def __init__(self): super(Acrobot, self).__init__() self.G1 = nx.path_graph(2).to_directed() self.node_feat_size = 2 self.edge_feat_size = 3 self.graph_feat_size = 10 self.gn = FFGN(self.graph_feat_size, self.node_feat_size, self.edge_feat_size).cuda() self.gn.load_state_dict(torch.load('model0.05.pth')) normalizers = torch.load('normalized/acrobot0.05.pth') self.in_normalizer = normalizers['in_normalizer'] self.out_normalizer = normalizers['out_normalizer']
use_cuda = True dl = DataLoader(dset, batch_size=200, num_workers=0, drop_last=True) dl_eval = DataLoader(dset_eval, batch_size=200, num_workers=0, drop_last=True) G1 = nx.path_graph(6).to_directed() G_target = nx.path_graph(6).to_directed() nx.draw(G1) plt.show() node_feat_size = 6 edge_feat_size = 3 graph_feat_size = 10 gn = FFGN(graph_feat_size, node_feat_size, edge_feat_size).cuda() if opt.model != '': gn.load_state_dict(torch.load(opt.model)) optimizer = optim.Adam(gn.parameters(), lr=1e-4) schedular = optim.lr_scheduler.StepLR(optimizer, 5e4, gamma=0.975) savedir = os.path.join('./logs', 'runs', datetime.now().strftime('%B%d_%H:%M:%S')) writer = SummaryWriter(savedir) step = 0 normalizers = torch.load('normalize.pth') in_normalizer = normalizers['in_normalizer'] out_normalizer = normalizers['out_normalizer'] std = in_normalizer.get_std() for epoch in range(300):