예제 #1
0
    def __init__(self, fft_length, cp_length, logging=False):
        """
        OFDM synchronization using PN Correlation:
        T. M. Schmidl and D. C. Cox, "Robust Frequency and Timing
        Synchonization for OFDM," IEEE Trans. Communications, vol. 45,
        no. 12, 1997.
        """
        
	gr.hier_block2.__init__(self, "ofdm_sync_pn",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature

        self.input = gr.add_const_cc(0)

        # PN Sync

        # Create a delay line
        self.delay = gr.delay(gr.sizeof_gr_complex, fft_length/2)

        # Correlation from ML Sync
        self.conjg = gr.conjugate_cc();
        self.corr = gr.multiply_cc();

        # Create a moving sum filter for the corr output
        if 1:
            moving_sum_taps = [1.0 for i in range(fft_length//2)]
            self.moving_sum_filter = gr.fir_filter_ccf(1,moving_sum_taps)
        else:
            moving_sum_taps = [complex(1.0,0.0) for i in range(fft_length//2)]
            self.moving_sum_filter = gr.fft_filter_ccc(1,moving_sum_taps)

        # Create a moving sum filter for the input
        self.inputmag2 = gr.complex_to_mag_squared()

        # Modified by Yong (12.06.27)
        #movingsum2_taps = [1.0 for i in range(fft_length//2)]
        movingsum2_taps = [0.5 for i in range(fft_length)]

        if 1:
            self.inputmovingsum = gr.fir_filter_fff(1,movingsum2_taps)
        else:
            self.inputmovingsum = gr.fft_filter_fff(1,movingsum2_taps)

        self.square = gr.multiply_ff()
        self.normalize = gr.divide_ff()
     
        # Get magnitude (peaks) and angle (phase/freq error)
        self.c2mag = gr.complex_to_mag_squared()
        self.angle = gr.complex_to_arg()

        self.sample_and_hold = gr.sample_and_hold_ff()

        #ML measurements input to sampler block and detect
        self.sub1 = gr.add_const_ff(-1)
        self.pk_detect = gr.peak_detector_fb(0.20, 0.20, 30, 0.001)
        #self.pk_detect = gr.peak_detector2_fb(9)

        self.connect(self, self.input)
        
        # Calculate the frequency offset from the correlation of the preamble
        self.connect(self.input, self.delay)
        self.connect(self.input, (self.corr,0))
        self.connect(self.delay, self.conjg)
        self.connect(self.conjg, (self.corr,1))
        self.connect(self.corr, self.moving_sum_filter)
        self.connect(self.moving_sum_filter, self.c2mag)
        self.connect(self.moving_sum_filter, self.angle)
        self.connect(self.angle, (self.sample_and_hold,0))

        # Get the power of the input signal to normalize the output of the correlation
        self.connect(self.input, self.inputmag2, self.inputmovingsum)
        self.connect(self.inputmovingsum, (self.square,0))
        self.connect(self.inputmovingsum, (self.square,1))
        self.connect(self.square, (self.normalize,1))
        self.connect(self.c2mag, (self.normalize,0))

        # Create a moving sum filter for the corr output
        matched_filter_taps = [1.0/cp_length for i in range(cp_length)]
        self.matched_filter = gr.fir_filter_fff(1,matched_filter_taps)
        self.connect(self.normalize, self.matched_filter)
        
        self.connect(self.matched_filter, self.sub1, self.pk_detect)
        #self.connect(self.matched_filter, self.pk_detect)
        self.connect(self.pk_detect, (self.sample_and_hold,1))

        # Set output signals
        #    Output 0: fine frequency correction value
        #    Output 1: timing signal
        self.connect(self.sample_and_hold, (self,0))
        self.connect(self.pk_detect, (self,1))

        if logging:
            self.connect(self.matched_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-mf_f.dat"))
            self.connect(self.c2mag, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-nominator_f.dat"))
            self.connect(self.square, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-denominator_f.dat"))
            self.connect(self.normalize, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-theta_f.dat"))
            self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-epsilon_f.dat"))
            self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_pn-peaks_b.dat"))
            self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-sample_and_hold_f.dat"))
            self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pn-input_c.dat"))
 def test_add_const_cc (self):
     src_data = (1, 2, 3, 4, 5)
     expected_result = (1+5j, 2+5j, 3+5j, 4+5j, 5+5j)
     op = gr.add_const_cc (5j)
     self.help_cc_const ((src_data,), expected_result, op)
예제 #3
0
    def __init__(self, fft_length, cp_length, kstime, logging=False):
        """
        OFDM synchronization using PN Correlation and initial cross-correlation:
        F. Tufvesson, O. Edfors, and M. Faulkner, "Time and Frequency Synchronization for OFDM using
        PN-Sequency Preambles," IEEE Proc. VTC, 1999, pp. 2203-2207.

        This implementation is meant to be a more robust version of the Schmidl and Cox receiver design.
        By correlating against the preamble and using that as the input to the time-delayed correlation,
        this circuit produces a very clean timing signal at the end of the preamble. The timing is 
        more accurate and does not have the problem associated with determining the timing from the
        plateau structure in the Schmidl and Cox.

        This implementation appears to require that the signal is received with a normalized power or signal
        scalling factor to reduce ambiguities intorduced from partial correlation of the cyclic prefix and
        the peak detection. A better peak detection block might fix this.

        Also, the cross-correlation falls apart as the frequency offset gets larger and completely fails
        when an integer offset is introduced. Another thing to look at.
        """

	gr.hier_block2.__init__(self, "ofdm_sync_pnac",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature

            
        self.input = gr.add_const_cc(0)

        symbol_length = fft_length + cp_length

        # PN Sync with cross-correlation input

        # cross-correlate with the known symbol
        kstime = [k.conjugate() for k in kstime[0:fft_length//2]]
        kstime.reverse()
        self.crosscorr_filter = filter.fir_filter_ccc(1, kstime)
        
        # Create a delay line
        self.delay = gr.delay(gr.sizeof_gr_complex, fft_length/2)

        # Correlation from ML Sync
        self.conjg = gr.conjugate_cc();
        self.corr = gr.multiply_cc();

        # Create a moving sum filter for the input
        self.mag = gr.complex_to_mag_squared()
        movingsum_taps = (fft_length//1)*[1.0,]
        self.power = filter.fir_filter_fff(1,movingsum_taps)
     
        # Get magnitude (peaks) and angle (phase/freq error)
        self.c2mag = gr.complex_to_mag_squared()
        self.angle = gr.complex_to_arg()
        self.compare = gr.sub_ff()
        
        self.sample_and_hold = gr.sample_and_hold_ff()

        #ML measurements input to sampler block and detect
        self.threshold = gr.threshold_ff(0,0,0)      # threshold detection might need to be tweaked
        self.peaks = gr.float_to_char()

        self.connect(self, self.input)

        # Cross-correlate input signal with known preamble
        self.connect(self.input, self.crosscorr_filter)

        # use the output of the cross-correlation as input time-shifted correlation
        self.connect(self.crosscorr_filter, self.delay)
        self.connect(self.crosscorr_filter, (self.corr,0))
        self.connect(self.delay, self.conjg)
        self.connect(self.conjg, (self.corr,1))
        self.connect(self.corr, self.c2mag)
        self.connect(self.corr, self.angle)
        self.connect(self.angle, (self.sample_and_hold,0))
        
        # Get the power of the input signal to compare against the correlation
        self.connect(self.crosscorr_filter, self.mag, self.power)

        # Compare the power to the correlator output to determine timing peak
        # When the peak occurs, it peaks above zero, so the thresholder detects this
        self.connect(self.c2mag, (self.compare,0))
        self.connect(self.power, (self.compare,1))
        self.connect(self.compare, self.threshold)
        self.connect(self.threshold, self.peaks, (self.sample_and_hold,1))

        # Set output signals
        #    Output 0: fine frequency correction value
        #    Output 1: timing signal
        self.connect(self.sample_and_hold, (self,0))
        self.connect(self.peaks, (self,1))

        if logging:
            self.connect(self.compare, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-compare_f.dat"))
            self.connect(self.c2mag, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-theta_f.dat"))
            self.connect(self.power, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-inputpower_f.dat"))
            self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-epsilon_f.dat"))
            self.connect(self.threshold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-threshold_f.dat"))
            self.connect(self.peaks, gr.file_sink(gr.sizeof_char, "ofdm_sync_pnac-peaks_b.dat"))
            self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-sample_and_hold_f.dat"))
            self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pnac-input_c.dat"))
예제 #4
0
 def test_add_const_cc(self):
     src_data = (1, 2, 3, 4, 5)
     expected_result = (1 + 5j, 2 + 5j, 3 + 5j, 4 + 5j, 5 + 5j)
     op = gr.add_const_cc(5j)
     self.help_cc((src_data, ), expected_result, op)
예제 #5
0
    def __init__(self, fft_length, cp_length, snr, kstime, logging):
        ''' Maximum Likelihood OFDM synchronizer:
        J. van de Beek, M. Sandell, and P. O. Borjesson, "ML Estimation
        of Time and Frequency Offset in OFDM Systems," IEEE Trans.
        Signal Processing, vol. 45, no. 7, pp. 1800-1805, 1997.
        '''

	gr.hier_block2.__init__(self, "ofdm_sync_ml",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature

        self.input = gr.add_const_cc(0)

        SNR = 10.0**(snr/10.0)
        rho = SNR / (SNR + 1.0)
        symbol_length = fft_length + cp_length

        # ML Sync

        # Energy Detection from ML Sync

        self.connect(self, self.input)

        # Create a delay line
        self.delay = gr.delay(gr.sizeof_gr_complex, fft_length)
        self.connect(self.input, self.delay)

        # magnitude squared blocks
        self.magsqrd1 = gr.complex_to_mag_squared()
        self.magsqrd2 = gr.complex_to_mag_squared()
        self.adder = gr.add_ff()

        moving_sum_taps = [rho/2 for i in range(cp_length)]
        self.moving_sum_filter = gr.fir_filter_fff(1,moving_sum_taps)
        
        self.connect(self.input,self.magsqrd1)
        self.connect(self.delay,self.magsqrd2)
        self.connect(self.magsqrd1,(self.adder,0))
        self.connect(self.magsqrd2,(self.adder,1))
        self.connect(self.adder,self.moving_sum_filter)
        

        # Correlation from ML Sync
        self.conjg = gr.conjugate_cc();
        self.mixer = gr.multiply_cc();

        movingsum2_taps = [1.0 for i in range(cp_length)]
        self.movingsum2 = gr.fir_filter_ccf(1,movingsum2_taps)
        
        # Correlator data handler
        self.c2mag = gr.complex_to_mag()
        self.angle = gr.complex_to_arg()
        self.connect(self.input,(self.mixer,1))
        self.connect(self.delay,self.conjg,(self.mixer,0))
        self.connect(self.mixer,self.movingsum2,self.c2mag)
        self.connect(self.movingsum2,self.angle)

        # ML Sync output arg, need to find maximum point of this
        self.diff = gr.sub_ff()
        self.connect(self.c2mag,(self.diff,0))
        self.connect(self.moving_sum_filter,(self.diff,1))

        #ML measurements input to sampler block and detect
        self.f2c = gr.float_to_complex()
        self.pk_detect = gr.peak_detector_fb(0.2, 0.25, 30, 0.0005)
        self.sample_and_hold = gr.sample_and_hold_ff()

        # use the sync loop values to set the sampler and the NCO
        #     self.diff = theta
        #     self.angle = epsilon
                          
        self.connect(self.diff, self.pk_detect)

        # The DPLL corrects for timing differences between CP correlations
        use_dpll = 0
        if use_dpll:
            self.dpll = gr.dpll_bb(float(symbol_length),0.01)
            self.connect(self.pk_detect, self.dpll)
            self.connect(self.dpll, (self.sample_and_hold,1))
        else:
            self.connect(self.pk_detect, (self.sample_and_hold,1))
            
        self.connect(self.angle, (self.sample_and_hold,0))

        ################################
        # correlate against known symbol
        # This gives us the same timing signal as the PN sync block only on the preamble
        # we don't use the signal generated from the CP correlation because we don't want
        # to readjust the timing in the middle of the packet or we ruin the equalizer settings.
        kstime = [k.conjugate() for k in kstime]
        kstime.reverse()
        self.kscorr = gr.fir_filter_ccc(1, kstime)
        self.corrmag = gr.complex_to_mag_squared()
        self.div = gr.divide_ff()

        # The output signature of the correlation has a few spikes because the rest of the
        # system uses the repeated preamble symbol. It needs to work that generically if 
        # anyone wants to use this against a WiMAX-like signal since it, too, repeats.
        # The output theta of the correlator above is multiplied with this correlation to
        # identify the proper peak and remove other products in this cross-correlation
        self.threshold_factor = 0.1
        self.slice = gr.threshold_ff(self.threshold_factor, self.threshold_factor, 0)
        self.f2b = gr.float_to_char()
        self.b2f = gr.char_to_float()
        self.mul = gr.multiply_ff()
        
        # Normalize the power of the corr output by the energy. This is not really needed
        # and could be removed for performance, but it makes for a cleaner signal.
        # if this is removed, the threshold value needs adjustment.
        self.connect(self.input, self.kscorr, self.corrmag, (self.div,0))
        self.connect(self.moving_sum_filter, (self.div,1))
        
        self.connect(self.div, (self.mul,0))
        self.connect(self.pk_detect, self.b2f, (self.mul,1))
        self.connect(self.mul, self.slice)
        
        # Set output signals
        #    Output 0: fine frequency correction value
        #    Output 1: timing signal
        self.connect(self.sample_and_hold, (self,0))
        self.connect(self.slice, self.f2b, (self,1))


        if logging:
            self.connect(self.moving_sum_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-energy_f.dat"))
            self.connect(self.diff, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-theta_f.dat"))
            self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-epsilon_f.dat"))
            self.connect(self.corrmag, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-corrmag_f.dat"))
            self.connect(self.kscorr, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-kscorr_c.dat"))
            self.connect(self.div, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-div_f.dat"))
            self.connect(self.mul, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-mul_f.dat"))
            self.connect(self.slice, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-slice_f.dat"))
            self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_ml-peaks_b.dat"))
            if use_dpll:
                self.connect(self.dpll, gr.file_sink(gr.sizeof_char, "ofdm_sync_ml-dpll_b.dat"))

            self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-sample_and_hold_f.dat"))
            self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-input_c.dat"))
예제 #6
0
    def __init__(
        self,
        parent,
        unit="units",
        minval=0,
        maxval=1,
        factor=1,
        decimal_places=3,
        ref_level=0,
        sample_rate=1,
        number_rate=number_window.DEFAULT_NUMBER_RATE,
        average=False,
        avg_alpha=None,
        label="Number Plot",
        size=number_window.DEFAULT_WIN_SIZE,
        peak_hold=False,
        show_gauge=True,
        **kwargs  # catchall for backwards compatibility
    ):
        # ensure avg alpha
        if avg_alpha is None:
            avg_alpha = 2.0 / number_rate
        # init
        gr.hier_block2.__init__(self, "number_sink", gr.io_signature(1, 1, self._item_size), gr.io_signature(0, 0, 0))
        # blocks
        sd = blks2.stream_to_vector_decimator(
            item_size=self._item_size, sample_rate=sample_rate, vec_rate=number_rate, vec_len=1
        )
        if self._real:
            mult = gr.multiply_const_ff(factor)
            add = gr.add_const_ff(ref_level)
            avg = gr.single_pole_iir_filter_ff(1.0)
        else:
            mult = gr.multiply_const_cc(factor)
            add = gr.add_const_cc(ref_level)
            avg = gr.single_pole_iir_filter_cc(1.0)
        msgq = gr.msg_queue(2)
        sink = gr.message_sink(self._item_size, msgq, True)
        # controller
        self.controller = pubsub()
        self.controller.subscribe(SAMPLE_RATE_KEY, sd.set_sample_rate)
        self.controller.publish(SAMPLE_RATE_KEY, sd.sample_rate)
        self.controller[AVERAGE_KEY] = average
        self.controller[AVG_ALPHA_KEY] = avg_alpha

        def update_avg(*args):
            if self.controller[AVERAGE_KEY]:
                avg.set_taps(self.controller[AVG_ALPHA_KEY])
            else:
                avg.set_taps(1.0)

        update_avg()
        self.controller.subscribe(AVERAGE_KEY, update_avg)
        self.controller.subscribe(AVG_ALPHA_KEY, update_avg)
        # start input watcher
        common.input_watcher(msgq, self.controller, MSG_KEY)
        # create window
        self.win = number_window.number_window(
            parent=parent,
            controller=self.controller,
            size=size,
            title=label,
            units=unit,
            real=self._real,
            minval=minval,
            maxval=maxval,
            decimal_places=decimal_places,
            show_gauge=show_gauge,
            average_key=AVERAGE_KEY,
            avg_alpha_key=AVG_ALPHA_KEY,
            peak_hold=peak_hold,
            msg_key=MSG_KEY,
            sample_rate_key=SAMPLE_RATE_KEY,
        )
        common.register_access_methods(self, self.controller)
        # backwards compadibility
        self.set_show_gauge = self.win.show_gauges
        # connect
        self.wxgui_connect(self, sd, mult, add, avg, sink)
예제 #7
0
    def __init__(self, fft_length, cp_length, logging=False):
        """
        OFDM synchronization using PN Correlation:
        T. M. Schmidl and D. C. Cox, "Robust Frequency and Timing
        Synchonization for OFDM," IEEE Trans. Communications, vol. 45,
        no. 12, 1997.
        """
        
	gr.hier_block2.__init__(self, "ofdm_sync_pn",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature

        self.input = gr.add_const_cc(0)

        # PN Sync

        # Create a delay line
        self.delay = gr.delay(gr.sizeof_gr_complex, fft_length/2)

        # Correlation from ML Sync
        self.conjg = gr.conjugate_cc();
        self.corr = gr.multiply_cc();

        # Create a moving sum filter for the corr output
        if 1:
            moving_sum_taps = [1.0 for i in range(fft_length//2)]
            self.moving_sum_filter = gr.fir_filter_ccf(1,moving_sum_taps)
        else:
            moving_sum_taps = [complex(1.0,0.0) for i in range(fft_length//2)]
            self.moving_sum_filter = gr.fft_filter_ccc(1,moving_sum_taps)

        # Create a moving sum filter for the input
        self.inputmag2 = gr.complex_to_mag_squared()
        movingsum2_taps = [1.0 for i in range(fft_length//2)]

        if 1:
            self.inputmovingsum = gr.fir_filter_fff(1,movingsum2_taps)
        else:
            self.inputmovingsum = gr.fft_filter_fff(1,movingsum2_taps)

        self.square = gr.multiply_ff()
        self.normalize = gr.divide_ff()
     
        # Get magnitude (peaks) and angle (phase/freq error)
        self.c2mag = gr.complex_to_mag_squared()
        self.angle = gr.complex_to_arg()

        self.sample_and_hold = gr.sample_and_hold_ff()

        #ML measurements input to sampler block and detect
        #self.sub1 = gr.add_const_ff(-1)
        self.sub1 = gr.add_const_ff(0)
        self.pk_detect = gr.peak_detector_fb(0.20, 0.20, 30, 0.001)
        #self.pk_detect = gr.peak_detector2_fb(9)

        self.connect(self, self.input)
        
        # Calculate the frequency offset from the correlation of the preamble
        self.connect(self.input, self.delay)
        self.connect(self.input, (self.corr,0))
        self.connect(self.delay, self.conjg)
        self.connect(self.conjg, (self.corr,1))
        self.connect(self.corr, self.moving_sum_filter)
        self.connect(self.moving_sum_filter, self.c2mag)
        self.connect(self.moving_sum_filter, self.angle)
        self.connect(self.angle, (self.sample_and_hold,0))

        # Get the power of the input signal to normalize the output of the correlation
        self.connect(self.input, self.inputmag2, self.inputmovingsum)
        self.connect(self.inputmovingsum, (self.square,0))
        self.connect(self.inputmovingsum, (self.square,1))
        self.connect(self.square, (self.normalize,1))
        self.connect(self.c2mag, (self.normalize,0))

        # Create a moving sum filter for the corr output
        matched_filter_taps = [1.0/cp_length for i in range(cp_length)]
        self.matched_filter = gr.fir_filter_fff(1,matched_filter_taps)
        self.connect(self.normalize, self.matched_filter)
        
        self.connect(self.matched_filter, self.sub1, self.pk_detect)
        #self.connect(self.matched_filter, self.pk_detect)
        self.connect(self.pk_detect, (self.sample_and_hold,1))

        # Set output signals
        #    Output 0: fine frequency correction value
        #    Output 1: timing signal
        self.connect(self.sample_and_hold, (self,0))
        self.connect(self.pk_detect, (self,1))

        if logging:
            self.connect(self.matched_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-mf_f.dat"))
            self.connect(self.normalize, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-theta_f.dat"))
            self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-epsilon_f.dat"))
            self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_pn-peaks_b.dat"))
            self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-sample_and_hold_f.dat"))
            self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pn-input_c.dat"))
    def __init__(self, fft_length, cp_length, logging=False):
        """
        OFDM synchronization using PN Correlation:
        T. M. Schmidl and D. C. Cox, "Robust Frequency and Timing
        Synchonization for OFDM," IEEE Trans. Communications, vol. 45,
        no. 12, 1997. Improved with averaging over the whole FFT and 
        peak averaging over cp_length.
        """
        
	gr.hier_block2.__init__(self, "ofdm_sync_pn",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature

        self.input = gr.add_const_cc(0)

        self.delay = gr.delay(gr.sizeof_gr_complex, fft_length/2)

        self.conjg = gr.conjugate_cc();
        self.corr = gr.multiply_cc();

        moving_sum_taps = [1.0 for i in range(fft_length//2)]
        self.moving_sum_filter = gr.fir_filter_ccf(1,moving_sum_taps)
        
        self.inputmag2 = gr.complex_to_mag_squared()
        
        #movingsum2_taps = [0.125 for i in range(fft_length*4)]
        movingsum2_taps = [0.5 for i in range(fft_length*4)]
        self.inputmovingsum = gr.fir_filter_fff(1,movingsum2_taps)
        
        self.square = gr.multiply_ff()
        self.normalize = gr.divide_ff()
     
        self.c2mag = gr.complex_to_mag_squared()
        self.angle = gr.complex_to_arg()

        self.sample_and_hold = flex.sample_and_hold_ff()

        self.sub1 = gr.add_const_ff(-1)
        # linklab, change peak detector parameters: use higher threshold to detect rise/fall of peak
        #self.pk_detect = gr.peak_detector_fb(0.20, 0.20, 30, 0.001)
        self.pk_detect = flex.peak_detector_fb(0.7, 0.7, 30, 0.001) # linklab
        #self.pk_detect = gr.peak_detector2_fb(9)

        self.connect(self, self.input)
        
        # Lower branch:        
        self.connect(self.input, self.delay)
        self.connect(self.input, (self.corr,0))
        self.connect(self.delay, self.conjg)
        self.connect(self.conjg, (self.corr,1))
        self.connect(self.corr, self.moving_sum_filter)
        self.connect(self.moving_sum_filter, self.c2mag)
        self.connect(self.moving_sum_filter, self.angle)
        self.connect(self.angle, (self.sample_and_hold,0))
        self.connect(self.c2mag, (self.normalize,0))

        # Upper branch
        self.connect(self.input, self.inputmag2, self.inputmovingsum)
        self.connect(self.inputmovingsum, (self.square,0))
        self.connect(self.inputmovingsum, (self.square,1))
        self.connect(self.square, (self.normalize,1))
 
        matched_filter_taps = [1.0/cp_length for i in range(cp_length)]
        self.matched_filter = gr.fir_filter_fff(1,matched_filter_taps)
        self.connect(self.normalize, self.matched_filter)
       
        # linklab, provide the signal power into peak detector, linklab
        self.connect(self.square, (self.pk_detect,1))

        self.connect(self.matched_filter, self.sub1, (self.pk_detect, 0))
        self.connect(self.pk_detect, (self.sample_and_hold,1))

        # Set output signals
        #    Output 0: fine frequency correction value
        #    Output 1: timing signal
        self.connect(self.sample_and_hold, (self,0))
        self.connect(self.pk_detect, (self,1))

        if logging:
            self.connect(self.square, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-square.dat"))						
            self.connect(self.c2mag, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-c2mag.dat"))			
            self.connect(self.matched_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-mf_f.dat"))
            self.connect(self.sub1, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-sub1.dat"))
            self.connect(self.normalize, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-theta_f.dat"))
            self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-epsilon_f.dat"))
            self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_pn-peaks_b.dat"))
            self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-sample_and_hold_f.dat"))
            self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pn-input_c.dat"))
예제 #9
0
    def __init__(self, fft_length, cp_length, kstime, logging=False):
        """
        OFDM synchronization using PN Correlation and initial cross-correlation:
        F. Tufvesson, O. Edfors, and M. Faulkner, "Time and Frequency Synchronization for OFDM using
        PN-Sequency Preambles," IEEE Proc. VTC, 1999, pp. 2203-2207.

        This implementation is meant to be a more robust version of the Schmidl and Cox receiver design.
        By correlating against the preamble and using that as the input to the time-delayed correlation,
        this circuit produces a very clean timing signal at the end of the preamble. The timing is 
        more accurate and does not have the problem associated with determining the timing from the
        plateau structure in the Schmidl and Cox.

        This implementation appears to require that the signal is received with a normalized power or signal
        scalling factor to reduce ambiguities intorduced from partial correlation of the cyclic prefix and
        the peak detection. A better peak detection block might fix this.

        Also, the cross-correlation falls apart as the frequency offset gets larger and completely fails
        when an integer offset is introduced. Another thing to look at.
        """

        gr.hier_block2.__init__(
            self,
            "ofdm_sync_pnac",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),  # Input signature
            gr.io_signature2(2, 2, gr.sizeof_float,
                             gr.sizeof_char))  # Output signature

        self.input = gr.add_const_cc(0)

        symbol_length = fft_length + cp_length

        # PN Sync with cross-correlation input

        # cross-correlate with the known symbol
        kstime = [k.conjugate() for k in kstime[0:fft_length // 2]]
        kstime.reverse()
        self.crosscorr_filter = gr.fir_filter_ccc(1, kstime)

        # Create a delay line
        self.delay = gr.delay(gr.sizeof_gr_complex, fft_length / 2)

        # Correlation from ML Sync
        self.conjg = gr.conjugate_cc()
        self.corr = gr.multiply_cc()

        # Create a moving sum filter for the input
        self.mag = gr.complex_to_mag_squared()
        movingsum_taps = (fft_length // 1) * [
            1.0,
        ]
        self.power = gr.fir_filter_fff(1, movingsum_taps)

        # Get magnitude (peaks) and angle (phase/freq error)
        self.c2mag = gr.complex_to_mag_squared()
        self.angle = gr.complex_to_arg()
        self.compare = gr.sub_ff()

        self.sample_and_hold = gr.sample_and_hold_ff()

        #ML measurements input to sampler block and detect
        self.threshold = gr.threshold_ff(
            0, 0, 0)  # threshold detection might need to be tweaked
        self.peaks = gr.float_to_char()

        self.connect(self, self.input)

        # Cross-correlate input signal with known preamble
        self.connect(self.input, self.crosscorr_filter)

        # use the output of the cross-correlation as input time-shifted correlation
        self.connect(self.crosscorr_filter, self.delay)
        self.connect(self.crosscorr_filter, (self.corr, 0))
        self.connect(self.delay, self.conjg)
        self.connect(self.conjg, (self.corr, 1))
        self.connect(self.corr, self.c2mag)
        self.connect(self.corr, self.angle)
        self.connect(self.angle, (self.sample_and_hold, 0))

        # Get the power of the input signal to compare against the correlation
        self.connect(self.crosscorr_filter, self.mag, self.power)

        # Compare the power to the correlator output to determine timing peak
        # When the peak occurs, it peaks above zero, so the thresholder detects this
        self.connect(self.c2mag, (self.compare, 0))
        self.connect(self.power, (self.compare, 1))
        self.connect(self.compare, self.threshold)
        self.connect(self.threshold, self.peaks, (self.sample_and_hold, 1))

        # Set output signals
        #    Output 0: fine frequency correction value
        #    Output 1: timing signal
        self.connect(self.sample_and_hold, (self, 0))
        self.connect(self.peaks, (self, 1))

        if logging:
            self.connect(
                self.compare,
                gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-compare_f.dat"))
            self.connect(
                self.c2mag,
                gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-theta_f.dat"))
            self.connect(
                self.power,
                gr.file_sink(gr.sizeof_float,
                             "ofdm_sync_pnac-inputpower_f.dat"))
            self.connect(
                self.angle,
                gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-epsilon_f.dat"))
            self.connect(
                self.threshold,
                gr.file_sink(gr.sizeof_float,
                             "ofdm_sync_pnac-threshold_f.dat"))
            self.connect(
                self.peaks,
                gr.file_sink(gr.sizeof_char, "ofdm_sync_pnac-peaks_b.dat"))
            self.connect(
                self.sample_and_hold,
                gr.file_sink(gr.sizeof_float,
                             "ofdm_sync_pnac-sample_and_hold_f.dat"))
            self.connect(
                self.input,
                gr.file_sink(gr.sizeof_gr_complex,
                             "ofdm_sync_pnac-input_c.dat"))
예제 #10
0
    def __init__(self, fft_length, cp_length, kstime, threshold, threshold_type, threshold_gap, logging=False):
        """
        OFDM synchronization using PN Correlation:
        T. M. Schmidl and D. C. Cox, "Robust Frequency and Timing
        Synchonization for OFDM," IEEE Trans. Communications, vol. 45,
        no. 12, 1997.
        """
        
	gr.hier_block2.__init__(self, "ofdm_sync_pn",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature

        self.input = gr.add_const_cc(0)

        # PN Sync

        # Create a delay line
        self.delay = gr.delay(gr.sizeof_gr_complex, fft_length/2)

        # Correlation from ML Sync
        self.conjg = gr.conjugate_cc();
        self.corr = gr.multiply_cc();

        # Create a moving sum filter for the corr output
        if 1:
            moving_sum_taps = [1.0 for i in range(fft_length//2)]
            self.moving_sum_filter = gr.fir_filter_ccf(1,moving_sum_taps)
        else:
            moving_sum_taps = [complex(1.0,0.0) for i in range(fft_length//2)]
            self.moving_sum_filter = gr.fft_filter_ccc(1,moving_sum_taps)

        # Create a moving sum filter for the input
        self.inputmag2 = gr.complex_to_mag_squared()
        movingsum2_taps = [1.0 for i in range(fft_length//2)]
	#movingsum2_taps = [0.5 for i in range(fft_length*4)]		#apurv - implementing Veljo's suggestion, when pause b/w packets

        if 1:
            self.inputmovingsum = gr.fir_filter_fff(1,movingsum2_taps)
        else:
            self.inputmovingsum = gr.fft_filter_fff(1,movingsum2_taps)

        self.square = gr.multiply_ff()
        self.normalize = gr.divide_ff()
     
        # Get magnitude (peaks) and angle (phase/freq error)
        self.c2mag = gr.complex_to_mag_squared()
        self.angle = gr.complex_to_arg()

        self.sample_and_hold = gr.sample_and_hold_ff()

        #ML measurements input to sampler block and detect
        self.sub1 = gr.add_const_ff(-1)
        self.pk_detect = gr.peak_detector_fb(0.20, 0.20, 30, 0.001)	#apurv - implementing Veljo's suggestion, when pause b/w packets

        self.connect(self, self.input)
        
        # Calculate the frequency offset from the correlation of the preamble
        self.connect(self.input, self.delay)
        self.connect(self.input, (self.corr,0))
        self.connect(self.delay, self.conjg)
        self.connect(self.conjg, (self.corr,1))


        self.connect(self.corr, self.moving_sum_filter)
        #self.connect(self.moving_sum_filter, self.c2mag)
        self.connect(self.moving_sum_filter, self.angle)
        self.connect(self.angle, (self.sample_and_hold,0))		# apurv--
	#self.connect(self.angle, gr.delay(gr.sizeof_float, offset), (self.sample_and_hold, 0))	#apurv++

	cross_correlate = 1
	if cross_correlate==1:
	   # cross-correlate with the known symbol
	   kstime = [k.conjugate() for k in kstime]
           kstime.reverse()
           self.crosscorr_filter = gr.fir_filter_ccc(1, kstime)

	   # get the magnitude #
	   self.corrmag = gr.complex_to_mag_squared()

	   self.f2b = gr.float_to_char()
	   self.threshold_factor = threshold #0.0012 #0.012   #0.0015
	   if 0:
	      self.slice = gr.threshold_ff(self.threshold_factor, self.threshold_factor, 0, fft_length)
	   else:
	      #thresholds = [self.threshold_factor, 9e-5]
	      self.slice = gr.threshold_ff(threshold, threshold, 0, fft_length, threshold_type, threshold_gap)

	   self.connect(self.input, self.crosscorr_filter, self.corrmag, self.slice, self.f2b)

	   # some debug dump #
	   self.connect(self.corrmag, gr.file_sink(gr.sizeof_float, "ofdm_corrmag.dat"))
	   #self.connect(self.f2b, gr.file_sink(gr.sizeof_char, "ofdm_f2b.dat"))
	   

	self.connect(self.f2b, (self.sample_and_hold,1))
	
        # Set output signals
        #    Output 0: fine frequency correction value
        #    Output 1: timing signal
        self.connect(self.sample_and_hold, (self,0))
	#self.connect(self.pk_detect, (self,1))									#removed
	#self.connect(self.f2b, gr.delay(gr.sizeof_char, 1), (self, 1))
	self.connect(self.f2b, (self, 1))

        if logging:
            self.connect(self.matched_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-mf_f.dat"))
            self.connect(self.normalize, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-theta_f.dat"))
            self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-epsilon_f.dat"))
            self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_pn-peaks_b.dat"))
            self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-sample_and_hold_f.dat"))
            self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pn-input_c.dat"))
예제 #11
0
    def __init__(self,
                 fft_length,
                 cp_length,
                 kstime,
                 threshold,
                 threshold_type,
                 threshold_gap,
                 logging=False):
        """
        OFDM synchronization using PN Correlation:
        T. M. Schmidl and D. C. Cox, "Robust Frequency and Timing
        Synchonization for OFDM," IEEE Trans. Communications, vol. 45,
        no. 12, 1997.
        """

        gr.hier_block2.__init__(
            self,
            "ofdm_sync_pn",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),  # Input signature
            gr.io_signature2(2, 2, gr.sizeof_float,
                             gr.sizeof_char))  # Output signature

        self.input = gr.add_const_cc(0)

        # PN Sync

        # Create a delay line
        self.delay = gr.delay(gr.sizeof_gr_complex, fft_length / 2)

        # Correlation from ML Sync
        self.conjg = gr.conjugate_cc()
        self.corr = gr.multiply_cc()

        # Create a moving sum filter for the corr output
        if 1:
            moving_sum_taps = [1.0 for i in range(fft_length // 2)]
            self.moving_sum_filter = gr.fir_filter_ccf(1, moving_sum_taps)
        else:
            moving_sum_taps = [
                complex(1.0, 0.0) for i in range(fft_length // 2)
            ]
            self.moving_sum_filter = gr.fft_filter_ccc(1, moving_sum_taps)

        # Create a moving sum filter for the input
        self.inputmag2 = gr.complex_to_mag_squared()
        movingsum2_taps = [1.0 for i in range(fft_length // 2)]
        #movingsum2_taps = [0.5 for i in range(fft_length*4)]		#apurv - implementing Veljo's suggestion, when pause b/w packets

        if 1:
            self.inputmovingsum = gr.fir_filter_fff(1, movingsum2_taps)
        else:
            self.inputmovingsum = gr.fft_filter_fff(1, movingsum2_taps)

        self.square = gr.multiply_ff()
        self.normalize = gr.divide_ff()

        # Get magnitude (peaks) and angle (phase/freq error)
        self.c2mag = gr.complex_to_mag_squared()
        self.angle = gr.complex_to_arg()

        self.sample_and_hold = gr.sample_and_hold_ff()

        #ML measurements input to sampler block and detect
        self.sub1 = gr.add_const_ff(-1)
        self.pk_detect = gr.peak_detector_fb(
            0.20, 0.20, 30, 0.001
        )  #apurv - implementing Veljo's suggestion, when pause b/w packets

        self.connect(self, self.input)

        # Calculate the frequency offset from the correlation of the preamble
        self.connect(self.input, self.delay)
        self.connect(self.input, (self.corr, 0))
        self.connect(self.delay, self.conjg)
        self.connect(self.conjg, (self.corr, 1))

        self.connect(self.corr, self.moving_sum_filter)
        #self.connect(self.moving_sum_filter, self.c2mag)
        self.connect(self.moving_sum_filter, self.angle)
        self.connect(self.angle, (self.sample_and_hold, 0))  # apurv--
        #self.connect(self.angle, gr.delay(gr.sizeof_float, offset), (self.sample_and_hold, 0))	#apurv++

        cross_correlate = 1
        if cross_correlate == 1:
            # cross-correlate with the known symbol
            kstime = [k.conjugate() for k in kstime]
            kstime.reverse()
            self.crosscorr_filter = gr.fir_filter_ccc(1, kstime)

            # get the magnitude #
            self.corrmag = gr.complex_to_mag_squared()

            self.f2b = gr.float_to_char()
            self.threshold_factor = threshold  #0.0012 #0.012   #0.0015
            if 0:
                self.slice = gr.threshold_ff(self.threshold_factor,
                                             self.threshold_factor, 0,
                                             fft_length)
            else:
                #thresholds = [self.threshold_factor, 9e-5]
                self.slice = gr.threshold_ff(threshold, threshold, 0,
                                             fft_length, threshold_type,
                                             threshold_gap)

            self.connect(self.input, self.crosscorr_filter, self.corrmag,
                         self.slice, self.f2b)

            # some debug dump #
            self.connect(self.corrmag,
                         gr.file_sink(gr.sizeof_float, "ofdm_corrmag.dat"))
            #self.connect(self.f2b, gr.file_sink(gr.sizeof_char, "ofdm_f2b.dat"))

        self.connect(self.f2b, (self.sample_and_hold, 1))

        # Set output signals
        #    Output 0: fine frequency correction value
        #    Output 1: timing signal
        self.connect(self.sample_and_hold, (self, 0))
        #self.connect(self.pk_detect, (self,1))									#removed
        #self.connect(self.f2b, gr.delay(gr.sizeof_char, 1), (self, 1))
        self.connect(self.f2b, (self, 1))

        if logging:
            self.connect(
                self.matched_filter,
                gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-mf_f.dat"))
            self.connect(
                self.normalize,
                gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-theta_f.dat"))
            self.connect(
                self.angle,
                gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-epsilon_f.dat"))
            self.connect(
                self.pk_detect,
                gr.file_sink(gr.sizeof_char, "ofdm_sync_pn-peaks_b.dat"))
            self.connect(
                self.sample_and_hold,
                gr.file_sink(gr.sizeof_float,
                             "ofdm_sync_pn-sample_and_hold_f.dat"))
            self.connect(
                self.input,
                gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pn-input_c.dat"))
예제 #12
0
    def __init__(self, fft_length, cp_length, snr=30):
        ''' Maximum Likelihood OFDM synchronizer:
        J. van de Beek, M. Sandell, and P. O. Borjesson, "ML Estimation
        of Time and Frequency Offset in OFDM Systems," IEEE Trans.
        Signal Processing, vol. 45, no. 7, pp. 1800-1805, 1997.
        '''

	gr.hier_block2.__init__(self, "ofdm_sync_ml",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature(1, 1, gr.sizeof_float)) # Output signature

        self.input = gr.add_const_cc(0)

        SNR = 10.0**(snr/10.0)	# 10**2=10*10=100
        rho = SNR / (SNR + 1.0)
        symbol_length = fft_length + cp_length

        # ML Sync

        # Energy Detection from ML Sync

        self.connect(self, self.input)

        # Create a delay line
        self.delay = gr.delay(gr.sizeof_gr_complex, fft_length)
        self.connect(self.input, self.delay)

        # magnitude squared blocks
        self.magsqrd1 = gr.complex_to_mag_squared()
        self.magsqrd2 = gr.complex_to_mag_squared()
        self.adder = gr.add_ff()

        moving_sum_taps = [rho/2 for i in range(cp_length)]
        self.moving_sum_filter = gr.fir_filter_fff(1,moving_sum_taps)
        
        self.connect(self.input,self.magsqrd1)
        self.connect(self.delay,self.magsqrd2)
        self.connect(self.magsqrd1,(self.adder,0))
        self.connect(self.magsqrd2,(self.adder,1))
        self.connect(self.adder,self.moving_sum_filter)
        

        # Correlation from ML Sync
        self.conjg = gr.conjugate_cc();
        self.mixer = gr.multiply_cc();

        movingsum2_taps = [1.0 for i in range(cp_length)]
        self.movingsum2 = gr.fir_filter_ccf(1,movingsum2_taps)
        
        # Correlator data handler
        self.c2mag = gr.complex_to_mag()
        self.connect(self.input,(self.mixer,1))
        self.connect(self.delay,self.conjg,(self.mixer,0))
        self.connect(self.mixer,self.movingsum2,self.c2mag)

        # ML Sync output arg, need to find maximum point of this
        self.diff = gr.sub_ff()
        self.connect(self.c2mag,(self.diff,0))
        self.connect(self.moving_sum_filter,(self.diff,1))

	self.symbol_finder = Heyutu.symbol_finder_ff(fft_length, cp_length)
	self.connect(self.diff, self.symbol_finder)

        #ML measurements input to sampler block and detect
        #self.f2c = gr.float_to_complex()
        #self.pk_detect = gr.peak_detector_fb(0.2, 0.25, 30, 0.0005)
#	self.pk_detect = gr.peak_detector_fb(0.3, 0.4, 30, 0.001)

        # use the sync loop values to set the sampler and the NCO
        #     self.diff = theta
               
#        self.connect(self.diff, self.pk_detect)

        # The DPLL corrects for timing differences between CP correlations
#        self.dpll = gr.dpll_bb(float(symbol_length),0.01)
#        self.connect(self.pk_detect, self.dpll)

#        self.b2f = gr.char_to_float()
        
 
#        self.connect(self.dpll, self.b2f)        

        # Set output signals
        #    Output 0: timing signal
#        self.connect(self.b2f, (self,0))
#	self.connect(self.diff, (self,0))
	self.connect(self.symbol_finder, (self, 0))
예제 #13
0
    def __init__(
            self,
            parent,
            unit='units',
            minval=0,
            maxval=1,
            factor=1,
            decimal_places=3,
            ref_level=0,
            sample_rate=1,
            number_rate=number_window.DEFAULT_NUMBER_RATE,
            average=False,
            avg_alpha=None,
            label='Number Plot',
            size=number_window.DEFAULT_WIN_SIZE,
            peak_hold=False,
            show_gauge=True,
            **kwargs  #catchall for backwards compatibility
    ):
        #ensure avg alpha
        if avg_alpha is None: avg_alpha = 2.0 / number_rate
        #init
        gr.hier_block2.__init__(
            self,
            "number_sink",
            gr.io_signature(1, 1, self._item_size),
            gr.io_signature(0, 0, 0),
        )
        #blocks
        sd = blks2.stream_to_vector_decimator(
            item_size=self._item_size,
            sample_rate=sample_rate,
            vec_rate=number_rate,
            vec_len=1,
        )
        if self._real:
            mult = gr.multiply_const_ff(factor)
            add = gr.add_const_ff(ref_level)
            avg = gr.single_pole_iir_filter_ff(1.0)
        else:
            mult = gr.multiply_const_cc(factor)
            add = gr.add_const_cc(ref_level)
            avg = gr.single_pole_iir_filter_cc(1.0)
        msgq = gr.msg_queue(2)
        sink = gr.message_sink(self._item_size, msgq, True)
        #controller
        self.controller = pubsub()
        self.controller.subscribe(SAMPLE_RATE_KEY, sd.set_sample_rate)
        self.controller.publish(SAMPLE_RATE_KEY, sd.sample_rate)
        self.controller[AVERAGE_KEY] = average
        self.controller[AVG_ALPHA_KEY] = avg_alpha

        def update_avg(*args):
            if self.controller[AVERAGE_KEY]:
                avg.set_taps(self.controller[AVG_ALPHA_KEY])
            else:
                avg.set_taps(1.0)

        update_avg()
        self.controller.subscribe(AVERAGE_KEY, update_avg)
        self.controller.subscribe(AVG_ALPHA_KEY, update_avg)
        #start input watcher
        common.input_watcher(msgq, self.controller, MSG_KEY)
        #create window
        self.win = number_window.number_window(
            parent=parent,
            controller=self.controller,
            size=size,
            title=label,
            units=unit,
            real=self._real,
            minval=minval,
            maxval=maxval,
            decimal_places=decimal_places,
            show_gauge=show_gauge,
            average_key=AVERAGE_KEY,
            avg_alpha_key=AVG_ALPHA_KEY,
            peak_hold=peak_hold,
            msg_key=MSG_KEY,
            sample_rate_key=SAMPLE_RATE_KEY,
        )
        common.register_access_methods(self, self.controller)
        #backwards compadibility
        self.set_show_gauge = self.win.show_gauges
        #connect
        self.wxgui_connect(self, sd, mult, add, avg, sink)