def simple_model(output_dir): start_time = "2018-09-20T12:00" model = gs.Model( start_time=start_time, duration=gs.days(1), time_step=gs.minutes(30), name="test model for tideflats", ) model.map = MapFromBNA(bna_file) model.movers += gs.constant_wind_mover(10, 300, "m/s") model.spills += gs.surface_point_line_spill( num_elements=100, start_position=(5.4, 53.38, 0), end_position=(5.8, 53.4, 0), release_time=start_time, ) model.outputters += gs.Renderer( output_timestep=gs.hours(1), map_filename=bna_file, output_dir=output_dir, formats=['gif'], # ['gif', 'png'] image_size=(800, 400), # viewport=((4.5, 53.0), # (5.5, 53.5)), ) return model
def simple_model(output_dir): start_time = "2018-09-20T12:00" model = gs.Model(start_time=start_time, duration=gs.days(1), time_step=gs.minutes(30), name="test model for tideflats", ) model.map = MapFromBNA(bna_file) model.movers += gs.constant_wind_mover(10, 300, "m/s") model.spills += gs.surface_point_line_spill(num_elements=100, start_position=(5.4, 53.38, 0), end_position=(5.8, 53.4, 0), release_time=start_time, ) model.outputters += gs.Renderer(output_timestep=gs.hours(1), map_filename=bna_file, output_dir=output_dir, formats=['gif'], # ['gif', 'png'] image_size=(800, 400), # viewport=((4.5, 53.0), # (5.5, 53.5)), ) return model
def test_model_run_with_tideflat(simple_model): """ Add a tideflat with the simple tideflat object no tests here, but you can look at the output """ model = simple_model # make a simple tideflat model bounds = ( (5.623211, 53.309485), (5.784850, 53.348716), (5.761970, 53.368978), (5.722114, 53.376904), (5.667496, 53.367657), (5.620259, 53.354003), (5.609926, 53.328444), ) dry_start = model.start_time + gs.hours(4) dry_end = model.start_time + gs.hours(8) tf = SimpleTideflat(bounds, dry_start, dry_end) # get the map from the model and wrap it in a TideflatMap tfm = TideflatMap(model.map, tf) model.map = tfm # to make it run faster model.time_step = gs.hours(2) for step in model: print "step_num", step['step_num'] status = model.get_spill_property('status_codes') assert np.all(status == oil_status.on_land)
def model(sample_model): model = sample_model['model'] model.make_default_refs = True rel_start_pos = sample_model['release_start_pos'] rel_end_pos = sample_model['release_end_pos'] # model.cache_enabled = True # why use the cache -- it'll just slow things down!!! model.uncertain = False wind = constant_wind(1.0, 0.0) water = Water(311.15) model.environment += water waves = Waves(wind, water) model.environment += waves print "the environment:", model.environment start_time = model.start_time model.duration = gs.days(1) end_time = start_time + gs.hours(1) spill = point_line_release_spill(100, start_position=rel_start_pos, release_time=start_time, end_release_time=start_time + gs.hours(1), end_position=rel_end_pos, substance=test_oil, amount=1000, units='kg') model.spills += spill model.add_weathering(which='standard') return model
def test_model_run_with_tideflat(simple_model): """ Add a tideflat with the simple tideflat object no tests here, but you can look at the output """ model = simple_model # make a simple tideflat model bounds = ((5.623211, 53.309485), (5.784850, 53.348716), (5.761970, 53.368978), (5.722114, 53.376904), (5.667496, 53.367657), (5.620259, 53.354003), (5.609926, 53.328444), ) dry_start = model.start_time + gs.hours(4) dry_end = model.start_time + gs.hours(8) tf = SimpleTideflat(bounds, dry_start, dry_end) # get the map from the model and wrap it in a TideflatMap tfm = TideflatMap(model.map, tf) model.map = tfm # to make it run faster model.time_step = gs.hours(2) for step in model: print "step_num", step['step_num'] status = model.get_spill_property('status_codes') assert np.all(status == oil_status.on_land)
def test_full_model_run(simple_model): """ run it with a full model and no tide flats no tests here, but you can look at the output """ # run it a bit faster # but long enough for them all to beach simple_model.duration = gs.hours(18) # simple_model.full_run() for step in simple_model: print "step num:", step['step_num'] status = simple_model.get_spill_property('status_codes') assert np.all(status == oil_status.on_land)
def test_model_full_run_output(model, output_dir): ''' Test weathering outputter with a model since simplest to do that (I'm being impatient -- I hope I don't regret that) ''' outfilename = os.path.join(output_dir, "test_oil_budget.csv") model.outputters += OilBudgetOutput(outfilename, output_timestep=gs.hours(1)) print OilBudgetOutput.clean_output_files model.rewind() model.full_run() # was the file created? out_filename = os.path.join(output_dir, outfilename) assert os.path.isfile(out_filename) # read the file in and test a couple things csv_file = open(out_filename).readlines() print len(csv_file) assert len(csv_file) == 26 assert csv_file[0].split(",")[0] == "Model Time" assert csv_file[1].split(",")[0].strip() == "0:00" assert csv_file[2].split(",")[0].strip() == "1:00" assert csv_file[-1].split(",")[0].strip() == "24:00"
def make_model(images_dir=os.path.join(base_dir, 'images')): # create the maps: print 'creating the maps' mapfile = gs.get_datafile(os.path.join(base_dir, './MassBayMap.bna')) gnome_map = gs.MapFromBNA( mapfile, refloat_halflife=1, # hours raster_size=2048 * 2048 # about 4 MB ) renderer = gs.Renderer(mapfile, images_dir, image_size=(800, 800), projection_class=GeoProjection) print 'initializing the model' # start_time = datetime(2013, 3, 12, 10, 0) start_time = "2013-03-12T10:00" # 15 minutes in seconds # Default to now, rounded to the nearest hour model = gs.Model(time_step=gs.minutes(15), start_time=start_time, duration=gs.days(1), map=gnome_map, uncertain=True) print 'adding outputters' model.outputters += renderer netcdf_file = os.path.join(base_dir, 'script_boston.nc') gs.remove_netcdf(netcdf_file) model.outputters += gs.NetCDFOutput(netcdf_file, which_data='all') model.outputters += gs.KMZOutput( os.path.join(base_dir, 'script_boston.kmz')) print 'adding a RandomMover:' model.movers += gs.RandomMover(diffusion_coef=100000) print 'adding a wind mover:' # series = np.zeros((2, ), dtype=datetime_value_2d) # series[0] = (start_time, (5, 180)) # series[1] = (start_time + timedelta(hours=25), (5, 180)) # w_mover = WindMover(Wind(timeseries=series, units='m/s')) # model.movers += w_mover # model.environment += w_mover.wind w_mover = gs.constant_wind_mover(5, 180, units='m/s') model.movers += w_mover print 'adding a cats shio mover:' curr_file = gs.get_datafile(os.path.join(base_dir, r"./EbbTides.cur")) tide_file = gs.get_datafile(os.path.join(base_dir, r"./EbbTidesShio.txt")) c_mover = gs.CatsMover(curr_file, tide=gs.Tide(tide_file)) # this is the value in the file (default) c_mover.scale_refpoint = (-70.8875, 42.321333) c_mover.scale = True c_mover.scale_value = -1 model.movers += c_mover # TODO: cannot add this till environment base class is created # model.environment += c_mover.tide print 'adding a cats ossm mover:' # ossm_file = get_datafile(os.path.join(base_dir, # r"./MerrimackMassCoastOSSM.txt")) curr_file = gs.get_datafile( os.path.join(base_dir, "MerrimackMassCoast.cur")) tide_file = gs.get_datafile( os.path.join(base_dir, "MerrimackMassCoastOSSM.txt")) c_mover = gs.CatsMover(curr_file, tide=gs.Tide(tide_file)) # but do need to scale (based on river stage) c_mover.scale = True c_mover.scale_refpoint = (-70.65, 42.58333) c_mover.scale_value = 1. model.movers += c_mover model.environment += c_mover.tide print 'adding a cats mover:' curr_file = gs.get_datafile(os.path.join(base_dir, "MassBaySewage.cur")) c_mover = gs.CatsMover(curr_file) # but do need to scale (based on river stage) c_mover.scale = True c_mover.scale_refpoint = (-70.78333, 42.39333) # the scale factor is 0 if user inputs no sewage outfall effects c_mover.scale_value = .04 model.movers += c_mover # pat1Angle 315; # pat1Speed 19.44; pat1SpeedUnits knots; # pat1ScaleToValue 0.138855 # # pat2Angle 225; # pat2Speed 19.44; pat2SpeedUnits knots; # pat2ScaleToValue 0.05121 # # scaleBy WindStress print "adding a component mover:" component_file1 = gs.get_datafile(os.path.join(base_dir, "WAC10msNW.cur")) component_file2 = gs.get_datafile(os.path.join(base_dir, "WAC10msSW.cur")) comp_mover = gs.ComponentMover(component_file1, component_file2, w_mover.wind) # todo: callback did not work correctly below - fix! # comp_mover = ComponentMover(component_file1, # component_file2, # Wind(timeseries=series, units='m/s')) comp_mover.scale_refpoint = (-70.855, 42.275) comp_mover.pat1_angle = 315 comp_mover.pat1_speed = 19.44 comp_mover.pat1_speed_units = 1 comp_mover.pat1ScaleToValue = .138855 comp_mover.pat2_angle = 225 comp_mover.pat2_speed = 19.44 comp_mover.pat2_speed_units = 1 comp_mover.pat2ScaleToValue = .05121 model.movers += comp_mover print 'adding a spill' end_time = gs.asdatetime(start_time) + gs.hours(12) spill = gs.point_line_release_spill(num_elements=100, start_position=(-70.911432, 42.369142, 0.0), release_time=start_time, end_release_time=end_time) model.spills += spill return model
# still need these, 'cause we're doing something special here. from gnome.movers import PyCurrentMover from gnome.utilities.time_utils import asdatetime from wadden_mudflats_matroos import Matroos_Mudflats data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../")) # Simulation outputs: # use this place to script the folder based on test number or something # it will be a relative path to this script out_dir = 'mudflat_matroos_test_real' # Model parameters: start_time = "2018-10-11 05:00" # time 00:00 if you don't specify model_duration = gs.hours(24) dT_OUT = gs.minutes(30) currentfile = 'MatroosRect.nc' # constant wind (in both time and space) Wind = {"speed": 10, "direction": 270, "units": "m/s"} SpillPosition = (5.122382, 53.327899, 0) # tussen VL en TX # SpillPosition = (5.210218, 53.231510, 0) # route Harlingen Terschelling # SpillPosition = (4.834194, 52.936454, 0) # Model Parameters: base_dir = os.path.dirname(__file__) newpath = os.path.join(base_dir, out_dir)
import gnome.scripting as gs from gnome.outputters import WeatheringOutput, OilBudgetOutput try: savefile = sys.argv[1] except IndexError: print "You must provide a savefile to load" sys.exit(1) print "Loading:", savefile model = gs.Model.load_savefile(savefile) model.outputters += WeatheringOutput(output_dir="NewModel", output_timestep=gs.hours(1), ) print "running model" model.full_run() # note: this outputs a bunch of JSON -- one for each timestep. # maybe a MassBalanceOutputter that ouputs a CSV file would be in order?
from gnome.maps.tideflat_map import TideflatMap, SimpleTideflat from wadden_mudflats import Delft3D_Mudflats # Simulation inputs # location of the input data # data_dir = os.path.join(os.path.dirname(__file__), "../") data_dir = os.path.dirname(__file__) # same dir as this script # Simulation outputs: # use this place to script the folder based on test number or something # it will be a relative path to this script out_dir = 'mudflat_test' # Model parameters: start_time = "2009-01-01" # time 00:00 if you don't specify model_duration = gs.hours(24) dT_OUT = gs.hours(1) currentfile = 'PACE_GNOME_01V2.nc' # currentfile = 'PACE_GNOME_01V2_fixed.nc' # constant wind (in both time and space) # Wind = {"speed": 5, "direction": 220, "units": "m/s"} Wind = {"speed": 10, "direction": 270, "units": "m/s"} # SpillPosition = (5.122382, 53.327899, 0) # tussen VL en TX SpillPosition = (5.210218, 53.231510, 0) # route Harlingen Terschelling ## # Model Parameters:
model.outputters += gs.Renderer( map_filename=mapfile, output_dir=images_dir, image_size=(800, 800), projection=None, viewport=((-124.0, 36.0), (-122.0, 38.0)), map_BB=None, draw_back_to_fore=True, draw_map_bounds=False, draw_spillable_area=False, formats=['gif'], draw_ontop='forecast', output_timestep=None, output_zero_step=True, output_last_step=True, output_start_time=None, on=True, timestamp_attrib={}, ) outfilename = "whale_run_windage_{:.1f}.nc".format(WINDAGE * 100) netcdf_file = os.path.join(base_dir, outfilename) model.outputters += gs.NetCDFOutput(netcdf_file, which_data='standard', output_timestep=gs.hours(3), compress=True, surface_conc=None) model.full_run()
def model(sample_model): model = sample_model['model'] model.make_default_refs = True rel_start_pos = sample_model['release_start_pos'] rel_end_pos = sample_model['release_end_pos'] # model.cache_enabled = True # why use the cache -- it'll just slow things down!!! model.uncertain = False wind = constant_wind(1.0, 0.0) water = Water(311.15) model.environment += water waves = Waves(wind, water) model.environment += waves print "the environment:", model.environment start_time = model.start_time model.duration = timedelta(hours=12) end_time = start_time + timedelta(hours=1) spill = point_line_release_spill(100, start_position=rel_start_pos, release_time=start_time, end_release_time=start_time + hours(1), end_position=rel_end_pos, substance=test_oil, amount=1000, units='kg') model.spills += spill # figure out mid-run save for weathering_data attribute, then add this in # rel_time = model.spills[0].release_time skim_start = start_time + timedelta(hours=1) amount = model.spills[0].amount units = model.spills[0].units skimmer = Skimmer(.3 * amount, units=units, efficiency=0.3, active_range=(skim_start, skim_start + hours(1))) # thickness = 1m so area is just 20% of volume volume = spill.get_mass() / spill.substance.density_at_temp() burn = Burn(0.2 * volume, 1.0, active_range=(skim_start, InfDateTime('inf')), efficiency=0.9) c_disp = ChemicalDispersion(.1, efficiency=0.5, active_range=(skim_start, skim_start + timedelta(hours=1)), waves=waves) model.weatherers += [Evaporation(), c_disp, burn, skimmer] model.outputters += WeatheringOutput() model.rewind() return model
def make_model(): """ Set up a GNOME simulation that uses TAMOC Set up a spill scenario in GNOME that uses TAMOC to simulate a subsurface blowout and then pass the TAMOC solution to GNOME for the far-field particle tracking """ # Set up the directory structure for the model base_dir, images_dir, outfiles_dir = set_directory_structure() # Set up the modeling environment print '\n-- Initializing the Model --' start_time = "2019-06-01T12:00" model = gs.Model(start_time=start_time, duration=gs.days(3), time_step=gs.minutes(30), uncertain=False) # Add a map print '\n-- Adding a Map --' model.map = gs.GnomeMap() # Add image output print '\n-- Adding Image Outputters --' renderer = gs.Renderer(output_dir=images_dir, image_size=(1024, 768), output_timestep=gs.hours(1), viewport=((-0.15, -0.35), (0.15, 0.35))) model.outputters += renderer # Add NetCDF output print '\n-- Adding NetCDF Outputter --' if not os.path.exists(outfiles_dir): os.mkdir(outfiles_dir) netcdf_file = os.path.join(outfiles_dir, 'script_tamoc.nc') gs.remove_netcdf(netcdf_file) file_writer = gs.NetCDFOutput(netcdf_file, which_data='all', output_timestep=gs.hours(2)) model.outputters += file_writer # Add a spill object print '\n-- Adding a Point Spill --' end_release_time = model.start_time + gs.hours(12) point_source = ts.TamocSpill(num_elements=100, start_position=(0.0, 0.0, 1000.), release_duration=gs.hours(24), release_time=start_time, substance='AD01554', release_rate=20000., units='bbl/day', gor=500., d0=0.5, phi_0=-np.pi / 2., theta_0=0., windage_range=(0.01, 0.04), windage_persist=900, name='Oil Well Blowout') model.spills += point_source # Create an ocean environment water, wind, waves = base_environment(water_temp=273.15 + 21., wind_speed=5., wind_dir=225.) # Add a uniform current in the easterly direction print '\n-- Adding Currents --' uniform_current = gs.SimpleMover(velocity=(0.1, 0.0, 0.)) model.movers += uniform_current # Add a wind mover wind_mover = gs.WindMover(wind) model.movers += wind_mover # Add particle diffusion...note, units are in cm^2/s print '\n-- Adding Particle Diffusion --' particle_diffusion = gs.RandomMover3D( horizontal_diffusion_coef_above_ml=100000., horizontal_diffusion_coef_below_ml=10000., vertical_diffusion_coef_above_ml=100., vertical_diffusion_coef_below_ml=10., mixed_layer_depth=15.) model.movers += particle_diffusion # Add rise velocity for droplets print '\n-- Adding Particle Rise Velocity --' # fixme: we do have code for rise velocity: # gnome.movers.RiseVelocityMover # let's test that later slip_velocity = gs.SimpleMover(velocity=(0.0, 0.0, -0.1)) model.movers += slip_velocity # Add dissolution print '\n-- Adding Weathering --' evaporation = Evaporation(water=water, wind=wind) model.weatherers += evaporation dissolution = Dissolution(waves=waves, wind=wind) model.weatherers += dissolution return model
def make_model(images_dir=os.path.join(base_dir, 'images')): print 'initializing the model' start_time = "1985-01-01T13:31" model = gs.Model(start_time=start_time, duration=gs.days(2), time_step=gs.hours(1)) mapfile = gs.get_datafile(os.path.join(base_dir, 'ak_arctic.bna')) print 'adding the map' model.map = gs.MapFromBNA(mapfile, refloat_halflife=0.0) # seconds print 'adding outputters' renderer = gs.Renderer(mapfile, images_dir, image_size=(1024, 768)) renderer.set_viewport(((-165, 69), (-161.5, 70))) # model.outputters += renderer netcdf_file = os.path.join(base_dir, 'script_ice.nc') gs.remove_netcdf(netcdf_file) model.outputters += gs.NetCDFOutput(netcdf_file, which_data='all') print 'adding a spill' # For a subsurfce spill, you would need to add vertical movers: # - gs.RiseVelocityMover # - gs.RandomVerticalMover spill1 = gs.point_line_release_spill(num_elements=1000, start_position=(-163.75, 69.75, 0.0), release_time=start_time) model.spills += spill1 print 'adding the ice movers' fn = [gs.get_datafile('arctic_avg2_0001_gnome.nc'), gs.get_datafile('arctic_avg2_0002_gnome.nc'), ] gt = {'node_lon': 'lon', 'node_lat': 'lat'} ice_aware_curr = gs.IceAwareCurrent.from_netCDF(filename=fn, grid_topology=gt) ice_aware_wind = gs.IceAwareWind.from_netCDF(filename=fn, grid=ice_aware_curr.grid,) method = 'RK2' i_c_mover = gs.PyCurrentMover(current=ice_aware_curr, default_num_method=method) i_w_mover = gs.PyWindMover(wind=ice_aware_wind, default_num_method=method) # shifting to -360 to 0 longitude ice_aware_curr.grid.node_lon = ice_aware_curr.grid.node_lon[:] - 360 model.movers += i_c_mover model.movers += i_w_mover print 'adding an Ice RandomMover:' model.movers += IceAwareRandomMover(ice_concentration=ice_aware_curr.ice_concentration, diffusion_coef=50000) # to visualize the grid and currents # renderer.add_grid(ice_aware_curr.grid) # renderer.add_vec_prop(ice_aware_curr) return model
def make_model(images_dir=os.path.join(base_dir, 'images')): print 'initializing the model' start_time = "1985-01-01T13:31" model = gs.Model(start_time=start_time, duration=gs.days(2), time_step=gs.hours(1)) mapfile = gs.get_datafile(os.path.join(base_dir, 'ak_arctic.bna')) print 'adding the map' model.map = gs.MapFromBNA(mapfile, refloat_halflife=0.0) # seconds print 'adding outputters' renderer = gs.Renderer(mapfile, images_dir, image_size=(1024, 768)) renderer.set_viewport(((-165, 69), (-161.5, 70))) # model.outputters += renderer netcdf_file = os.path.join(base_dir, 'script_ice.nc') gs.remove_netcdf(netcdf_file) model.outputters += gs.NetCDFOutput(netcdf_file, which_data='all') print 'adding a spill' # For a subsurfce spill, you would need to add vertical movers: # - gs.RiseVelocityMover # - gs.RandomVerticalMover spill1 = gs.point_line_release_spill(num_elements=1000, start_position=(-163.75, 69.75, 0.0), release_time=start_time) model.spills += spill1 print 'adding the ice movers' fn = [ gs.get_datafile('arctic_avg2_0001_gnome.nc'), gs.get_datafile('arctic_avg2_0002_gnome.nc'), ] gt = {'node_lon': 'lon', 'node_lat': 'lat'} ice_aware_curr = gs.IceAwareCurrent.from_netCDF(filename=fn, grid_topology=gt) ice_aware_wind = gs.IceAwareWind.from_netCDF( filename=fn, grid=ice_aware_curr.grid, ) method = 'RK2' i_c_mover = gs.PyCurrentMover(current=ice_aware_curr, default_num_method=method) i_w_mover = gs.PyWindMover(wind=ice_aware_wind, default_num_method=method) # shifting to -360 to 0 longitude ice_aware_curr.grid.node_lon = ice_aware_curr.grid.node_lon[:] - 360 model.movers += i_c_mover model.movers += i_w_mover print 'adding an Ice RandomMover:' model.movers += IceAwareRandomMover( ice_concentration=ice_aware_curr.ice_concentration, diffusion_coef=50000) # to visualize the grid and currents # renderer.add_grid(ice_aware_curr.grid) # renderer.add_vec_prop(ice_aware_curr) return model