def __init__(self,frame,panel,vbox,argv): stdgui2.std_top_block.__init__ (self,frame,panel,vbox,argv) parser=OptionParser(option_class=eng_option) parser.add_option("-a", "--args", type="string", default="", help="UHD device address args [default=%default]") parser.add_option("", "--spec", type="string", default=None, help="Subdevice of UHD device where appropriate") parser.add_option("-A", "--antenna", type="string", default=None, help="select Rx Antenna where appropriate") parser.add_option("-f", "--freq", type="eng_float", default=100.1e6, help="set frequency to FREQ", metavar="FREQ") parser.add_option("-g", "--gain", type="eng_float", default=65, help="set gain in dB (default is midpoint)") parser.add_option("-s", "--squelch", type="eng_float", default=0, help="set squelch level (default is 0)") parser.add_option("-V", "--volume", type="eng_float", default=None, help="set volume (default is midpoint)") parser.add_option("-O", "--audio-output", type="string", default="", help="pcm device name. E.g., hw:0,0 or surround51 or /dev/dsp") parser.add_option("", "--freq-min", type="eng_float", default=87.9e6, help="Set a minimum frequency [default=%default]") parser.add_option("", "--freq-max", type="eng_float", default=108.1e6, help="Set a maximum frequency [default=%default]") (options, args) = parser.parse_args() if len(args) != 0: parser.print_help() sys.exit(1) self.frame = frame self.panel = panel self.vol = 0 self.state = "FREQ" self.freq = 0 self.fm_freq_min = options.freq_min self.fm_freq_max = options.freq_max # build graph self.u = uhd.usrp_source(device_addr=options.args, stream_args=uhd.stream_args('fc32')) # Set the subdevice spec if(options.spec): self.u.set_subdev_spec(options.spec, 0) # Set the antenna if(options.antenna): self.u.set_antenna(options.antenna, 0) usrp_rate = 320e3 demod_rate = 320e3 audio_rate = 48e3 audio_decim = 10 self.u.set_samp_rate(usrp_rate) dev_rate = self.u.get_samp_rate() nfilts = 32 chan_coeffs = gr.firdes.low_pass_2 (nfilts, # gain nfilts*usrp_rate, # sampling rate 90e3, # passband cutoff 30e3, # stopband cutoff 70) # stopband attenuation rrate = usrp_rate / dev_rate self.chan_filt = blks2.pfb_arb_resampler_ccf(rrate, chan_coeffs, nfilts) self.guts = blks2.wfm_rcv_pll (demod_rate, audio_decim) chan_rate = audio_rate / (demod_rate/audio_decim) self.rchan_filt = blks2.pfb_arb_resampler_fff(chan_rate) self.lchan_filt = blks2.pfb_arb_resampler_fff(chan_rate) # FIXME rework {add,multiply}_const_* to handle multiple streams self.volume_control_l = gr.multiply_const_ff(self.vol) self.volume_control_r = gr.multiply_const_ff(self.vol) # sound card as final sink self.audio_sink = audio.sink (int (audio_rate), options.audio_output, False) # ok_to_block # now wire it all together self.connect (self.u, self.chan_filt, self.guts) self.connect((self.guts, 0), self.lchan_filt, self.volume_control_l, (self.audio_sink,0)) self.connect((self.guts, 1), self.rchan_filt, self.volume_control_r, (self.audio_sink,1)) try: self.guts.stereo_carrier_pll_recovery.squelch_enable(True) except: print "FYI: This implementation of the stereo_carrier_pll_recovery has no squelch implementation yet" self._build_gui(vbox, usrp_rate, demod_rate, audio_rate) if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.u.get_gain_range() options.gain = float(g.start()+g.stop())/2.0 if options.volume is None: g = self.volume_range() options.volume = float(g[0]+g[1])/2 frange = self.u.get_freq_range() if(frange.start() > self.fm_freq_max or frange.stop() < self.fm_freq_min): sys.stderr.write("Radio does not support required frequency range.\n") sys.exit(1) if(options.freq < self.fm_freq_min or options.freq > self.fm_freq_max): sys.stderr.write("Requested frequency is outside of required frequency range.\n") sys.exit(1) # set initial values self.set_gain(options.gain) self.set_vol(options.volume) try: self.guts.stereo_carrier_pll_recovery.set_lock_threshold(options.squelch) except: print "FYI: This implementation of the stereo_carrier_pll_recovery has no squelch implementation yet" if not(self.set_freq(options.freq)): self._set_status_msg("Failed to set initial frequency")
def __init__(self, samples_per_symbol=_def_samples_per_symbol, bits_per_symbol=_def_bits_per_symbol, h_numerator=_def_h_numerator, h_denominator=_def_h_denominator, cpm_type=_def_cpm_type, bt=_def_bt, symbols_per_pulse=_def_symbols_per_pulse, generic_taps=_def_generic_taps, verbose=_def_verbose, log=_def_log): """ Hierarchical block for Continuous Phase modulation. The input is a byte stream (unsigned char) representing packed bits and the output is the complex modulated signal at baseband. See Proakis for definition of generic CPM signals: s(t)=exp(j phi(t)) phi(t)= 2 pi h int_0^t f(t') dt' f(t)=sum_k a_k g(t-kT) (normalizing assumption: int_0^infty g(t) dt = 1/2) @param samples_per_symbol: samples per baud >= 2 @type samples_per_symbol: integer @param bits_per_symbol: bits per symbol @type bits_per_symbol: integer @param h_numerator: numerator of modulation index @type h_numerator: integer @param h_denominator: denominator of modulation index (numerator and denominator must be relative primes) @type h_denominator: integer @param cpm_type: supported types are: 0=CPFSK, 1=GMSK, 2=RC, 3=GENERAL @type cpm_type: integer @param bt: bandwidth symbol time product for GMSK @type bt: float @param symbols_per_pulse: shaping pulse duration in symbols @type symbols_per_pulse: integer @param generic_taps: define a generic CPM pulse shape (sum = samples_per_symbol/2) @type generic_taps: array of floats @param verbose: Print information about modulator? @type verbose: bool @param debug: Print modulation data to files? @type debug: bool """ gr.hier_block2.__init__(self, "cpm_mod", gr.io_signature(1, 1, gr.sizeof_char), # Input signature gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature self._samples_per_symbol = samples_per_symbol self._bits_per_symbol = bits_per_symbol self._h_numerator = h_numerator self._h_denominator = h_denominator self._cpm_type = cpm_type self._bt=bt if cpm_type == 0 or cpm_type == 2 or cpm_type == 3: # CPFSK, RC, Generic self._symbols_per_pulse = symbols_per_pulse elif cpm_type == 1: # GMSK self._symbols_per_pulse = 4 else: raise TypeError, ("cpm_type must be an integer in {0,1,2,3}, is %r" % (cpm_type,)) self._generic_taps=numpy.array(generic_taps) if samples_per_symbol < 2: raise TypeError, ("samples_per_symbol must be >= 2, is %r" % (samples_per_symbol,)) self.nsymbols = 2**bits_per_symbol self.sym_alphabet = numpy.arange(-(self.nsymbols-1),self.nsymbols,2).tolist() self.ntaps = int(self._symbols_per_pulse * samples_per_symbol) sensitivity = 2 * pi * h_numerator / h_denominator / samples_per_symbol # Unpack Bytes into bits_per_symbol groups self.B2s = gr.packed_to_unpacked_bb(bits_per_symbol,gr.GR_MSB_FIRST) # Turn it into symmetric PAM data. self.pam = gr.chunks_to_symbols_bf(self.sym_alphabet,1) # Generate pulse (sum of taps = samples_per_symbol/2) if cpm_type == 0: # CPFSK self.taps= (1.0/self._symbols_per_pulse/2,) * self.ntaps elif cpm_type == 1: # GMSK gaussian_taps = gr.firdes.gaussian( 1.0/2, # gain samples_per_symbol, # symbol_rate bt, # bandwidth * symbol time self.ntaps # number of taps ) sqwave = (1,) * samples_per_symbol # rectangular window self.taps = numpy.convolve(numpy.array(gaussian_taps),numpy.array(sqwave)) elif cpm_type == 2: # Raised Cosine # generalize it for arbitrary roll-off factor self.taps = (1-numpy.cos(2*pi*numpy.arange(0,self.ntaps)/samples_per_symbol/self._symbols_per_pulse))/(2*self._symbols_per_pulse) elif cpm_type == 3: # Generic CPM self.taps = generic_taps else: raise TypeError, ("cpm_type must be an integer in {0,1,2,3}, is %r" % (cpm_type,)) self.filter = blks2.pfb_arb_resampler_fff(samples_per_symbol, self.taps) # FM modulation self.fmmod = gr.frequency_modulator_fc(sensitivity) if verbose: self._print_verbage() if log: self._setup_logging() # Connect self.connect(self, self.B2s, self.pam, self.filter, self.fmmod, self)
def __init__(self,frame,panel,vbox,argv): stdgui2.std_top_block.__init__ (self,frame,panel,vbox,argv) parser=OptionParser(option_class=eng_option) parser.add_option("-a", "--args", type="string", default="", help="UHD device address args [default=%default]") parser.add_option("", "--spec", type="string", default=None, help="Subdevice of UHD device where appropriate") parser.add_option("-A", "--antenna", type="string", default=None, help="select Rx Antenna where appropriate") parser.add_option("-f", "--freq", type="eng_float", default=100.1e6, help="set frequency to FREQ", metavar="FREQ") parser.add_option("-g", "--gain", type="eng_float", default=65, help="set gain in dB (default is midpoint)") parser.add_option("-s", "--squelch", type="eng_float", default=0, help="set squelch level (default is 0)") parser.add_option("-V", "--volume", type="eng_float", default=None, help="set volume (default is midpoint)") parser.add_option("-O", "--audio-output", type="string", default="", help="pcm device name. E.g., hw:0,0 or surround51 or /dev/dsp") parser.add_option("", "--freq-min", type="eng_float", default=87.9e6, help="Set a minimum frequency [default=%default]") parser.add_option("", "--freq-max", type="eng_float", default=108.1e6, help="Set a maximum frequency [default=%default]") (options, args) = parser.parse_args() if len(args) != 0: parser.print_help() sys.exit(1) self.frame = frame self.panel = panel self.vol = 0 self.state = "FREQ" self.freq = 0 self.fm_freq_min = options.freq_min self.fm_freq_max = options.freq_max # build graph self.u = uhd.usrp_source(device_addr=options.args, stream_args=uhd.stream_args('fc32')) usrp_rate = 320e3 demod_rate = 320e3 audio_rate = 48e3 audio_decim = 10 self.u.set_samp_rate(usrp_rate) dev_rate = self.u.get_samp_rate() nfilts = 32 chan_coeffs = gr.firdes.low_pass_2 (nfilts, # gain nfilts*usrp_rate, # sampling rate 90e3, # passband cutoff 30e3, # stopband cutoff 70) # stopband attenuation rrate = usrp_rate / dev_rate self.chan_filt = blks2.pfb_arb_resampler_ccf(rrate, chan_coeffs, nfilts) self.guts = blks2.wfm_rcv_pll (demod_rate, audio_decim) chan_rate = audio_rate / (demod_rate/audio_decim) self.rchan_filt = blks2.pfb_arb_resampler_fff(chan_rate) self.lchan_filt = blks2.pfb_arb_resampler_fff(chan_rate) # FIXME rework {add,multiply}_const_* to handle multiple streams self.volume_control_l = gr.multiply_const_ff(self.vol) self.volume_control_r = gr.multiply_const_ff(self.vol) # sound card as final sink self.audio_sink = audio.sink (int (audio_rate), options.audio_output, False) # ok_to_block # now wire it all together self.connect (self.u, self.chan_filt, self.guts) self.connect((self.guts, 0), self.lchan_filt, self.volume_control_l, (self.audio_sink,0)) self.connect((self.guts, 1), self.rchan_filt, self.volume_control_r, (self.audio_sink,1)) try: self.guts.stereo_carrier_pll_recovery.squelch_enable(True) except: print "FYI: This implementation of the stereo_carrier_pll_recovery has no squelch implementation yet" self._build_gui(vbox, usrp_rate, demod_rate, audio_rate) if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.u.get_gain_range() options.gain = float(g.start()+g.stop())/2.0 if options.volume is None: g = self.volume_range() options.volume = float(g[0]+g[1])/2 frange = self.u.get_freq_range() if(frange.start() > self.fm_freq_max or frange.stop() < self.fm_freq_min): sys.stderr.write("Radio does not support required frequency range.\n") sys.exit(1) if(options.freq < self.fm_freq_min or options.freq > self.fm_freq_max): sys.stderr.write("Requested frequency is outside of required frequency range.\n") sys.exit(1) # set initial values self.set_gain(options.gain) self.set_vol(options.volume) try: self.guts.stereo_carrier_pll_recovery.set_lock_threshold(options.squelch) except: print "FYI: This implementation of the stereo_carrier_pll_recovery has no squelch implementation yet" if not(self.set_freq(options.freq)): self._set_status_msg("Failed to set initial frequency") # Set the subdevice spec if(options.spec): self.u.set_subdev_spec(options.spec, 0) # Set the antenna if(options.antenna): self.u.set_antenna(options.antenna, 0)
def __init__(self, samples_per_symbol=_def_samples_per_symbol, bits_per_symbol=_def_bits_per_symbol, h_numerator=_def_h_numerator, h_denominator=_def_h_denominator, cpm_type=_def_cpm_type, bt=_def_bt, symbols_per_pulse=_def_symbols_per_pulse, generic_taps=_def_generic_taps, verbose=_def_verbose, log=_def_log): """ Hierarchical block for Continuous Phase modulation. The input is a byte stream (unsigned char) representing packed bits and the output is the complex modulated signal at baseband. See Proakis for definition of generic CPM signals: s(t)=exp(j phi(t)) phi(t)= 2 pi h int_0^t f(t') dt' f(t)=sum_k a_k g(t-kT) (normalizing assumption: int_0^infty g(t) dt = 1/2) @param samples_per_symbol: samples per baud >= 2 @type samples_per_symbol: integer @param bits_per_symbol: bits per symbol @type bits_per_symbol: integer @param h_numerator: numerator of modulation index @type h_numerator: integer @param h_denominator: denominator of modulation index (numerator and denominator must be relative primes) @type h_denominator: integer @param cpm_type: supported types are: 0=CPFSK, 1=GMSK, 2=RC, 3=GENERAL @type cpm_type: integer @param bt: bandwidth symbol time product for GMSK @type bt: float @param symbols_per_pulse: shaping pulse duration in symbols @type symbols_per_pulse: integer @param generic_taps: define a generic CPM pulse shape (sum = samples_per_symbol/2) @type generic_taps: array of floats @param verbose: Print information about modulator? @type verbose: bool @param debug: Print modulation data to files? @type debug: bool """ gr.hier_block2.__init__( self, "cpm_mod", gr.io_signature(1, 1, gr.sizeof_char), # Input signature gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature self._samples_per_symbol = samples_per_symbol self._bits_per_symbol = bits_per_symbol self._h_numerator = h_numerator self._h_denominator = h_denominator self._cpm_type = cpm_type self._bt = bt if cpm_type == 0 or cpm_type == 2 or cpm_type == 3: # CPFSK, RC, Generic self._symbols_per_pulse = symbols_per_pulse elif cpm_type == 1: # GMSK self._symbols_per_pulse = 4 else: raise TypeError, ( "cpm_type must be an integer in {0,1,2,3}, is %r" % (cpm_type, )) self._generic_taps = numpy.array(generic_taps) if samples_per_symbol < 2: raise TypeError, ("samples_per_symbol must be >= 2, is %r" % (samples_per_symbol, )) self.nsymbols = 2**bits_per_symbol self.sym_alphabet = numpy.arange(-(self.nsymbols - 1), self.nsymbols, 2).tolist() self.ntaps = int(self._symbols_per_pulse * samples_per_symbol) sensitivity = 2 * pi * h_numerator / h_denominator / samples_per_symbol # Unpack Bytes into bits_per_symbol groups self.B2s = gr.packed_to_unpacked_bb(bits_per_symbol, gr.GR_MSB_FIRST) # Turn it into symmetric PAM data. self.pam = gr.chunks_to_symbols_bf(self.sym_alphabet, 1) # Generate pulse (sum of taps = samples_per_symbol/2) if cpm_type == 0: # CPFSK self.taps = (1.0 / self._symbols_per_pulse / 2, ) * self.ntaps elif cpm_type == 1: # GMSK gaussian_taps = gr.firdes.gaussian( 1.0 / 2, # gain samples_per_symbol, # symbol_rate bt, # bandwidth * symbol time self.ntaps # number of taps ) sqwave = (1, ) * samples_per_symbol # rectangular window self.taps = numpy.convolve(numpy.array(gaussian_taps), numpy.array(sqwave)) elif cpm_type == 2: # Raised Cosine # generalize it for arbitrary roll-off factor self.taps = (1 - numpy.cos( 2 * pi * numpy.arange(0, self.ntaps) / samples_per_symbol / self._symbols_per_pulse)) / (2 * self._symbols_per_pulse) elif cpm_type == 3: # Generic CPM self.taps = generic_taps else: raise TypeError, ( "cpm_type must be an integer in {0,1,2,3}, is %r" % (cpm_type, )) self.filter = blks2.pfb_arb_resampler_fff(samples_per_symbol, self.taps) # FM modulation self.fmmod = gr.frequency_modulator_fc(sensitivity) if verbose: self._print_verbage() if log: self._setup_logging() # Connect self.connect(self, self.B2s, self.pam, self.filter, self.fmmod, self)