % (s, lcl, ic_attr)

        ctx = gmpy2.get_context()
        s = "%s\n%s%s" % (s, lcl, ctx)
        s = "%s\n" % s
        if string:
            return s
        print(s)
예제 #49
0
 def checkPQDistance(self, keys):
     if not isinstance(keys, (tuple, list)):
         keys = [keys]
     ctx = gmpy2.get_context()
     ctx.precision = 5000
     ctx.round = gmpy2.RoundDown
     ctx.real_round = gmpy2.RoundDown
     gmpy2.set_context(ctx)
     for key in keys:
         gmpy_key = gmpy2.mpfr(key)
         skey = int(gmpy2.sqrt(gmpy_key))
         skey2 = skey ** 2
         if (skey2 > key) or (((skey + 1) ** 2) < key):
             print skey2
             print (skey+1)**2
             raise Exception("WTF")
         bits = int(gmpy2.log2(key - skey2))
         if bits < 480:
             print '%d Has p, q distance of %d bits' % (key, bits)
예제 #50
0
파일: PyPi.py 프로젝트: wxv/PiCalc
def chudnovsky_bs(digits):
    gmpy2.get_context().precision = int(math.log2(10) * (digits + 20))
     
    # Use binary splitting
    digits += 20
    C = mpz(640320)
    C_cubed_over_24 = C**3 // 24
    def bs(a, b):
        # a(a) = +/- (13591409 + 545140134a)
        # p(a) = (6a-5)(2a-1)(6a-1)
        # b(a) = 1
        # q(a) = a^3 * C_cubed_over_24
        
        if b - a == 1:
            # Directly compute
            if a == 0:
                Pab = Qab = mpz(1)
            else:
                Pab = (6*a-5) * (2*a-1) * (6*a-1)
                Qab = a**3 * C_cubed_over_24
            Tab = Pab * (13591409 + 545140134*a)
            if a & 1:
                Tab *= -1 
        
        else:
            m = (a+b) // 2  # Midpoint
            # Recursively divide and conquer
            Pam, Qam, Tam = bs(a, m)
            Pmb, Qmb, Tmb = bs(m, b)
            Pab = Pam * Pmb
            Qab = Qam * Qmb
            Tab = Qmb * Tam + Pam * Tmb
            
        return Pab, Qab, Tab

    digits_per_term = math.log10(C_cubed_over_24/72) 

    N = int(digits/digits_per_term + 1)
    P, Q, T = bs(mpz(0), mpz(N))
    Q, T = mpfr(Q), mpfr(T)

    return (Q * 426880 * gmpy2.sqrt(mpfr(10005))) / T
예제 #51
0
def worker(xs, results, updates, trials, max):
    gmpy2.get_context().precision = 256
    ys = (map(gmpy2.log2, x) for x in xs)
    polys = (scipy.interpolate.lagrange(x, y) for x, y in itertools.izip(xs, ys))
    coeffs = [[int(a_i*2**64) for a_i in reversed(p.coeffs)] for p in polys]
    updates.put("Generated %d polynomials to test." % len(coeffs))
    min_err = float('inf')
    min_cs = None
    for cs in coeffs:
        try:
            err = avg_error(cs, trials, max)
            if err < min_err:
                min_err = err
                min_cs = cs
        except Exception as exc:
            updates.put(str(exc))
            results.put((float('inf'), None))
            return
    updates.put("Checked %d polynomials." % len(coeffs))
    results.put((min_err, min_cs))
예제 #52
0
파일: PyPi.py 프로젝트: wxv/PiCalc
def gauss_legendre(digits):
    gmpy2.get_context().precision = int(math.log2(10) * (digits + 5))
    
    iterations = int(math.log2(digits)) 
    
    # Direct translation of algorithm
    a = mpfr(1)
    b = 1 / gmpy2.sqrt(mpfr(2))
    t = mpfr(1)/4
    x = mpfr(1)


    for i in range(iterations):
        y = a
        a = (a + b) / 2
        b = gmpy2.sqrt(b * y)
        t = t - x * (y-a)**2
        x = 2 * x
        
    pi = ((a+b)**2) / (4*t)
    return pi
예제 #53
0
파일: PyPi.py 프로젝트: wxv/PiCalc
def borwein(digits):
    gmpy2.get_context().precision = int(math.log2(10) * (digits + 10))
    
    sqrt_2 = gmpy2.sqrt(mpfr(2))
    a_n = sqrt_2
    b_n = mpz(0)
    p_n = 2 + sqrt_2
    
    while True:
        sqrt_a_n = gmpy2.sqrt(a_n)
        a_n1 = (sqrt_a_n + 1/sqrt_a_n) / 2
        b_n1 = (1 + b_n) * sqrt_a_n / (a_n + b_n)
        p_n1 = (1 + a_n1) * p_n * b_n1 / (1 + b_n1)
        
        if p_n1 == p_n:
            break
        
        a_n = a_n1
        b_n = b_n1
        p_n = p_n1
        
    return p_n
예제 #54
0
    def _init_from(self, args):
#        from mbrat.util import Arguments

        # 1st set the precision ...
        if not hasattr(args, 'prec'):
            args.prec = MBRAT_DEF_PRECISION
        self.prec = int(args.prec)

        gmpy2.get_context().precision = self.prec

        # ... make sure lims dict is right ...
        if not hasattr(args, 'lims'):
            self.limits = { 'low': mpc(mpfr(args.x_lo), mpfr(args.y_lo)),
                            'high': mpc(mpfr(args.x_hi), mpfr(args.y_hi)), }
        else:
            self.limits = args.lims

        # ... init the core stuff ...
        self._init_new(args)

        # ... if 'ini_d' dict provided then init more depending...
        if hasattr(args, 'ini_d'):
            if 'image' in args.ini_d:
                self.gen_mscreen_from_img( args.ini_d['image'] )
예제 #55
0
import gmpy2
from gmpy2 import root
gmpy2.get_context().precision = 4096
import codecs

e = 3 
c1 = 261345950255088824199206969589297492768083568554363001807292202086148198406422015406837306712350185001004539557263392747990052517553733793783164539246862722846027251864430884218012651143187891041767278036834613455255679627575565220404720823343734717216496823882624775291829042065791328110144692179931720656184
n1 = 1001191535967882284769094654562963158339094991366537360172618359025855097846977704928598237040115495676223744383629803332394884046043603063054821999994629411352862317941517957323746992871914047324555019615398720677218748535278252779545622933662625193622517947605928420931496443792865516592262228294965047903627
c2 = 147535246350781145803699087910221608128508531245679654307942476916759248177533099119747011361428805549054451656981174660189536226806378907786889467354024644240879320253207532952949102143188764785409228498939338911381114763011074430123706304767125057179745262429033988355639559021251950099792930724833562784673
n2 = 405864605704280029572517043538873770190562953923346989456102827133294619540434679181357855400199671537151039095796094162418263148474324455458511633891792967156338297585653540910958574924436510557629146762715107527852413979916669819333765187674010542434580990241759130158992365304284892615408513239024879592309 
c3 = 633230627388596886579908367739501184580838393691617645602928172655297372011548865034935604403952733958738640693591337661775300212965321256493515985362225064130164637923136989033908516462412694733923594235845265750167194852656423103420952926986457914303614556562367709542082728589329045460298763797973333272805
n3 = 1204664380009414697639782865058772653140636684336678901863196025928054706723976869222235722439176825580211657044153004521482757717615318907205106770256270292154250168657084197056536811063984234635803887040926920542363612936352393496049379544437329226857538524494283148837536712608224655107228808472106636903723 

def chinese_remainder_theorem(items):
    # Determine N, the product of all n_i
    N = 1
    for a, n in items:
        N *= n

    # Find the solution (mod N)
    result = 0
    for a, n in items:
        m = N // n
        r, s, d = extended_gcd(n, m)
        if d != 1:
            raise "Input not pairwise co-prime"
        result += a * s * m

    # Make sure we return the canonical solution.
    return result % N
예제 #56
0
#!/usr/bin/env python

#Author : Karthik C

#//////////////////////////////////////////////////
#Code developed to genetare ADS-B message//////////
#//////////////////////////////////////////////////
import math 
import sys
import gmpy2 #multi precision module
from gmpy2 import mpz,mpq,mpfr,mpc
import numpy
from numpy import *

#-------------Globals-----------------------------------
gmpy2.get_context().precision = 32#set gmpy precision to 128 bits
Dlat0 = 6 # Even message
Dlat1 = mpfr(6.101694915254237288135593220339) # Odd message
pi = mpfr(gmpy2.const_pi(),56)
airID = 0x8D # bit 1 to 5 DF format 17 and 6 to 8 CA type 3
altitude = 0
evenMsg = mpz(1)
oddMsg = mpz(1)
CRCOdd = mpz(1)
CRCEven = mpz(1)

#-----------For testing -------------------------
t_aid = 'ab7444'
t_alt = 40000
t_lat = mpfr(49.925827)
t_lon = mpfr(89.193542)
예제 #57
0
import numpy
import gmpy2
import math
from collections import defaultdict

from gmpy2 import mpz
gmpy2.get_context().precision=10000


N = 179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581
N=179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581
N=648455842808071669662824265346772278726343720706976263060439070378797308618081116462714015276061417569195587321840254520655424906719892428844841839353281972988531310511738648965962582821502504990264452100885281673303711142296421027840289307657458645233683357077834689715838646088239640236866252211790085787877

N=720062263747350425279564435525583738338084451473999841826653057981916355690188337790423408664187663938485175264994017897083524079135686877441155132015188279331812309091996246361896836573643119174094961348524639707885238799396839230364676670221627018353299443241192173812729276147530748597302192751375739387929
N= mpz(N)*6
A=gmpy2.ceil(gmpy2.sqrt(gmpy2.mpz(N)))
B=numpy.powmod(2,20,N)
for i in range(0,B+1):
	print i
	
#x=mpz(A*A) -N 
	A=mpz(A)
	
	z=mpz(A)*mpz(A)
#print mpz(z)+1
	y=mpz(z)-mpz(N)
	x=gmpy2.sqrt(gmpy2.mpz(y))
	p=mpz(A)-mpz(x)
	q=mpz(A)+mpz(x)
	#print p
	#print mpz(p)
예제 #58
0
#!/usr/bin/python2
import gmpy2
#import matplotlib.pyplot as plt
import os
import bisect
from numpy import linspace
# gmpy2 precision initialization
BITS = (1 << 10)
BYTES = BITS/8
gmpy2.get_context().precision = BITS # a whole lotta bits

def random():
    seed = int(os.urandom(BYTES).encode('hex'), 16)
    return gmpy2.mpfr_random(gmpy2.random_state(seed))

# Useful constants as mpfr
PI = gmpy2.acos(-1)
LOG2E = gmpy2.log2(gmpy2.exp(1))
LN2 = gmpy2.log(2)
# Same, as 192.64 fixedpoint
FX_PI = int(PI * 2**64)
FX_LOG2E = int(LOG2E * 2**64)
FX_LN2 = int(LN2 * 2**64)
FX_ONE = 1 << 64
## The index of a poly is the power of x,
## the val at the index is the coefficient.
##
## An nth degree poly is a list of len n + 1.
##
## The vals in a poly must all be floating point
## numbers.