예제 #1
0
    def __init__(self, constellation, differential, rotation):
        if constellation.arity() > 256:
            # If this becomes limiting some of the blocks should be generalised so
            # that they can work with shorts and ints as well as chars.
            raise ValueError("Constellation cannot contain more than 256 points.")

	gr.hier_block2.__init__(self, "mod_demod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_char))       # Output signature

        arity = constellation.arity()

        # TX
        self.constellation = constellation
        self.differential = differential
        import weakref
        self.blocks = [weakref.proxy(self)]
        # We expect a stream of unpacked bits.
        # First step is to pack them.
        self.blocks.append(
            gr.unpacked_to_packed_bb(1, gr.GR_MSB_FIRST))
        # Second step we unpack them such that we have k bits in each byte where
        # each constellation symbol hold k bits.
        self.blocks.append(
            gr.packed_to_unpacked_bb(self.constellation.bits_per_symbol(),
                                     gr.GR_MSB_FIRST))
        # Apply any pre-differential coding
        # Gray-coding is done here if we're also using differential coding.
        if self.constellation.apply_pre_diff_code():
            self.blocks.append(gr.map_bb(self.constellation.pre_diff_code()))
        # Differential encoding.
        if self.differential:
            self.blocks.append(gr.diff_encoder_bb(arity))
        # Convert to constellation symbols.
        self.blocks.append(gr.chunks_to_symbols_bc(self.constellation.points(),
                                                   self.constellation.dimensionality()))
        # CHANNEL
        # Channel just consists of a rotation to check differential coding.
        if rotation is not None:
            self.blocks.append(gr.multiply_const_cc(rotation))

        # RX
        # Convert the constellation symbols back to binary values.
        self.blocks.append(digital_swig.constellation_decoder_cb(self.constellation.base()))
        # Differential decoding.
        if self.differential:
            self.blocks.append(gr.diff_decoder_bb(arity))
        # Decode any pre-differential coding.
        if self.constellation.apply_pre_diff_code():
            self.blocks.append(gr.map_bb(
                mod_codes.invert_code(self.constellation.pre_diff_code())))
        # unpack the k bit vector into a stream of bits            
        self.blocks.append(gr.unpack_k_bits_bb(
                self.constellation.bits_per_symbol()))
        # connect to block output
        check_index = len(self.blocks)
        self.blocks = self.blocks[:check_index]
        self.blocks.append(weakref.proxy(self))

        self.connect(*self.blocks)
예제 #2
0
    def __init__(self, constellation, differential, rotation):
        if constellation.arity() > 256:
            # If this becomes limiting some of the blocks should be generalised so
            # that they can work with shorts and ints as well as chars.
            raise ValueError("Constellation cannot contain more than 256 points.")

	gr.hier_block2.__init__(self, "mod_demod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_char))       # Output signature

        arity = constellation.arity()

        # TX
        self.constellation = constellation
        self.differential = differential
        self.blocks = [self]
        # We expect a stream of unpacked bits.
        # First step is to pack them.
        self.blocks.append(
            gr.unpacked_to_packed_bb(1, gr.GR_MSB_FIRST))
        # Second step we unpack them such that we have k bits in each byte where
        # each constellation symbol hold k bits.
        self.blocks.append(
            gr.packed_to_unpacked_bb(self.constellation.bits_per_symbol(),
                                     gr.GR_MSB_FIRST))
        # Apply any pre-differential coding
        # Gray-coding is done here if we're also using differential coding.
        if self.constellation.apply_pre_diff_code():
            self.blocks.append(gr.map_bb(self.constellation.pre_diff_code()))
        # Differential encoding.
        if self.differential:
            self.blocks.append(gr.diff_encoder_bb(arity))
        # Convert to constellation symbols.
        self.blocks.append(gr.chunks_to_symbols_bc(self.constellation.points(),
                                                   self.constellation.dimensionality()))
        # CHANNEL
        # Channel just consists of a rotation to check differential coding.
        if rotation is not None:
            self.blocks.append(gr.multiply_const_cc(rotation))

        # RX
        # Convert the constellation symbols back to binary values.
        self.blocks.append(digital_swig.constellation_decoder_cb(self.constellation.base()))
        # Differential decoding.
        if self.differential:
            self.blocks.append(gr.diff_decoder_bb(arity))
        # Decode any pre-differential coding.
        if self.constellation.apply_pre_diff_code():
            self.blocks.append(gr.map_bb(
                mod_codes.invert_code(self.constellation.pre_diff_code())))
        # unpack the k bit vector into a stream of bits            
        self.blocks.append(gr.unpack_k_bits_bb(
                self.constellation.bits_per_symbol()))
        # connect to block output
        check_index = len(self.blocks)
        self.blocks = self.blocks[:check_index]
        self.blocks.append(self)

        self.connect(*self.blocks)
예제 #3
0
 def test_diff_encdec_002(self):
     random.seed(0)
     modulus = 8
     src_data = make_random_int_tuple(40000, 0, modulus-1)
     expected_result = src_data
     src = gr.vector_source_b(src_data)
     enc = gr.diff_encoder_bb(modulus)
     dec = gr.diff_decoder_bb(modulus)
     dst = gr.vector_sink_b()
     self.tb.connect(src, enc, dec, dst)
     self.tb.run()               # run the graph and wait for it to finish
     actual_result = dst.data()  # fetch the contents of the sink
     self.assertEqual(expected_result, actual_result)
예제 #4
0
    def __init__(self, fg, spb, alpha, gain, use_barker=0):
        if not isinstance(spb, int) or spb < 2:
            raise TypeError, "sbp must be an integer >= 2"
        self.spb = spb
        self.bits_per_chunk = 1

	ntaps = 2 * spb - 1
        alpha = 0.5

        self.bytes2chunks = gr.packed_to_unpacked_bb(self.bits_per_chunk,
                                                     gr.GR_MSB_FIRST)

        constellation = ( (), ( -1-0j,1+0j ), ( 0.707+0.707j,-0.707-0.707j ),
                          ( 0.707+0j,-0.707-0.707j ), ( -1+0j,-1j, 1j, 1+0j ),
                          ( 1+0j,0+1j,-1+0j,0-1j ), ( 0+0j,1+0j ) )

        self.chunks2symbols = gr.chunks_to_symbols_bc(constellation[2])
        self.scrambler = bbn.scrambler_bb(True)
        self.diff_encode = gr.diff_encoder_bb(2);

        self.barker_taps = bbn.firdes_barker(spb)

	self.rrc_taps = gr.firdes.root_raised_cosine(4 * gain, spb,
		1.0, alpha, ntaps)

        if use_barker:
            self.tx_filter = gr.interp_fir_filter_ccf(spb, self.barker_taps)
        else:
            self.tx_filter = gr.interp_fir_filter_ccf(spb, self.rrc_taps)

        fg.connect(self.scrambler, self.bytes2chunks)
        fg.connect(self.bytes2chunks, self.diff_encode)
        fg.connect(self.diff_encode, self.chunks2symbols)
	fg.connect(self.chunks2symbols,self.tx_filter)

        gr.hier_block.__init__(self, fg, self.scrambler, self.tx_filter)
        bbn.crc16_init()
예제 #5
0
파일: qam8.py 프로젝트: pgoeser/gnuradio
    def __init__(self,
                 samples_per_symbol=_def_samples_per_symbol,
                 excess_bw=_def_excess_bw,
                 gray_code=_def_gray_code,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered QPSK modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.

	@param samples_per_symbol: samples per symbol >= 2
	@type samples_per_symbol: integer
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_code: Tell modulator to Gray code the bits
        @type gray_code: bool
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param debug: Print modualtion data to files?
        @type debug: bool
	"""

        gr.hier_block2.__init__(
            self,
            "qam8_mod",
            gr.io_signature(1, 1, gr.sizeof_char),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_gr_complex))  # Output signature

        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._gray_code = gray_code

        if not isinstance(samples_per_symbol, int) or samples_per_symbol < 2:
            raise TypeError, ("sbp must be an integer >= 2, is %d" %
                              samples_per_symbol)

        ntaps = 11 * samples_per_symbol

        arity = pow(2, self.bits_per_symbol())

        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if self._gray_code:
            self.symbol_mapper = gr.map_bb(qam.binary_to_gray[arity])
        else:
            self.symbol_mapper = gr.map_bb(qam.binary_to_ungray[arity])

        self.diffenc = gr.diff_encoder_bb(arity)

        rot = 1.0
        print "constellation with %d arity" % arity
        rotated_const = map(lambda pt: pt * rot, qam.constellation[arity])
        self.chunks2symbols = gr.chunks_to_symbols_bc(rotated_const)

        # pulse shaping filter
        self.rrc_taps = gr.firdes.root_raised_cosine(
            self.
            _samples_per_symbol,  # gain  (sps since we're interpolating by sps)
            self._samples_per_symbol,  # sampling rate
            1.0,  # symbol rate
            self._excess_bw,  # excess bandwidth (roll-off factor)
            ntaps)

        self.rrc_filter = gr.interp_fir_filter_ccf(self._samples_per_symbol,
                                                   self.rrc_taps)

        if verbose:
            self._print_verbage()

        if log:
            self._setup_logging()

# Connect
        self.connect(self, self.bytes2chunks, self.symbol_mapper, self.diffenc,
                     self.chunks2symbols, self.rrc_filter, self)
    def __init__(self, constellation,
                 samples_per_symbol=_def_samples_per_symbol,
                 differential=_def_differential,
                 excess_bw=_def_excess_bw,
                 gray_coded=True,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered differential generic modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.
        
	@param constellation: determines the modulation type
	@type constellation: gnuradio.digital.gr_constellation
	@param samples_per_symbol: samples per baud >= 2
	@type samples_per_symbol: float
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_coded: turn gray coding on/off
        @type gray_coded: bool
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param log: Log modulation data to files?
        @type log: bool
	"""

	gr.hier_block2.__init__(self, "generic_mod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        self._constellation = constellation.base()
        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._differential = differential

        if self._samples_per_symbol < 2:
            raise TypeError, ("sbp must be >= 2, is %f" % self._samples_per_symbol)
        
        arity = pow(2,self.bits_per_symbol())
        
        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if gray_coded == True:
            self.symbol_mapper = gr.map_bb(self._constellation.pre_diff_code())

        if differential:
            self.diffenc = gr.diff_encoder_bb(arity)

        self.chunks2symbols = gr.chunks_to_symbols_bc(self._constellation.points())

        # pulse shaping filter
        nfilts = 32
        ntaps = nfilts * 11 * int(self._samples_per_symbol)    # make nfilts filters of ntaps each
        self.rrc_taps = gr.firdes.root_raised_cosine(
            nfilts,          # gain
            nfilts,          # sampling rate based on 32 filters in resampler
            1.0,             # symbol rate
            self._excess_bw, # excess bandwidth (roll-off factor)
            ntaps)
        self.rrc_filter = gr.pfb_arb_resampler_ccf(self._samples_per_symbol,
                                                   self.rrc_taps)

	# Connect
        blocks = [self, self.bytes2chunks]
        if gray_coded == True:
            blocks.append(self.symbol_mapper)
        if differential:
            blocks.append(self.diffenc)
        blocks += [self.chunks2symbols, self.rrc_filter, self]
        self.connect(*blocks)

        if verbose:
            self._print_verbage()
            
        if log:
            self._setup_logging()
예제 #7
0
파일: rds_tx.py 프로젝트: Crazybond/gr-rds
	def __init__(self):
		grc_wxgui.top_block_gui.__init__(self, title="Rds Tx")
		_icon_path = "/home/azimout/.local/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
		self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

		##################################################
		# Variables
		##################################################
		self.usrp_interp = usrp_interp = 500
		self.dac_rate = dac_rate = 128e6
		self.wav_rate = wav_rate = 44100
		self.usrp_rate = usrp_rate = int(dac_rate/usrp_interp)
		self.fm_max_dev = fm_max_dev = 120e3

		##################################################
		# Blocks
		##################################################
		self.band_pass_filter_0 = gr.interp_fir_filter_fff(1, firdes.band_pass(
			1, usrp_rate, 54e3, 60e3, 3e3, firdes.WIN_HAMMING, 6.76))
		self.band_pass_filter_1 = gr.interp_fir_filter_fff(1, firdes.band_pass(
			1, usrp_rate, 23e3, 53e3, 2e3, firdes.WIN_HAMMING, 6.76))
		self.blks2_rational_resampler_xxx_1 = blks2.rational_resampler_fff(
			interpolation=usrp_rate,
			decimation=wav_rate,
			taps=None,
			fractional_bw=None,
		)
		self.blks2_rational_resampler_xxx_1_0 = blks2.rational_resampler_fff(
			interpolation=usrp_rate,
			decimation=wav_rate,
			taps=None,
			fractional_bw=None,
		)
		self.gr_add_xx_0 = gr.add_vff(1)
		self.gr_add_xx_1 = gr.add_vff(1)
		self.gr_char_to_float_0 = gr.char_to_float()
		self.gr_diff_encoder_bb_0 = gr.diff_encoder_bb(2)
		self.gr_frequency_modulator_fc_0 = gr.frequency_modulator_fc(2*math.pi*fm_max_dev/usrp_rate)
		self.gr_map_bb_0 = gr.map_bb(([-1,1]))
		self.gr_map_bb_1 = gr.map_bb(([1,2]))
		self.gr_multiply_xx_0 = gr.multiply_vff(1)
		self.gr_multiply_xx_1 = gr.multiply_vff(1)
		self.gr_rds_data_encoder_0 = rds.data_encoder("/media/dimitris/mywork/gr/dimitris/rds/trunk/src/test/rds_data.xml")
		self.gr_rds_rate_enforcer_0 = rds.rate_enforcer(256000)
		self.gr_sig_source_x_0 = gr.sig_source_f(usrp_rate, gr.GR_COS_WAVE, 19e3, 0.3, 0)
		self.gr_sub_xx_0 = gr.sub_ff(1)
		self.gr_unpack_k_bits_bb_0 = gr.unpack_k_bits_bb(2)
		self.gr_wavfile_source_0 = gr.wavfile_source("/media/dimitris/mywork/gr/dimitris/rds/trunk/src/python/limmenso_stereo.wav", True)
		self.low_pass_filter_0 = gr.interp_fir_filter_fff(1, firdes.low_pass(
			1, usrp_rate, 1.5e3, 2e3, firdes.WIN_HAMMING, 6.76))
		self.low_pass_filter_0_0 = gr.interp_fir_filter_fff(1, firdes.low_pass(
			1, usrp_rate, 15e3, 2e3, firdes.WIN_HAMMING, 6.76))
		self.usrp_simple_sink_x_0 = grc_usrp.simple_sink_c(which=0, side="A")
		self.usrp_simple_sink_x_0.set_interp_rate(500)
		self.usrp_simple_sink_x_0.set_frequency(107.2e6, verbose=True)
		self.usrp_simple_sink_x_0.set_gain(0)
		self.usrp_simple_sink_x_0.set_enable(True)
		self.usrp_simple_sink_x_0.set_auto_tr(True)
		self.wxgui_fftsink2_0 = fftsink2.fft_sink_f(
			self.GetWin(),
			baseband_freq=0,
			y_per_div=20,
			y_divs=10,
			ref_level=0,
			ref_scale=2.0,
			sample_rate=usrp_rate,
			fft_size=1024,
			fft_rate=30,
			average=False,
			avg_alpha=None,
			title="FFT Plot",
			peak_hold=False,
		)
		self.Add(self.wxgui_fftsink2_0.win)

		##################################################
		# Connections
		##################################################
		self.connect((self.gr_sig_source_x_0, 0), (self.gr_rds_rate_enforcer_0, 1))
		self.connect((self.gr_char_to_float_0, 0), (self.gr_rds_rate_enforcer_0, 0))
		self.connect((self.gr_map_bb_0, 0), (self.gr_char_to_float_0, 0))
		self.connect((self.gr_frequency_modulator_fc_0, 0), (self.usrp_simple_sink_x_0, 0))
		self.connect((self.gr_add_xx_1, 0), (self.gr_frequency_modulator_fc_0, 0))
		self.connect((self.gr_sig_source_x_0, 0), (self.gr_add_xx_1, 1))
		self.connect((self.gr_sub_xx_0, 0), (self.gr_multiply_xx_1, 2))
		self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_1, 1))
		self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_1, 0))
		self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_0, 3))
		self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_0, 2))
		self.connect((self.blks2_rational_resampler_xxx_1_0, 0), (self.gr_add_xx_0, 1))
		self.connect((self.blks2_rational_resampler_xxx_1, 0), (self.gr_add_xx_0, 0))
		self.connect((self.blks2_rational_resampler_xxx_1_0, 0), (self.gr_sub_xx_0, 1))
		self.connect((self.blks2_rational_resampler_xxx_1, 0), (self.gr_sub_xx_0, 0))
		self.connect((self.gr_wavfile_source_0, 1), (self.blks2_rational_resampler_xxx_1_0, 0))
		self.connect((self.gr_wavfile_source_0, 0), (self.blks2_rational_resampler_xxx_1, 0))
		self.connect((self.gr_rds_data_encoder_0, 0), (self.gr_diff_encoder_bb_0, 0))
		self.connect((self.gr_diff_encoder_bb_0, 0), (self.gr_map_bb_1, 0))
		self.connect((self.gr_map_bb_1, 0), (self.gr_unpack_k_bits_bb_0, 0))
		self.connect((self.gr_unpack_k_bits_bb_0, 0), (self.gr_map_bb_0, 0))
		self.connect((self.gr_rds_rate_enforcer_0, 0), (self.low_pass_filter_0, 0))
		self.connect((self.low_pass_filter_0, 0), (self.gr_multiply_xx_0, 0))
		self.connect((self.gr_multiply_xx_0, 0), (self.band_pass_filter_0, 0))
		self.connect((self.band_pass_filter_0, 0), (self.gr_add_xx_1, 0))
		self.connect((self.gr_multiply_xx_1, 0), (self.band_pass_filter_1, 0))
		self.connect((self.band_pass_filter_1, 0), (self.gr_add_xx_1, 3))
		self.connect((self.gr_add_xx_1, 0), (self.wxgui_fftsink2_0, 0))
		self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_0, 1))
		self.connect((self.gr_add_xx_0, 0), (self.low_pass_filter_0_0, 0))
		self.connect((self.low_pass_filter_0_0, 0), (self.gr_add_xx_1, 2))
예제 #8
0
파일: qam8.py 프로젝트: GREO/GNU-Radio
    def __init__(self,
                 samples_per_symbol=_def_samples_per_symbol,
                 excess_bw=_def_excess_bw,
                 gray_code=_def_gray_code,
                 verbose=_def_verbose,
                 log=_def_log):

        """
	Hierarchical block for RRC-filtered QPSK modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.

	@param samples_per_symbol: samples per symbol >= 2
	@type samples_per_symbol: integer
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_code: Tell modulator to Gray code the bits
        @type gray_code: bool
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param debug: Print modualtion data to files?
        @type debug: bool
	"""

	gr.hier_block2.__init__(self, "qam8_mod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._gray_code = gray_code

        if not isinstance(samples_per_symbol, int) or samples_per_symbol < 2:
            raise TypeError, ("sbp must be an integer >= 2, is %d" % samples_per_symbol)

	ntaps = 11 * samples_per_symbol
 
        arity = pow(2, self.bits_per_symbol())

        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if self._gray_code:
            self.symbol_mapper = gr.map_bb(qam.binary_to_gray[arity])
        else:
            self.symbol_mapper = gr.map_bb(qam.binary_to_ungray[arity])
            
        self.diffenc = gr.diff_encoder_bb(arity)

        rot = 1.0
        print "constellation with %d arity" % arity
        rotated_const = map(lambda pt: pt * rot, qam.constellation[arity])
        self.chunks2symbols = gr.chunks_to_symbols_bc(rotated_const)

        # pulse shaping filter
	self.rrc_taps = gr.firdes.root_raised_cosine(
	    self._samples_per_symbol, # gain  (sps since we're interpolating by sps)
            self._samples_per_symbol, # sampling rate
            1.0,		      # symbol rate
            self._excess_bw,          # excess bandwidth (roll-off factor)
            ntaps)

	self.rrc_filter = gr.interp_fir_filter_ccf(self._samples_per_symbol, self.rrc_taps)

        if verbose:
            self._print_verbage()
        
        if log:
            self._setup_logging()
            
	# Connect
        self.connect(self, self.bytes2chunks, self.symbol_mapper, self.diffenc,
                     self.chunks2symbols, self.rrc_filter, self)
예제 #9
0
    def __init__(self,
                 samples_per_symbol=_def_samples_per_symbol,
                 excess_bw=_def_excess_bw,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered QPSK modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.

	@param samples_per_symbol: samples per symbol >= 2
	@type samples_per_symbol: integer
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param debug: Print modualtion data to files?
        @type debug: bool
	"""

	gr.hier_block2.__init__(self, "cqpsk_mod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw

        if not isinstance(samples_per_symbol, int) or samples_per_symbol < 2:
            raise TypeError, ("sbp must be an integer >= 2, is %d" % samples_per_symbol)

	ntaps = 11 * samples_per_symbol
 
        arity = 8

        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        #	0	+45	1	[+1]
        #	1	+135	3	[+3]
        #	2	-45	7	[-1]
        #	3	-135	5	[-3]
        self.pi4map = [1, 3, 7, 5]
        self.symbol_mapper = gr.map_bb(self.pi4map)
        self.diffenc = gr.diff_encoder_bb(arity)
        self.chunks2symbols = gr.chunks_to_symbols_bc(psk.constellation[arity])

        # pulse shaping filter
	self.rrc_taps = firdes.root_raised_cosine(
	    self._samples_per_symbol, # gain  (sps since we're interpolating by sps)
            self._samples_per_symbol, # sampling rate
            1.0,		      # symbol rate
            self._excess_bw,          # excess bandwidth (roll-off factor)
            ntaps)

	self.rrc_filter = filter.interp_fir_filter_ccf(self._samples_per_symbol, self.rrc_taps)

        if verbose:
            self._print_verbage()
        
        if log:
            self._setup_logging()
            
	# Connect & Initialize base class
        self.connect(self, self.bytes2chunks, self.symbol_mapper, self.diffenc,
                     self.chunks2symbols, self.rrc_filter, self)
    def __init__(self, gui, options):
        gr.hier_block2.__init__(self, "bpsk_mod",
                                gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
        
        self._samples_per_symbol = options.sps
        self.amplitude = options.amplitude
        self.verbose = options.verbose
        
        self._excess_bw = _def_excess_bw
        self._gray_code = _def_gray_code

        if not isinstance(self._samples_per_symbol, int) or self._samples_per_symbol < 2:
            raise TypeError, ("sample per symbol must be an integer >= 2, is %d" % self._samples_per_symbol)
    

        arity = pow(2,self.bits_per_symbol())
        
        # turn bytes into k-bit vectors
        self.packed_to_unpacked_bb = \
            gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if self._gray_code:
            self.symbol_mapper = gr.map_bb(psk.binary_to_gray[arity])
        else:
            self.symbol_mapper = gr.map_bb(psk.binary_to_ungray[arity])
        self.diff_encoder_bb = gr.diff_encoder_bb(arity)
            
        #This bloc allow to decode the stream
        #self.scrambler = gr.scrambler_bb(0x8A, 0x7F, 7)
        
        #Transform symbols to chips
        self.symbols_to_chips = ieee.symbols_to_chips_bs()

        #self.chunks2symbols = gr.chunks_to_symbols_ic(psk.constellation[arity])
        self.chunks2symbols = gr.chunks_to_symbols_sc([-1+0j, 1+0j])
        self.chunks2symbols_b = gr.chunks_to_symbols_bc([-1+0j, 1+0j])
        
        # transform chips to symbols
        print "bits_per_symbol", self.bits_per_symbol()
        self.packed_to_unpacked_ss = \
          gr.packed_to_unpacked_ss(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        ntaps = 11 * self._samples_per_symbol
        # pulse shaping filter
        self.rrc_taps = gr.firdes.root_raised_cosine(
                                                     self._samples_per_symbol * self.amplitude,   # gain (samples_per_symbol since we're
                                                                                # interpolating by samples_per_symbol)
                                                     self._samples_per_symbol,   # sampling rate
                                                     1.0,                # symbol rate
                                                     self._excess_bw,            # excess bandwidth (roll-off factor)
                                                     ntaps)
        self.rrc_filter = gr.interp_fir_filter_ccf(self._samples_per_symbol,
                                                   self.rrc_taps)

        # Connect
        #self.connect(self, self.bytes2chunks, self.symbol_mapper,self.scrambler, self.chunks2symbols, self.rrc_filter, self)
        
#        self.wxgui_constellationsink2_0 = constsink_gl.const_sink_c(
#            gui.GetWin(),
#            title="Constellation Plot",
#            sample_rate=self._samples_per_symbol,
#            frame_rate=5,
#            const_size=2048,
#            M=2,
#            theta=0,
#            alpha=0.005,
#            fmax=0.06,
#            mu=0.5,
#            gain_mu=0.005,
#            symbol_rate=self._samples_per_symbol/2,
#            omega_limit=0.005,
#        )
#        gui.Add(self.wxgui_constellationsink2_0.win)
        
        #Modefied for IEEE 802.15.4
        #self.connect(self, self.packed_to_unpacked_bb, self.symbol_mapper, self.diff_encoder_bb, self.symbols_to_chips, self.packed_to_unpacked_ss,  self.chunks2symbols, self.rrc_filter, self)
        
        self.connect(self, self.packed_to_unpacked_bb, self.symbol_mapper, self.symbols_to_chips, self.packed_to_unpacked_ss,  self.chunks2symbols, self.rrc_filter, self)
        #self.connect(self, self.symbols_to_chips, self.packed_to_unpacked_ss,  self.chunks2symbols, self.rrc_filter, self)
        
        #self.connect(self, self.packed_to_unpacked_ss,  self.chunks2symbols, self.rrc_filter, self)

        #self.connect(self, self._scrambler, self.chunks2symbols_b, self.rrc_filter, self)
        
        #self.connect(self.rrc_filter, self.wxgui_constellationsink2_0)


        if self.verbose:
            self._print_verbage()
예제 #11
0
    def __init__(self,
                 samples_per_symbol=_def_samples_per_symbol,
                 excess_bw=_def_excess_bw,
                 gray_code=_def_gray_code,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered QPSK modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.

	@param samples_per_symbol: samples per symbol >= 2
	@type samples_per_symbol: integer
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_code: Tell modulator to Gray code the bits
        @type gray_code: bool
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param debug: Print modualtion data to files?
        @type debug: bool
	"""

        gr.hier_block2.__init__(
            self,
            "dqpsk2_mod",
            gr.io_signature(1, 1, gr.sizeof_char),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_gr_complex))  # Output signature

        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._gray_code = gray_code

        if samples_per_symbol < 2:
            raise TypeError, ("sbp must be >= 2, is %f" % samples_per_symbol)

        ntaps = 11 * samples_per_symbol

        arity = pow(2, self.bits_per_symbol())

        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if self._gray_code:
            self.symbol_mapper = gr.map_bb(psk.binary_to_gray[arity])
        else:
            self.symbol_mapper = gr.map_bb(psk.binary_to_ungray[arity])

        self.diffenc = gr.diff_encoder_bb(arity)

        rot = .707 + .707j
        rotated_const = map(lambda pt: pt * rot, psk.constellation[arity])
        self.chunks2symbols = gr.chunks_to_symbols_bc(rotated_const)

        # pulse shaping filter
        nfilts = 32
        ntaps = 11 * int(
            nfilts *
            self._samples_per_symbol)  # make nfilts filters of ntaps each
        self.rrc_taps = gr.firdes.root_raised_cosine(
            nfilts,  # gain
            nfilts,  # sampling rate based on 32 filters in resampler
            1.0,  # symbol rate
            self._excess_bw,  # excess bandwidth (roll-off factor)
            ntaps)
        self.rrc_filter = gr.pfb_arb_resampler_ccf(self._samples_per_symbol,
                                                   self.rrc_taps)

        if verbose:
            self._print_verbage()

        if log:
            self._setup_logging()

# Connect & Initialize base class
        self.connect(self, self.bytes2chunks, self.symbol_mapper, self.diffenc,
                     self.chunks2symbols, self.rrc_filter, self)
예제 #12
0
    def __init__(self, fg, spb, alpha, gain, use_barker=0):
        """
	Hierarchical block for RRC-filtered PSK modulation
	modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.

	@param fg: flow graph
	@type fg: flow graph
	@param spb: samples per baud >= 2
	@type spb: integer
	@param alpha: Root-raised cosine filter excess bandwidth
	@type alpha: float
	"""
        if not isinstance(spb, int) or spb < 2:
            raise TypeError, "sbp must be an integer >= 2"
        self.spb = spb
        self.bits_per_chunk = 1

	ntaps = 2 * spb - 1
        alpha = 0.5

        # turn bytes into symbols
        self.bytes2chunks = gr.packed_to_unpacked_bb(self.bits_per_chunk,
                                                     gr.GR_MSB_FIRST)

        constellation = ( (),
                          ( -1-0j,1+0j ),
                          ( 0.707+0.707j,-0.707-0.707j ),
                          ( 0.707+0j,-0.707-0.707j ),
                          ( -1+0j,-1j, 1j, 1+0j),
                          ( 1+0j,0+1j,-1+0j,0-1j ),
                          ( 0+0j,1+0j ),
                          )

        self.chunks2symbols = gr.chunks_to_symbols_bc(constellation[2])
        self.scrambler = bbn.scrambler_bb(True)
        self.diff_encode = gr.diff_encoder_bb(2);

        self.barker_taps = bbn.firdes_barker(spb)

	# Form Raised Cosine filter
	self.rrc_taps = gr.firdes.root_raised_cosine(
		4 * gain,     	# gain  FIXME may need to be spb
		spb,            # sampling freq
		1.0,		# symbol_rate
		alpha,
                ntaps)

        if use_barker:
            self.tx_filter = gr.interp_fir_filter_ccf(spb, self.barker_taps)
        else:
            self.tx_filter = gr.interp_fir_filter_ccf(spb, self.rrc_taps)

	# Connect
        fg.connect(self.scrambler, self.bytes2chunks)
        fg.connect(self.bytes2chunks, self.diff_encode)
        fg.connect(self.diff_encode, self.chunks2symbols)
	fg.connect(self.chunks2symbols,self.tx_filter)

	# Initialize base class
        gr.hier_block.__init__(self, fg, self.scrambler, self.tx_filter)
        bbn.crc16_init()
예제 #13
0
    def __init__(self,
                 constellation,
                 samples_per_symbol=_def_samples_per_symbol,
                 differential=_def_differential,
                 excess_bw=_def_excess_bw,
                 gray_coded=True,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered differential generic modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.
        
	@param constellation: determines the modulation type
	@type constellation: gnuradio.digital.gr_constellation
	@param samples_per_symbol: samples per baud >= 2
	@type samples_per_symbol: float
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_coded: turn gray coding on/off
        @type gray_coded: bool
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param log: Log modulation data to files?
        @type log: bool
	"""

        gr.hier_block2.__init__(
            self,
            "generic_mod",
            gr.io_signature(1, 1, gr.sizeof_char),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_gr_complex))  # Output signature

        self._constellation = constellation.base()
        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._differential = differential

        if self._samples_per_symbol < 2:
            raise TypeError, ("sbp must be >= 2, is %f" %
                              self._samples_per_symbol)

        arity = pow(2, self.bits_per_symbol())

        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if gray_coded == True:
            self.symbol_mapper = gr.map_bb(self._constellation.pre_diff_code())

        if differential:
            self.diffenc = gr.diff_encoder_bb(arity)

        self.chunks2symbols = gr.chunks_to_symbols_bc(
            self._constellation.points())

        # pulse shaping filter
        nfilts = 32
        ntaps = nfilts * 11 * int(
            self._samples_per_symbol)  # make nfilts filters of ntaps each
        self.rrc_taps = gr.firdes.root_raised_cosine(
            nfilts,  # gain
            nfilts,  # sampling rate based on 32 filters in resampler
            1.0,  # symbol rate
            self._excess_bw,  # excess bandwidth (roll-off factor)
            ntaps)
        self.rrc_filter = gr.pfb_arb_resampler_ccf(self._samples_per_symbol,
                                                   self.rrc_taps)

        # Connect
        blocks = [self, self.bytes2chunks]
        if gray_coded == True:
            blocks.append(self.symbol_mapper)
        if differential:
            blocks.append(self.diffenc)
        blocks += [self.chunks2symbols, self.rrc_filter, self]
        self.connect(*blocks)

        if verbose:
            self._print_verbage()

        if log:
            self._setup_logging()
    def __init__(self, principal_gui, options):
        gr.hier_block2.__init__(self, "bpsk_mod",
                                gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
        
        self._samples_per_symbol = options.sps
        self.amplitude = options.amplitude
        self.verbose = options.verbose
        
        self._excess_bw = _def_excess_bw
        self._gray_code = _def_gray_code

        if not isinstance(self._samples_per_symbol, int) or self._samples_per_symbol < 2:
            raise TypeError, ("sample per symbol must be an integer >= 2, is %d" % self._samples_per_symbol)
    

        arity = pow(2,self.bits_per_symbol())
        
        #arity = pow (2, 2)
        # turn bytes into k-bit vectors
        self.packed_to_unpacked_bb = \
            gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if self._gray_code:
            map_param = psk.binary_to_gray[arity]
            self.symbol_mapper = gr.map_bb(map_param)
        else:
            self.symbol_mapper = gr.map_bb(psk.binary_to_ungray[arity])
        self.diff_encoder_bb = gr.diff_encoder_bb(arity)
            
        #This bloc allow to decode the stream
        #self.scrambler = gr.scrambler_bb(0x8A, 0x7F, 7)
        
        #Transform symbols to chips
        self.symbols_to_chips = ieee.symbols_to_chips_bs()

        #self.chunks2symbols = gr.chunks_to_symbols_ic(psk.constellation[arity])
        self.chunks2symbols = gr.chunks_to_symbols_sc([-1+0j, 1+0j])
        self.chunks2symbols_b = gr.chunks_to_symbols_bc([-1+0j, 1+0j])
        
        # transform chips to symbols
        print "bits_per_symbol", self.bits_per_symbol()
        self.packed_to_unpacked_ss = \
          gr.packed_to_unpacked_ss(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        ntaps = 11 * self._samples_per_symbol
        # pulse shaping filter
        self.rrc_taps = gr.firdes.root_raised_cosine(
                                                     self._samples_per_symbol,   # gain (samples_per_symbol since we're
                                                                                 # interpolating by samples_per_symbol)
                                                     self._samples_per_symbol,   # sampling rate
                                                     1.0,                # symbol rate
                                                     self._excess_bw,            # excess bandwidth (roll-off factor)
                                                     ntaps)
        self.rrc_filter = gr.interp_fir_filter_ccf(self._samples_per_symbol,
                                                   self.rrc_taps)

        # Connect
        #self.connect(self, self.bytes2chunks, self.symbol_mapper,self.scrambler, self.chunks2symbols, self.rrc_filter, self)
   
        #Modefied for IEEE 802.15.4
        #self.connect(self, self.packed_to_unpacked_bb, self.symbol_mapper, self.diff_encoder_bb, self.symbols_to_chips, self.packed_to_unpacked_ss,  self.chunks2symbols, self.rrc_filter, self)
        
        #For IEEE 802.15.4 915 868 MHz standard 
        self.connect(self, self.packed_to_unpacked_bb, self.symbol_mapper, self.symbols_to_chips, self.packed_to_unpacked_ss,  self.chunks2symbols, self.rrc_filter, self)
        
        
        #self.connect(self, self.symbols_to_chips, self.packed_to_unpacked_ss,  self.chunks2symbols, self.rrc_filter, self)
        #self.connect(self, self.packed_to_unpacked_ss,  self.chunks2symbols, self.rrc_filter, self)
        
        #case when we use a stream of bits
        #self.connect(self, self.chunks2symbols_b, self.rrc_filter, self)


        if self.verbose:
            self._print_verbage()
예제 #15
0
파일: dbpsk2.py 프로젝트: GREO/GNU-Radio
    def __init__(self,
                 samples_per_symbol=_def_samples_per_symbol,
                 excess_bw=_def_excess_bw,
                 gray_code=_def_gray_code,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered differential BPSK modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.
        
	@param samples_per_symbol: samples per baud >= 2
	@type samples_per_symbol: integer
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_code: Tell modulator to Gray code the bits
        @type gray_code: bool
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param log: Log modulation data to files?
        @type log: bool
	"""

	gr.hier_block2.__init__(self, "dbpsk_mod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._gray_code = gray_code

        if self._samples_per_symbol < 2:
            raise TypeError, ("sbp must be an integer >= 2, is %d" % self._samples_per_symbol)
        
        arity = pow(2,self.bits_per_symbol())
        
        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if self._gray_code:
            self.symbol_mapper = gr.map_bb(psk.binary_to_gray[arity])
        else:
            self.symbol_mapper = gr.map_bb(psk.binary_to_ungray[arity])

        self.diffenc = gr.diff_encoder_bb(arity)

        self.chunks2symbols = gr.chunks_to_symbols_bc(psk.constellation[arity])

        # pulse shaping filter
        nfilts = 32
        ntaps = nfilts * 11 * int(self._samples_per_symbol)    # make nfilts filters of ntaps each
        self.rrc_taps = gr.firdes.root_raised_cosine(
            nfilts,          # gain
            nfilts,          # sampling rate based on 32 filters in resampler
            1.0,             # symbol rate
            self._excess_bw, # excess bandwidth (roll-off factor)
            ntaps)
        self.rrc_filter = gr.pfb_arb_resampler_ccf(self._samples_per_symbol, self.rrc_taps)

	# Connect
        self.connect(self, self.bytes2chunks, self.symbol_mapper, self.diffenc,
                     self.chunks2symbols, self.rrc_filter, self)

        if verbose:
            self._print_verbage()
            
        if log:
            self._setup_logging()
예제 #16
0
    def __init__(self, frame, panel, vbox, argv):
        stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv)

        parser = OptionParser(option_class=eng_option)
        parser.add_option("-T", "--tx-subdev-spec", type="subdev", default=None, help="select USRP Tx side A or B")
        parser.add_option(
            "-f",
            "--freq",
            type="eng_float",
            default=107.2e6,
            help="set Tx frequency to FREQ [required]",
            metavar="FREQ",
        )
        parser.add_option("--wavfile", type="string", default=None, help="open .wav audio file FILE")
        parser.add_option("--xml", type="string", default="rds_data.xml", help="open .xml RDS data FILE")
        (options, args) = parser.parse_args()
        if len(args) != 0:
            parser.print_help()
            sys.exit(1)

        usrp_interp = 500
        self.u = usrp.sink_c(0, usrp_interp)
        print "USRP Serial: ", self.u.serial_number()
        usrp_rate = self.u.dac_rate() / usrp_interp  # 256 kS/s

        # determine the daughterboard subdevice we're using
        if options.tx_subdev_spec is None:
            options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u)
        self.u.set_mux(usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec))
        self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec)
        print "Using d'board", self.subdev.side_and_name()

        # set max Tx gain, tune frequency and enable transmitter
        gain = self.subdev.gain_range()[1]
        self.subdev.set_gain(gain)
        print "Gain set to", gain
        if self.u.tune(self.subdev.which(), self.subdev, options.freq):
            print "Tuned to", options.freq / 1e6, "MHz"
        else:
            sys.exit(1)
        self.subdev.set_enable(True)

        # open wav file containing floats in the [-1, 1] range, repeat
        if options.wavfile is None:
            print "Please provide a wavfile to transmit! Exiting\n"
            sys.exit(1)
        self.src = gr.wavfile_source(options.wavfile, True)
        nchans = self.src.channels()
        sample_rate = self.src.sample_rate()
        bits_per_sample = self.src.bits_per_sample()
        print nchans, "channels,", sample_rate, "samples/sec,", bits_per_sample, "bits/sample"

        # resample to usrp rate
        self.resample_left = blks2.rational_resampler_fff(usrp_rate, sample_rate)
        self.resample_right = blks2.rational_resampler_fff(usrp_rate, sample_rate)
        self.connect((self.src, 0), self.resample_left)
        self.connect((self.src, 1), self.resample_right)

        # create L+R (mono) and L-R (stereo)
        self.audio_lpr = gr.add_ff()
        self.audio_lmr = gr.sub_ff()
        self.connect(self.resample_left, (self.audio_lpr, 0))
        self.connect(self.resample_left, (self.audio_lmr, 0))
        self.connect(self.resample_right, (self.audio_lpr, 1))
        self.connect(self.resample_right, (self.audio_lmr, 1))

        # low-pass filter for L+R
        audio_lpr_taps = gr.firdes.low_pass(
            0.5,  # gain
            usrp_rate,  # sampling rate
            15e3,  # passband cutoff
            1e3,  # transition width
            gr.firdes.WIN_HAMMING,
        )
        self.audio_lpr_filter = gr.fir_filter_fff(1, audio_lpr_taps)
        self.connect(self.audio_lpr, self.audio_lpr_filter)

        # create pilot tone at 19 kHz
        self.pilot = gr.sig_source_f(
            usrp_rate, gr.GR_SIN_WAVE, 19e3, 5e-2  # sampling rate  # waveform  # frequency
        )  # amplitude

        # upconvert L-R to 38 kHz and band-pass
        self.mix_stereo = gr.multiply_ff()
        audio_lmr_taps = gr.firdes.band_pass(
            80,  # gain
            usrp_rate,  # sampling rate
            38e3 - 15e3,  # low cutoff
            38e3 + 15e3,  # high cutoff
            1e3,  # transition width
            gr.firdes.WIN_HAMMING,
        )
        self.audio_lmr_filter = gr.fir_filter_fff(1, audio_lmr_taps)
        self.connect(self.audio_lmr, (self.mix_stereo, 0))
        self.connect(self.pilot, (self.mix_stereo, 1))
        self.connect(self.pilot, (self.mix_stereo, 2))
        self.connect(self.mix_stereo, self.audio_lmr_filter)

        # create RDS bitstream
        # diff-encode, manchester-emcode, NRZ
        # enforce the 1187.5bps rate
        # pulse shaping filter (matched with receiver)
        # mix with 57kHz carrier (equivalent to BPSK)
        self.rds_enc = rds.data_encoder("rds_data.xml")
        self.diff_enc = gr.diff_encoder_bb(2)
        self.manchester1 = gr.map_bb([1, 2])
        self.manchester2 = gr.unpack_k_bits_bb(2)
        self.nrz = gr.map_bb([-1, 1])
        self.c2f = gr.char_to_float()
        self.rate_enforcer = rds.rate_enforcer(usrp_rate)
        pulse_shaping_taps = gr.firdes.low_pass(
            1,  # gain
            usrp_rate,  # sampling rate
            1.5e3,  # passband cutoff
            2e3,  # transition width
            gr.firdes.WIN_HAMMING,
        )
        self.pulse_shaping = gr.fir_filter_fff(1, pulse_shaping_taps)
        self.bpsk_mod = gr.multiply_ff()
        self.connect(self.rds_enc, self.diff_enc, self.manchester1, self.manchester2, self.nrz, self.c2f)
        self.connect(self.c2f, (self.rate_enforcer, 0))
        self.connect(self.pilot, (self.rate_enforcer, 1))
        self.connect(self.rate_enforcer, (self.bpsk_mod, 0))
        self.connect(self.pilot, (self.bpsk_mod, 1))
        self.connect(self.pilot, (self.bpsk_mod, 2))
        self.connect(self.pilot, (self.bpsk_mod, 3))

        # RDS band-pass filter
        rds_filter_taps = gr.firdes.band_pass(
            50,  # gain
            usrp_rate,  # sampling rate
            57e3 - 3e3,  # low cutoff
            57e3 + 3e3,  # high cutoff
            1e3,  # transition width
            gr.firdes.WIN_HAMMING,
        )
        self.rds_filter = gr.fir_filter_fff(1, rds_filter_taps)
        self.connect(self.bpsk_mod, self.rds_filter)

        # mix L+R, pilot, L-R and RDS
        self.mixer = gr.add_ff()
        self.connect(self.audio_lpr_filter, (self.mixer, 0))
        self.connect(self.pilot, (self.mixer, 1))
        self.connect(self.audio_lmr_filter, (self.mixer, 2))
        self.connect(self.rds_filter, (self.mixer, 3))

        # fm modulation, gain & TX
        max_dev = 75e3
        k = 2 * math.pi * max_dev / usrp_rate  # modulator sensitivity
        self.modulator = gr.frequency_modulator_fc(k)
        self.gain = gr.multiply_const_cc(5e3)
        self.connect(self.mixer, self.modulator, self.gain, self.u)

        # plot an FFT to verify we are sending what we want
        if 1:
            self.fft = fftsink2.fft_sink_f(
                panel, title="Pre FM modulation", fft_size=512 * 4, sample_rate=usrp_rate, y_per_div=20, ref_level=-20
            )
            self.connect(self.mixer, self.fft)
            vbox.Add(self.fft.win, 1, wx.EXPAND)
        if 0:
            self.scope = scopesink2.scope_sink_f(panel, title="RDS encoder output", sample_rate=usrp_rate)
            self.connect(self.rds_enc, self.scope)
            vbox.Add(self.scope.win, 1, wx.EXPAND)
예제 #17
0
파일: rds_tx.py 프로젝트: Shmuma/gr-rds
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="Rds Tx")
        _icon_path = "/home/azimout/.local/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Variables
        ##################################################
        self.usrp_interp = usrp_interp = 500
        self.dac_rate = dac_rate = 128e6
        self.wav_rate = wav_rate = 44100
        self.usrp_rate = usrp_rate = int(dac_rate / usrp_interp)
        self.fm_max_dev = fm_max_dev = 120e3

        ##################################################
        # Blocks
        ##################################################
        self.band_pass_filter_0 = gr.interp_fir_filter_fff(
            1,
            firdes.band_pass(1, usrp_rate, 54e3, 60e3, 3e3, firdes.WIN_HAMMING,
                             6.76))
        self.band_pass_filter_1 = gr.interp_fir_filter_fff(
            1,
            firdes.band_pass(1, usrp_rate, 23e3, 53e3, 2e3, firdes.WIN_HAMMING,
                             6.76))
        self.blks2_rational_resampler_xxx_1 = blks2.rational_resampler_fff(
            interpolation=usrp_rate,
            decimation=wav_rate,
            taps=None,
            fractional_bw=None,
        )
        self.blks2_rational_resampler_xxx_1_0 = blks2.rational_resampler_fff(
            interpolation=usrp_rate,
            decimation=wav_rate,
            taps=None,
            fractional_bw=None,
        )
        self.gr_add_xx_0 = gr.add_vff(1)
        self.gr_add_xx_1 = gr.add_vff(1)
        self.gr_char_to_float_0 = gr.char_to_float()
        self.gr_diff_encoder_bb_0 = gr.diff_encoder_bb(2)
        self.gr_frequency_modulator_fc_0 = gr.frequency_modulator_fc(
            2 * math.pi * fm_max_dev / usrp_rate)
        self.gr_map_bb_0 = gr.map_bb(([-1, 1]))
        self.gr_map_bb_1 = gr.map_bb(([1, 2]))
        self.gr_multiply_xx_0 = gr.multiply_vff(1)
        self.gr_multiply_xx_1 = gr.multiply_vff(1)
        self.gr_rds_data_encoder_0 = rds.data_encoder(
            "/media/dimitris/mywork/gr/dimitris/rds/trunk/src/test/rds_data.xml"
        )
        self.gr_rds_rate_enforcer_0 = rds.rate_enforcer(256000)
        self.gr_sig_source_x_0 = gr.sig_source_f(usrp_rate, gr.GR_COS_WAVE,
                                                 19e3, 0.3, 0)
        self.gr_sub_xx_0 = gr.sub_ff(1)
        self.gr_unpack_k_bits_bb_0 = gr.unpack_k_bits_bb(2)
        self.gr_wavfile_source_0 = gr.wavfile_source(
            "/media/dimitris/mywork/gr/dimitris/rds/trunk/src/python/limmenso_stereo.wav",
            True)
        self.low_pass_filter_0 = gr.interp_fir_filter_fff(
            1,
            firdes.low_pass(1, usrp_rate, 1.5e3, 2e3, firdes.WIN_HAMMING,
                            6.76))
        self.low_pass_filter_0_0 = gr.interp_fir_filter_fff(
            1,
            firdes.low_pass(1, usrp_rate, 15e3, 2e3, firdes.WIN_HAMMING, 6.76))
        self.usrp_simple_sink_x_0 = grc_usrp.simple_sink_c(which=0, side="A")
        self.usrp_simple_sink_x_0.set_interp_rate(500)
        self.usrp_simple_sink_x_0.set_frequency(107.2e6, verbose=True)
        self.usrp_simple_sink_x_0.set_gain(0)
        self.usrp_simple_sink_x_0.set_enable(True)
        self.usrp_simple_sink_x_0.set_auto_tr(True)
        self.wxgui_fftsink2_0 = fftsink2.fft_sink_f(
            self.GetWin(),
            baseband_freq=0,
            y_per_div=20,
            y_divs=10,
            ref_level=0,
            ref_scale=2.0,
            sample_rate=usrp_rate,
            fft_size=1024,
            fft_rate=30,
            average=False,
            avg_alpha=None,
            title="FFT Plot",
            peak_hold=False,
        )
        self.Add(self.wxgui_fftsink2_0.win)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.gr_sig_source_x_0, 0),
                     (self.gr_rds_rate_enforcer_0, 1))
        self.connect((self.gr_char_to_float_0, 0),
                     (self.gr_rds_rate_enforcer_0, 0))
        self.connect((self.gr_map_bb_0, 0), (self.gr_char_to_float_0, 0))
        self.connect((self.gr_frequency_modulator_fc_0, 0),
                     (self.usrp_simple_sink_x_0, 0))
        self.connect((self.gr_add_xx_1, 0),
                     (self.gr_frequency_modulator_fc_0, 0))
        self.connect((self.gr_sig_source_x_0, 0), (self.gr_add_xx_1, 1))
        self.connect((self.gr_sub_xx_0, 0), (self.gr_multiply_xx_1, 2))
        self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_1, 1))
        self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_1, 0))
        self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_0, 3))
        self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_0, 2))
        self.connect((self.blks2_rational_resampler_xxx_1_0, 0),
                     (self.gr_add_xx_0, 1))
        self.connect((self.blks2_rational_resampler_xxx_1, 0),
                     (self.gr_add_xx_0, 0))
        self.connect((self.blks2_rational_resampler_xxx_1_0, 0),
                     (self.gr_sub_xx_0, 1))
        self.connect((self.blks2_rational_resampler_xxx_1, 0),
                     (self.gr_sub_xx_0, 0))
        self.connect((self.gr_wavfile_source_0, 1),
                     (self.blks2_rational_resampler_xxx_1_0, 0))
        self.connect((self.gr_wavfile_source_0, 0),
                     (self.blks2_rational_resampler_xxx_1, 0))
        self.connect((self.gr_rds_data_encoder_0, 0),
                     (self.gr_diff_encoder_bb_0, 0))
        self.connect((self.gr_diff_encoder_bb_0, 0), (self.gr_map_bb_1, 0))
        self.connect((self.gr_map_bb_1, 0), (self.gr_unpack_k_bits_bb_0, 0))
        self.connect((self.gr_unpack_k_bits_bb_0, 0), (self.gr_map_bb_0, 0))
        self.connect((self.gr_rds_rate_enforcer_0, 0),
                     (self.low_pass_filter_0, 0))
        self.connect((self.low_pass_filter_0, 0), (self.gr_multiply_xx_0, 0))
        self.connect((self.gr_multiply_xx_0, 0), (self.band_pass_filter_0, 0))
        self.connect((self.band_pass_filter_0, 0), (self.gr_add_xx_1, 0))
        self.connect((self.gr_multiply_xx_1, 0), (self.band_pass_filter_1, 0))
        self.connect((self.band_pass_filter_1, 0), (self.gr_add_xx_1, 3))
        self.connect((self.gr_add_xx_1, 0), (self.wxgui_fftsink2_0, 0))
        self.connect((self.gr_sig_source_x_0, 0), (self.gr_multiply_xx_0, 1))
        self.connect((self.gr_add_xx_0, 0), (self.low_pass_filter_0_0, 0))
        self.connect((self.low_pass_filter_0_0, 0), (self.gr_add_xx_1, 2))
    def __init__(self, fg,
                 samples_per_symbol=_def_samples_per_symbol,
                 excess_bw=_def_excess_bw,
                 gray_code=_def_gray_code,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered differential BPSK modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.
        
	@param fg: flow graph
	@type fg: flow graph
	@param samples_per_symbol: samples per baud >= 2
	@type samples_per_symbol: integer
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_code: Tell modulator to Gray code the bits
        @type gray_code: bool
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param log: Log modulation data to files?
        @type log: bool
	"""

        self._fg = fg
        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._gray_code = gray_code

        if not isinstance(self._samples_per_symbol, int) or self._samples_per_symbol < 2:
            raise TypeError, ("sbp must be an integer >= 2, is %d" % self._samples_per_symbol)
        
	ntaps = 11 * self._samples_per_symbol

        arity = pow(2,self.bits_per_symbol())
        
        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if self._gray_code:
            self.symbol_mapper = gr.map_bb(psk.binary_to_gray[arity])
        else:
            self.symbol_mapper = gr.map_bb(psk.binary_to_ungray[arity])

        self.diffenc = gr.diff_encoder_bb(arity)

        self.chunks2symbols = gr.chunks_to_symbols_bc(psk.constellation[arity])

        # pulse shaping filter
	self.rrc_taps = gr.firdes.root_raised_cosine(
	    self._samples_per_symbol,   # gain (samples_per_symbol since we're
                                        # interpolating by samples_per_symbol)
	    self._samples_per_symbol,   # sampling rate
	    1.0,		        # symbol rate
	    self._excess_bw,            # excess bandwidth (roll-off factor)
            ntaps)
	self.rrc_filter = gr.interp_fir_filter_ccf(self._samples_per_symbol,
                                                   self.rrc_taps)

	# Connect
        fg.connect(self.bytes2chunks, self.symbol_mapper, self.diffenc,
                   self.chunks2symbols, self.rrc_filter)

        if verbose:
            self._print_verbage()
            
        if log:
            self._setup_logging()
            
	# Initialize base class
	gr.hier_block.__init__(self, self._fg, self.bytes2chunks, self.rrc_filter)
예제 #19
0
    def __init__(self, frame, panel, vbox, argv):
        stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv)

        parser = OptionParser(option_class=eng_option)
        parser.add_option("-T",
                          "--tx-subdev-spec",
                          type="subdev",
                          default=None,
                          help="select USRP Tx side A or B")
        parser.add_option("-f",
                          "--freq",
                          type="eng_float",
                          default=107.2e6,
                          help="set Tx frequency to FREQ [required]",
                          metavar="FREQ")
        parser.add_option("--wavfile",
                          type="string",
                          default=None,
                          help="open .wav audio file FILE")
        parser.add_option("--xml",
                          type="string",
                          default="rds_data.xml",
                          help="open .xml RDS data FILE")
        (options, args) = parser.parse_args()
        if len(args) != 0:
            parser.print_help()
            sys.exit(1)

        usrp_interp = 500
        self.u = usrp.sink_c(0, usrp_interp)
        print "USRP Serial: ", self.u.serial_number()
        usrp_rate = self.u.dac_rate() / usrp_interp  # 256 kS/s

        # determine the daughterboard subdevice we're using
        if options.tx_subdev_spec is None:
            options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u)
        self.u.set_mux(
            usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec))
        self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec)
        print "Using d'board", self.subdev.side_and_name()

        # set max Tx gain, tune frequency and enable transmitter
        gain = self.subdev.gain_range()[1]
        self.subdev.set_gain(gain)
        print "Gain set to", gain
        if self.u.tune(self.subdev.which(), self.subdev, options.freq):
            print "Tuned to", options.freq / 1e6, "MHz"
        else:
            sys.exit(1)
        self.subdev.set_enable(True)

        # open wav file containing floats in the [-1, 1] range, repeat
        if options.wavfile is None:
            print "Please provide a wavfile to transmit! Exiting\n"
            sys.exit(1)
        self.src = gr.wavfile_source(options.wavfile, True)
        nchans = self.src.channels()
        sample_rate = self.src.sample_rate()
        bits_per_sample = self.src.bits_per_sample()
        print nchans, "channels,", sample_rate, "samples/sec,", \
         bits_per_sample, "bits/sample"

        # resample to usrp rate
        self.resample_left = blks2.rational_resampler_fff(
            usrp_rate, sample_rate)
        self.resample_right = blks2.rational_resampler_fff(
            usrp_rate, sample_rate)
        self.connect((self.src, 0), self.resample_left)
        self.connect((self.src, 1), self.resample_right)

        # create L+R (mono) and L-R (stereo)
        self.audio_lpr = gr.add_ff()
        self.audio_lmr = gr.sub_ff()
        self.connect(self.resample_left, (self.audio_lpr, 0))
        self.connect(self.resample_left, (self.audio_lmr, 0))
        self.connect(self.resample_right, (self.audio_lpr, 1))
        self.connect(self.resample_right, (self.audio_lmr, 1))

        # low-pass filter for L+R
        audio_lpr_taps = gr.firdes.low_pass(
            0.5,  # gain
            usrp_rate,  # sampling rate
            15e3,  # passband cutoff
            1e3,  # transition width
            gr.firdes.WIN_HAMMING)
        self.audio_lpr_filter = gr.fir_filter_fff(1, audio_lpr_taps)
        self.connect(self.audio_lpr, self.audio_lpr_filter)

        # create pilot tone at 19 kHz
        self.pilot = gr.sig_source_f(
            usrp_rate,  # sampling rate
            gr.GR_SIN_WAVE,  # waveform
            19e3,  # frequency
            5e-2)  # amplitude

        # upconvert L-R to 38 kHz and band-pass
        self.mix_stereo = gr.multiply_ff()
        audio_lmr_taps = gr.firdes.band_pass(
            80,  # gain
            usrp_rate,  # sampling rate
            38e3 - 15e3,  # low cutoff
            38e3 + 15e3,  # high cutoff
            1e3,  # transition width
            gr.firdes.WIN_HAMMING)
        self.audio_lmr_filter = gr.fir_filter_fff(1, audio_lmr_taps)
        self.connect(self.audio_lmr, (self.mix_stereo, 0))
        self.connect(self.pilot, (self.mix_stereo, 1))
        self.connect(self.pilot, (self.mix_stereo, 2))
        self.connect(self.mix_stereo, self.audio_lmr_filter)

        # create RDS bitstream
        # diff-encode, manchester-emcode, NRZ
        # enforce the 1187.5bps rate
        # pulse shaping filter (matched with receiver)
        # mix with 57kHz carrier (equivalent to BPSK)
        self.rds_enc = rds.data_encoder('rds_data.xml')
        self.diff_enc = gr.diff_encoder_bb(2)
        self.manchester1 = gr.map_bb([1, 2])
        self.manchester2 = gr.unpack_k_bits_bb(2)
        self.nrz = gr.map_bb([-1, 1])
        self.c2f = gr.char_to_float()
        self.rate_enforcer = rds.rate_enforcer(usrp_rate)
        pulse_shaping_taps = gr.firdes.low_pass(
            1,  # gain
            usrp_rate,  # sampling rate
            1.5e3,  # passband cutoff
            2e3,  # transition width
            gr.firdes.WIN_HAMMING)
        self.pulse_shaping = gr.fir_filter_fff(1, pulse_shaping_taps)
        self.bpsk_mod = gr.multiply_ff()
        self.connect (self.rds_enc, self.diff_enc, self.manchester1, \
         self.manchester2, self.nrz, self.c2f)
        self.connect(self.c2f, (self.rate_enforcer, 0))
        self.connect(self.pilot, (self.rate_enforcer, 1))
        self.connect(self.rate_enforcer, (self.bpsk_mod, 0))
        self.connect(self.pilot, (self.bpsk_mod, 1))
        self.connect(self.pilot, (self.bpsk_mod, 2))
        self.connect(self.pilot, (self.bpsk_mod, 3))

        # RDS band-pass filter
        rds_filter_taps = gr.firdes.band_pass(
            50,  # gain
            usrp_rate,  # sampling rate
            57e3 - 3e3,  # low cutoff
            57e3 + 3e3,  # high cutoff
            1e3,  # transition width
            gr.firdes.WIN_HAMMING)
        self.rds_filter = gr.fir_filter_fff(1, rds_filter_taps)
        self.connect(self.bpsk_mod, self.rds_filter)

        # mix L+R, pilot, L-R and RDS
        self.mixer = gr.add_ff()
        self.connect(self.audio_lpr_filter, (self.mixer, 0))
        self.connect(self.pilot, (self.mixer, 1))
        self.connect(self.audio_lmr_filter, (self.mixer, 2))
        self.connect(self.rds_filter, (self.mixer, 3))

        # fm modulation, gain & TX
        max_dev = 75e3
        k = 2 * math.pi * max_dev / usrp_rate  # modulator sensitivity
        self.modulator = gr.frequency_modulator_fc(k)
        self.gain = gr.multiply_const_cc(5e3)
        self.connect(self.mixer, self.modulator, self.gain, self.u)

        # plot an FFT to verify we are sending what we want
        if 1:
            self.fft = fftsink2.fft_sink_f(panel,
                                           title="Pre FM modulation",
                                           fft_size=512 * 4,
                                           sample_rate=usrp_rate,
                                           y_per_div=20,
                                           ref_level=-20)
            self.connect(self.mixer, self.fft)
            vbox.Add(self.fft.win, 1, wx.EXPAND)
        if 0:
            self.scope = scopesink2.scope_sink_f(panel,
                                                 title="RDS encoder output",
                                                 sample_rate=usrp_rate)
            self.connect(self.rds_enc, self.scope)
            vbox.Add(self.scope.win, 1, wx.EXPAND)