def __init__(self, options, rx_callback): phy_base.__init__(self, options, rx_callback) # Transmit chain self._tx_mod = blks2.ofdm_mod(options, msgq_limit=4, pad_for_usrp=False) self.connect(self._tx_mod, gr.kludge_copy(gr.sizeof_gr_complex), self) # Receive chain self._rx_demod = blks2.ofdm_demod(options, callback=self._rx_callback) self.connect(self, gr.kludge_copy(gr.sizeof_gr_complex), self._rx_demod)
def __init__(self, options, need_padding=False): gr.hier_block2.__init__( self, "cs_mac", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex) ) # Create a logger self._logger = logging.getLogger("MAC(" + str(options.mac_address) + ")") # Extract options self._local_addr = options.mac_address self._need_padding = need_padding # Create queue for packets received from physical layer self._phy_rx_queue = Queue.Queue() # Create the ack_queue which the condition variable and thread use self.ack_queue = Queue.Queue() self.condition = threading.Condition() # Create physical layer implementation (modulator, demodulator) self._phy = cs434_hw4_phy.AVAILABLE[options.phy](options, lambda ok, payload: self._handle_recv(ok, payload)) # Received samples are redirected to two places. GNU Radio doesn't # currently let us attach 2 blocks to a hierarchical block input, so # we first copy, then split. rx_dup = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, rx_dup) # Create and connect carrier-sensing block self._phy_rx_probe = gr.probe_avg_mag_sqrd_c(options.cs_threshold, 0.001) self.connect(rx_dup, self._phy_rx_probe) # Construct receive chain: received packets are delivered via callback from PHY self.connect(rx_dup, self._phy) # For certain settings, we may need to 'pad' our # transmissions with a 0-powered signal when we # aren't actively transmitting a packet if need_padding: import cs434_hw4 self._phy_tx_padder = cs434_hw4.channel_runner_cc() else: self._phy_tx_padder = gr.kludge_copy(gr.sizeof_gr_complex) # Construct transmit chain: packets are delivered to PHY via 'send_pkt()' method self._phy_tx_scale = gr.multiply_const_cc(options.tx_amplitude) self.connect(self._phy, self._phy_tx_scale, self._phy_tx_padder, self)
def __init__(self, options): gr.hier_block2.__init__(self, "software_channel", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex)) self._copy_in = gr.kludge_copy(gr.sizeof_gr_complex) self._channel = blks2impl.channel_model.channel_model( options.noise_amplitude, options.freq_offset, options.timing_ratio, [1.0, 0.0], options.noise_seed) self._copy_out = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self._copy_in, self._channel, self._copy_out, self)
def __init__(self, item_size, num_inputs, num_outputs, input_index, output_index): """ Selector constructor. @param item_size the size of the gr data stream in bytes @param num_inputs the number of inputs (integer) @param num_outputs the number of outputs (integer) @param input_index the index for the source data @param output_index the index for the destination data """ gr.hier_block2.__init__( self, 'selector', gr.io_signature(num_inputs, num_inputs, item_size), gr.io_signature(num_outputs, num_outputs, item_size), ) #terminator blocks for unused inputs and outputs self.input_terminators = [gr.null_sink(item_size) for i in range(num_inputs)] self.output_terminators = [gr.head(item_size, 0) for i in range(num_outputs)] self.copy = gr.kludge_copy(item_size) #connections for i in range(num_inputs): self.connect((self, i), self.input_terminators[i]) for i in range(num_outputs): self.connect(gr.null_source(item_size), self.output_terminators[i], (self, i)) self.item_size = item_size self.input_index = input_index self.output_index = output_index self.num_inputs = num_inputs self.num_outputs = num_outputs self._connect_current()
def __init__(self, fft_length): gr.hier_block2.__init__(self, "timing_metric", gr.io_signature(1,1,gr.sizeof_gr_complex), gr.io_signature(1,1,gr.sizeof_float)) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self,self.input) # P(d) nominator = schmidl_nominator(fft_length) # R(d) denominator = schmidl_denominator(fft_length) # |P(d)| ** 2 / (R(d)) ** 2 p_mag_sqrd = gr.complex_to_mag_squared() r_sqrd = gr.multiply_ff() self.timing_metric = gr.divide_ff() self.connect(self.input, nominator, p_mag_sqrd, (self.timing_metric,0)) self.connect(self.input, denominator, (r_sqrd,0)) self.connect(denominator, (r_sqrd,1)) self.connect(r_sqrd, (self.timing_metric,1)) self.connect(self.timing_metric, self) # calculate epsilon from P(d), epsilon is normalized fractional frequency offset #angle = gr.complex_to_arg() #self.epsilon = gr.multiply_const_ff(1.0/math.pi) #self.connect(nominator, angle, self.epsilon) try: gr.hier_block.update_var_names(self, "schmidl", vars()) gr.hier_block.update_var_names(self, "schmidl", vars(self)) except: pass
def __init__(self, fft_length, pn_weights): gr.hier_block2.__init__(self, "modified_timing_metric", gr.io_signature(1,1,gr.sizeof_gr_complex), gr.io_signature(1,1,gr.sizeof_float)) assert(len(pn_weights) == fft_length) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self,self.input) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() nominator = gr.fir_filter_ccf(1,[pn_weights[fft_length-i-1]*pn_weights[fft_length/2-i-1] for i in range(fft_length/2)]) self.connect(self.input, delay(gr.sizeof_gr_complex,fft_length/2), conj, (mixer,0)) self.connect(self.input, (mixer,1)) self.connect(mixer, nominator) # moving_avg = P(d) # R(d) denominator = schmidl_denominator(fft_length) # |P(d)| ** 2 / (R(d)) ** 2 p_mag_sqrd = gr.complex_to_mag_squared() r_sqrd = gr.multiply_ff() self.timing_metric = gr.divide_ff() self.connect(nominator, p_mag_sqrd, (self.timing_metric,0)) self.connect(self.input, denominator, (r_sqrd,0)) self.connect(denominator, (r_sqrd,1)) self.connect(r_sqrd, (self.timing_metric,1)) self.connect(self.timing_metric, self)
def __init__(self, options, rx_callback): phy_base.__init__(self, options, rx_callback) # Receive chain demod_class = phy_psk.DEMODS[options.psk_modulation] demod_kwargs = demod_class.extract_kwargs_from_options(options) self._rx_demod = blks2.demod_pkts( demod_class(**demod_kwargs), callback=self._rx_callback) sw_decim = 1 self._rx_chan_filt = gr.fft_filter_ccc( sw_decim, gr.firdes.low_pass ( 1.0, # gain sw_decim * self._rx_demod._demodulator.samples_per_symbol(), # sampling rate 1.0, # midpoint of trans. band 0.5, # width of trans. band gr.firdes.WIN_HANN)) # filter type self.connect(self, self._rx_chan_filt, self._rx_demod) # Trasmit chain mod_class = phy_psk.MODS[options.psk_modulation] mod_kwargs = mod_class.extract_kwargs_from_options(options) self._tx_mod = blks2.mod_pkts( mod_class(**mod_kwargs), pad_for_usrp=True) self.connect(self._tx_mod, gr.kludge_copy(gr.sizeof_gr_complex), self)
def __init__(self, vlen): gr.hier_block2.__init__( self, "snr_estimator", gr.io_signature(2, 2, gr.sizeof_gr_complex * vlen), gr.io_signature(1, 1, gr.sizeof_float)) reference = gr.kludge_copy(gr.sizeof_gr_complex * vlen) received = gr.kludge_copy(gr.sizeof_gr_complex * vlen) self.connect((self, 0), reference) self.connect((self, 1), received) received_conjugated = gr.conjugate_cc(vlen) self.connect(received, received_conjugated) R_innerproduct = gr.multiply_vcc(vlen) self.connect(reference, R_innerproduct) self.connect(received_conjugated, (R_innerproduct, 1)) R_sum = vector_sum_vcc(vlen) self.connect(R_innerproduct, R_sum) R = gr.complex_to_mag_squared() self.connect(R_sum, R) received_magsqrd = gr.complex_to_mag_squared(vlen) reference_magsqrd = gr.complex_to_mag_squared(vlen) self.connect(received, received_magsqrd) self.connect(reference, reference_magsqrd) received_sum = vector_sum_vff(vlen) reference_sum = vector_sum_vff(vlen) self.connect(received_magsqrd, received_sum) self.connect(reference_magsqrd, reference_sum) P = gr.multiply_ff() self.connect(received_sum, (P, 0)) self.connect(reference_sum, (P, 1)) denominator = gr.sub_ff() self.connect(P, denominator) self.connect(R, (denominator, 1)) rho_hat = gr.divide_ff() self.connect(R, rho_hat) self.connect(denominator, (rho_hat, 1)) self.connect(rho_hat, self)
def __init__(self,vlen): gr.hier_block2.__init__(self,"snr_estimator", gr.io_signature(2,2,gr.sizeof_gr_complex*vlen), gr.io_signature(1,1,gr.sizeof_float)) reference = gr.kludge_copy(gr.sizeof_gr_complex*vlen) received = gr.kludge_copy(gr.sizeof_gr_complex*vlen) self.connect((self,0),reference) self.connect((self,1),received) received_conjugated = gr.conjugate_cc(vlen) self.connect(received,received_conjugated) R_innerproduct = gr.multiply_vcc(vlen) self.connect(reference,R_innerproduct) self.connect(received_conjugated,(R_innerproduct,1)) R_sum = vector_sum_vcc(vlen) self.connect(R_innerproduct,R_sum) R = gr.complex_to_mag_squared() self.connect(R_sum,R) received_magsqrd = gr.complex_to_mag_squared(vlen) reference_magsqrd = gr.complex_to_mag_squared(vlen) self.connect(received,received_magsqrd) self.connect(reference,reference_magsqrd) received_sum = vector_sum_vff(vlen) reference_sum = vector_sum_vff(vlen) self.connect(received_magsqrd,received_sum) self.connect(reference_magsqrd,reference_sum) P = gr.multiply_ff() self.connect(received_sum,(P,0)) self.connect(reference_sum,(P,1)) denominator = gr.sub_ff() self.connect(P,denominator) self.connect(R,(denominator,1)) rho_hat = gr.divide_ff() self.connect(R,rho_hat) self.connect(denominator,(rho_hat,1)) self.connect(rho_hat,self)
def test_001(self): # 1 input stream; 1 output stream src0_data = self.make_random_int_tuple(16000) src0 = gr.vector_source_i(src0_data) op = gr.kludge_copy(gr.sizeof_int) dst0 = gr.vector_sink_i() self.tb.connect(src0, op, dst0) self.tb.run() dst0_data = dst0.data() self.assertEqual(src0_data, dst0_data)
def test_001(self): # 1 input stream; 1 output stream src0_data = self.make_random_int_tuple(16000) src0 = gr.vector_source_i(src0_data) op = gr.kludge_copy(gr.sizeof_int) dst0 = gr.vector_sink_i() self.fg.connect(src0, op, dst0) self.fg.run() dst0_data = dst0.data() self.assertEqual(src0_data, dst0_data)
def test_030_nested_input(self): tb = gr.top_block() src = gr.vector_source_b([1]) hb1 = gr.hier_block2("hb1", gr.io_signature(1, 1, gr.sizeof_char), gr.io_signature(0, 0, 0)) hb2 = gr.hier_block2("hb2", gr.io_signature(1, 1, gr.sizeof_char), gr.io_signature(0, 0, 0)) dst = gr.vector_sink_b() tb.connect(src, hb1) hb1.connect(hb1, hb2) hb2.connect(hb2, gr.kludge_copy(gr.sizeof_char), dst) tb.run() self.assertEquals(dst.data(), (1,))
def xtest_003(self): # number of input streams != number of output streams src0_data = self.make_random_int_tuple(16000) src1_data = self.make_random_int_tuple(16000) src0 = gr.vector_source_i(src0_data) src1 = gr.vector_source_i(src1_data) op = gr.kludge_copy(gr.sizeof_int) dst0 = gr.vector_sink_i() dst1 = gr.vector_sink_i() self.tb.connect(src0, (op, 0), dst0) self.tb.connect(src1, (op, 1)) self.assertRaises(ValueError, self.tb.run)
def test_003(self): # number of input streams != number of output streams src0_data = self.make_random_int_tuple(16000) src1_data = self.make_random_int_tuple(16000) src0 = gr.vector_source_i(src0_data) src1 = gr.vector_source_i(src1_data) op = gr.kludge_copy(gr.sizeof_int) dst0 = gr.vector_sink_i() dst1 = gr.vector_sink_i() self.fg.connect(src0, (op, 0), dst0) self.fg.connect(src1, (op, 1)) self.assertRaises(ValueError, self.fg.run)
def __init__ ( self, noise_power, coherence_time, taps ): gr.hier_block2.__init__(self, "fading_channel", gr.io_signature( 1, 1, gr.sizeof_gr_complex ), gr.io_signature( 1, 1, gr.sizeof_gr_complex ) ) inp = gr.kludge_copy( gr.sizeof_gr_complex ) self.connect( self, inp ) tap1_delay = gr.delay( gr.sizeof_gr_complex, 1 ) tap2_delay = gr.delay( gr.sizeof_gr_complex, 2 ) self.connect( inp, tap1_delay ) self.connect( inp, tap2_delay ) fd = 100 z = numpy.arange(-fd+0.1,fd,0.1) t = numpy.sqrt(1. / ( pi * fd * numpy.sqrt( 1. - (z/fd)**2 ) ) ) tap1_noise = ofdm.complex_white_noise( 0.0, taps[0] ) tap1_filter = gr.fft_filter_ccc(1, t) self.connect( tap1_noise, tap1_filter ) tap1_mult = gr.multiply_cc() self.connect( tap1_filter, (tap1_mult,0) ) self.connect( tap1_delay, (tap1_mult,1) ) tap2_noise = ofdm.complex_white_noise( 0.0, taps[1] ) tap2_filter = gr.fft_filter_ccc(1, t) self.connect( tap2_noise, tap2_filter ) tap2_mult = gr.multiply_cc() self.connect( tap2_filter, (tap2_mult,0) ) self.connect( tap2_delay, (tap2_mult,1) ) noise_src = ofdm.complex_white_noise( 0.0, sqrt( noise_power ) ) chan = gr.add_cc() self.connect( inp, (chan,0) ) self.connect( tap1_mult, (chan,1) ) self.connect( tap2_mult, (chan,2) ) self.connect( noise_src, (chan,3) ) self.connect( chan, self ) log_to_file( self, tap1_filter, "data/tap1_filter.compl") log_to_file( self, tap1_filter, "data/tap1_filter.float", mag=True) log_to_file( self, tap2_filter, "data/tap2_filter.compl") log_to_file( self, tap2_filter, "data/tap2_filter.float", mag=True)
def test_030_nested_input(self): tb = gr.top_block() src = gr.vector_source_b([ 1, ]) hb1 = gr.hier_block2("hb1", gr.io_signature(1, 1, gr.sizeof_char), gr.io_signature(0, 0, 0)) hb2 = gr.hier_block2("hb2", gr.io_signature(1, 1, gr.sizeof_char), gr.io_signature(0, 0, 0)) dst = gr.vector_sink_b() tb.connect(src, hb1) hb1.connect(hb1, hb2) hb2.connect(hb2, gr.kludge_copy(gr.sizeof_char), dst) tb.run() self.assertEquals(dst.data(), (1, ))
def __init__(self, noise_power, coherence_time, taps): gr.hier_block2.__init__(self, "fading_channel", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex)) inp = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, inp) tap1_delay = gr.delay(gr.sizeof_gr_complex, 1) tap2_delay = gr.delay(gr.sizeof_gr_complex, 2) self.connect(inp, tap1_delay) self.connect(inp, tap2_delay) fd = 100 z = numpy.arange(-fd + 0.1, fd, 0.1) t = numpy.sqrt(1. / (pi * fd * numpy.sqrt(1. - (z / fd)**2))) tap1_noise = ofdm.complex_white_noise(0.0, taps[0]) tap1_filter = gr.fft_filter_ccc(1, t) self.connect(tap1_noise, tap1_filter) tap1_mult = gr.multiply_cc() self.connect(tap1_filter, (tap1_mult, 0)) self.connect(tap1_delay, (tap1_mult, 1)) tap2_noise = ofdm.complex_white_noise(0.0, taps[1]) tap2_filter = gr.fft_filter_ccc(1, t) self.connect(tap2_noise, tap2_filter) tap2_mult = gr.multiply_cc() self.connect(tap2_filter, (tap2_mult, 0)) self.connect(tap2_delay, (tap2_mult, 1)) noise_src = ofdm.complex_white_noise(0.0, sqrt(noise_power)) chan = gr.add_cc() self.connect(inp, (chan, 0)) self.connect(tap1_mult, (chan, 1)) self.connect(tap2_mult, (chan, 2)) self.connect(noise_src, (chan, 3)) self.connect(chan, self) log_to_file(self, tap1_filter, "data/tap1_filter.compl") log_to_file(self, tap1_filter, "data/tap1_filter.float", mag=True) log_to_file(self, tap2_filter, "data/tap2_filter.compl") log_to_file(self, tap2_filter, "data/tap2_filter.float", mag=True)
def test_002(self): # 2 input streams; 2 output streams src0_data = self.make_random_int_tuple(16000) src1_data = self.make_random_int_tuple(16000) src0 = gr.vector_source_i(src0_data) src1 = gr.vector_source_i(src1_data) op = gr.kludge_copy(gr.sizeof_int) dst0 = gr.vector_sink_i() dst1 = gr.vector_sink_i() self.tb.connect(src0, (op, 0), dst0) self.tb.connect(src1, (op, 1), dst1) self.tb.run() dst0_data = dst0.data() dst1_data = dst1.data() self.assertEqual(src0_data, dst0_data) self.assertEqual(src1_data, dst1_data)
def test_002(self): # 2 input streams; 2 output streams src0_data = self.make_random_int_tuple(16000) src1_data = self.make_random_int_tuple(16000) src0 = gr.vector_source_i(src0_data) src1 = gr.vector_source_i(src1_data) op = gr.kludge_copy(gr.sizeof_int) dst0 = gr.vector_sink_i() dst1 = gr.vector_sink_i() self.fg.connect(src0, (op, 0), dst0) self.fg.connect(src1, (op, 1), dst1) self.fg.run() dst0_data = dst0.data() dst1_data = dst1.data() self.assertEqual(src0_data, dst0_data) self.assertEqual(src1_data, dst1_data)
def __init__ ( self, fft_length ): gr.hier_block2.__init__(self, "recursive_timing_metric", gr.io_signature(1,1,gr.sizeof_gr_complex), gr.io_signature(1,1,gr.sizeof_float)) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() mix_delay = delay(gr.sizeof_gr_complex,fft_length/2+1) mix_diff = gr.sub_cc() nominator = accumulator_cc() inpdelay = delay(gr.sizeof_gr_complex,fft_length/2) self.connect(self.input, inpdelay, conj, (mixer,0)) self.connect(self.input, (mixer,1)) self.connect(mixer,(mix_diff,0)) self.connect(mixer, mix_delay, (mix_diff,1)) self.connect(mix_diff,nominator) rmagsqrd = gr.complex_to_mag_squared() rm_delay = delay(gr.sizeof_float,fft_length+1) rm_diff = gr.sub_ff() denom = accumulator_ff() self.connect(self.input,rmagsqrd,rm_diff,gr.multiply_const_ff(0.5),denom) self.connect(rmagsqrd,rm_delay,(rm_diff,1)) ps = gr.complex_to_mag_squared() rs = gr.multiply_ff() self.connect(nominator,ps) self.connect(denom,rs) self.connect(denom,(rs,1)) div = gr.divide_ff() self.connect(ps,div) self.connect(rs,(div,1)) self.connect(div,self)
def __init__(self, fft_length): gr.hier_block2.__init__(self, "recursive_timing_metric", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float)) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() mix_delay = delay(gr.sizeof_gr_complex, fft_length / 2 + 1) mix_diff = gr.sub_cc() nominator = accumulator_cc() inpdelay = delay(gr.sizeof_gr_complex, fft_length / 2) self.connect(self.input, inpdelay, conj, (mixer, 0)) self.connect(self.input, (mixer, 1)) self.connect(mixer, (mix_diff, 0)) self.connect(mixer, mix_delay, (mix_diff, 1)) self.connect(mix_diff, nominator) rmagsqrd = gr.complex_to_mag_squared() rm_delay = delay(gr.sizeof_float, fft_length + 1) rm_diff = gr.sub_ff() denom = accumulator_ff() self.connect(self.input, rmagsqrd, rm_diff, gr.multiply_const_ff(0.5), denom) self.connect(rmagsqrd, rm_delay, (rm_diff, 1)) ps = gr.complex_to_mag_squared() rs = gr.multiply_ff() self.connect(nominator, ps) self.connect(denom, rs) self.connect(denom, (rs, 1)) div = gr.divide_ff() self.connect(ps, div) self.connect(rs, (div, 1)) self.connect(div, self)
def __init__(self, fft_length): gr.hier_block2.__init__(self, "schmidl_nominator", gr.io_signature(1,1,gr.sizeof_gr_complex), gr.io_signature(1,1,gr.sizeof_gr_complex)) self.input=gr.kludge_copy(gr.sizeof_gr_complex) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() moving_avg = gr.fir_filter_ccf(1,[1.0 for i in range(fft_length/2)]) self.connect(self, self.input, delay(gr.sizeof_gr_complex,fft_length/2), conj, (mixer,0)) self.connect(self.input, (mixer,1)) self.connect(mixer, moving_avg, self) # moving_avg = P(d) try: gr.hier_block.update_var_names(self, "schmidl_nom", vars()) gr.hier_block.update_var_names(self, "schmidl_nom", vars(self)) except: pass
def __init__(self, fft_length): gr.hier_block2.__init__(self, "schmidl_nominator", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex)) self.input = gr.kludge_copy(gr.sizeof_gr_complex) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() moving_avg = gr.fir_filter_ccf(1, [1.0 for i in range(fft_length / 2)]) self.connect(self, self.input, delay(gr.sizeof_gr_complex, fft_length / 2), conj, (mixer, 0)) self.connect(self.input, (mixer, 1)) self.connect(mixer, moving_avg, self) # moving_avg = P(d) try: gr.hier_block.update_var_names(self, "schmidl_nom", vars()) gr.hier_block.update_var_names(self, "schmidl_nom", vars(self)) except: pass
def __init__(self, fft_length, pn_weights): gr.hier_block2.__init__(self, "modified_timing_metric", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float)) assert (len(pn_weights) == fft_length) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() nominator = gr.fir_filter_ccf(1, [ pn_weights[fft_length - i - 1] * pn_weights[fft_length / 2 - i - 1] for i in range(fft_length / 2) ]) self.connect(self.input, delay(gr.sizeof_gr_complex, fft_length / 2), conj, (mixer, 0)) self.connect(self.input, (mixer, 1)) self.connect(mixer, nominator) # moving_avg = P(d) # R(d) denominator = schmidl_denominator(fft_length) # |P(d)| ** 2 / (R(d)) ** 2 p_mag_sqrd = gr.complex_to_mag_squared() r_sqrd = gr.multiply_ff() self.timing_metric = gr.divide_ff() self.connect(nominator, p_mag_sqrd, (self.timing_metric, 0)) self.connect(self.input, denominator, (r_sqrd, 0)) self.connect(denominator, (r_sqrd, 1)) self.connect(r_sqrd, (self.timing_metric, 1)) self.connect(self.timing_metric, self)
def __init__(self, fft_length): gr.hier_block2.__init__(self, "timing_metric", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float)) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # P(d) nominator = schmidl_nominator(fft_length) # R(d) denominator = schmidl_denominator(fft_length) # |P(d)| ** 2 / (R(d)) ** 2 p_mag_sqrd = gr.complex_to_mag_squared() r_sqrd = gr.multiply_ff() self.timing_metric = gr.divide_ff() self.connect(self.input, nominator, p_mag_sqrd, (self.timing_metric, 0)) self.connect(self.input, denominator, (r_sqrd, 0)) self.connect(denominator, (r_sqrd, 1)) self.connect(r_sqrd, (self.timing_metric, 1)) self.connect(self.timing_metric, self) # calculate epsilon from P(d), epsilon is normalized fractional frequency offset #angle = gr.complex_to_arg() #self.epsilon = gr.multiply_const_ff(1.0/math.pi) #self.connect(nominator, angle, self.epsilon) try: gr.hier_block.update_var_names(self, "schmidl", vars()) gr.hier_block.update_var_names(self, "schmidl", vars(self)) except: pass
def __init__(self, item_size, num_inputs, num_outputs, input_index, output_index): """ Selector constructor. @param item_size the size of the gr data stream in bytes @param num_inputs the number of inputs (integer) @param num_outputs the number of outputs (integer) @param input_index the index for the source data @param output_index the index for the destination data """ gr.hier_block2.__init__( self, 'selector', gr.io_signature(num_inputs, num_inputs, item_size), gr.io_signature(num_outputs, num_outputs, item_size), ) #terminator blocks for unused inputs and outputs self.input_terminators = [ gr.null_sink(item_size) for i in range(num_inputs) ] self.output_terminators = [ gr.head(item_size, 0) for i in range(num_outputs) ] self.copy = gr.kludge_copy(item_size) #connections for i in range(num_inputs): self.connect((self, i), self.input_terminators[i]) for i in range(num_outputs): self.connect(gr.null_source(item_size), self.output_terminators[i], (self, i)) self.item_size = item_size self.input_index = input_index self.output_index = output_index self.num_inputs = num_inputs self.num_outputs = num_outputs self._connect_current()
def __init__ (self, fg, demod_rate, audio_decimation): """ Hierarchical block for demodulating a broadcast FM signal. The input is the downconverted complex baseband signal (gr_complex). The output is two streams of the demodulated audio (float) 0=Left, 1=Right. @param fg: flow graph. @type fg: flow graph @param demod_rate: input sample rate of complex baseband input. @type demod_rate: float @param audio_decimation: how much to decimate demod_rate to get to audio. @type audio_decimation: integer """ bandwidth = 200e3 audio_rate = demod_rate / audio_decimation # We assign to self so that outsiders can grab the demodulator # if they need to. E.g., to plot its output. # # input: complex; output: float alpha = 0.25*bandwidth * math.pi / demod_rate beta = alpha * alpha / 4.0 max_freq = 2.0*math.pi*100e3/demod_rate self.fm_demod = gr.pll_freqdet_cf (alpha,beta,max_freq,-max_freq) # input: float; output: float self.deemph_Left = fm_deemph (fg, audio_rate) self.deemph_Right = fm_deemph (fg, audio_rate) # compute FIR filter taps for audio filter width_of_transition_band = audio_rate / 32 audio_coeffs = gr.firdes.low_pass (1.0 , # gain demod_rate, # sampling rate 15000 , width_of_transition_band, gr.firdes.WIN_HAMMING) # input: float; output: float self.audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs) if 1: # Pick off the stereo carrier/2 with this filter. It attenuated 10 dB so apply 10 dB gain # We pick off the negative frequency half because we want to base band by it! ## NOTE THIS WAS HACKED TO OFFSET INSERTION LOSS DUE TO DEEMPHASIS stereo_carrier_filter_coeffs = gr.firdes.complex_band_pass(10.0, demod_rate, -19020, -18980, width_of_transition_band, gr.firdes.WIN_HAMMING) #print "len stereo carrier filter = ",len(stereo_carrier_filter_coeffs) #print "stereo carrier filter ", stereo_carrier_filter_coeffs #print "width of transition band = ",width_of_transition_band, " audio rate = ", audio_rate # Pick off the double side band suppressed carrier Left-Right audio. It is attenuated 10 dB so apply 10 dB gain stereo_dsbsc_filter_coeffs = gr.firdes.complex_band_pass(20.0, demod_rate, 38000-15000/2, 38000+15000/2, width_of_transition_band, gr.firdes.WIN_HAMMING) #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs) #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs # construct overlap add filter system from coefficients for stereo carrier self.stereo_carrier_filter = gr.fir_filter_fcc(audio_decimation, stereo_carrier_filter_coeffs) # carrier is twice the picked off carrier so arrange to do a commplex multiply self.stereo_carrier_generator = gr.multiply_cc(); # Pick off the rds signal stereo_rds_filter_coeffs = gr.firdes.complex_band_pass(30.0, demod_rate, 57000 - 1500, 57000 + 1500, width_of_transition_band, gr.firdes.WIN_HAMMING) #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs) #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs # construct overlap add filter system from coefficients for stereo carrier self.stereo_carrier_filter = gr.fir_filter_fcc(audio_decimation, stereo_carrier_filter_coeffs) self.rds_signal_filter = gr.fir_filter_fcc(audio_decimation, stereo_rds_filter_coeffs) self.rds_carrier_generator = gr.multiply_cc(); self.rds_signal_generator = gr.multiply_cc(); self_rds_signal_processor = gr.null_sink(gr.sizeof_gr_complex); alpha = 5 * 0.25 * math.pi / (audio_rate) beta = alpha * alpha / 4.0 max_freq = -2.0*math.pi*18990/audio_rate; min_freq = -2.0*math.pi*19010/audio_rate; self.stereo_carrier_pll_recovery = gr.pll_refout_cc(alpha,beta,max_freq,min_freq); #self.stereo_carrier_pll_recovery.squelch_enable(False) #pll_refout does not have squelch yet, so disabled for now # set up mixer (multiplier) to get the L-R signal at baseband self.stereo_basebander = gr.multiply_cc(); # pick off the real component of the basebanded L-R signal. The imaginary SHOULD be zero self.LmR_real = gr.complex_to_real(); self.Make_Left = gr.add_ff(); self.Make_Right = gr.sub_ff(); self.stereo_dsbsc_filter = gr.fir_filter_fcc(audio_decimation, stereo_dsbsc_filter_coeffs) if 1: # send the real signal to complex filter to pick off the carrier and then to one side of a multiplier fg.connect (self.fm_demod,self.stereo_carrier_filter,self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,0)) # send the already filtered carrier to the otherside of the carrier fg.connect (self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,1)) # the resulting signal from this multiplier is the carrier with correct phase but at -38000 Hz. # send the new carrier to one side of the mixer (multiplier) fg.connect (self.stereo_carrier_generator, (self.stereo_basebander,0)) # send the demphasized audio to the DSBSC pick off filter, the complex # DSBSC signal at +38000 Hz is sent to the other side of the mixer/multiplier fg.connect (self.fm_demod,self.stereo_dsbsc_filter, (self.stereo_basebander,1)) # the result is BASEBANDED DSBSC with phase zero! # Pick off the real part since the imaginary is theoretically zero and then to one side of a summer fg.connect (self.stereo_basebander, self.LmR_real, (self.Make_Left,0)) #take the same real part of the DSBSC baseband signal and send it to negative side of a subtracter fg.connect (self.LmR_real,(self.Make_Right,1)) # Make rds carrier by taking the squared pilot tone and multiplying by pilot tone fg.connect (self.stereo_basebander,(self.rds_carrier_generator,0)) fg.connect (self.stereo_carrier_pll_recovery,(self.rds_carrier_generator,1)) # take signal, filter off rds, send into mixer 0 channel fg.connect (self.fm_demod,self.rds_signal_filter,(self.rds_signal_generator,0)) # take rds_carrier_generator output and send into mixer 1 channel fg.connect (self.rds_carrier_generator,(self.rds_signal_generator,1)) # send basebanded rds signal and send into "processor" which for now is a null sink fg.connect (self.rds_signal_generator,self_rds_signal_processor) if 1: # pick off the audio, L+R that is what we used to have and send it to the summer fg.connect(self.fm_demod, self.audio_filter, (self.Make_Left, 1)) # take the picked off L+R audio and send it to the PLUS side of the subtractor fg.connect(self.audio_filter,(self.Make_Right, 0)) # The result of Make_Left gets (L+R) + (L-R) and results in 2*L # The result of Make_Right gets (L+R) - (L-R) and results in 2*R # kludge the signals into a stereo channel kludge = gr.kludge_copy(gr.sizeof_float) fg.connect(self.Make_Left , self.deemph_Left, (kludge, 0)) fg.connect(self.Make_Right, self.deemph_Right, (kludge, 1)) #send it to the audio system gr.hier_block.__init__(self, fg, self.fm_demod, # head of the pipeline kludge) # tail of the pipeline else: fg.connect (self.fm_demod, self.audio_filter) gr.hier_block.__init__(self, fg, self.fm_demod, # head of the pipeline self.audio_filter) # tail of the pipeline
def __init__(self, fft_length, block_length, frame_data_part, block_header, options): gr.hier_block2.__init__( self, "ofdm_receiver", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature2(2, 2, gr.sizeof_gr_complex * fft_length, gr.sizeof_char)) frame_length = frame_data_part + block_header.no_pilotsyms cp_length = block_length - fft_length self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) self.blocks_out = (self, 0) self.frame_trigger_out = (self, 1) self.snr_out = (self, 2) if options.log: log_to_file(self, self.input, "data/receiver_input.compl") # peak detector: thresholds low, high #self._pd_thres_lo = 0.09 #self._pd_thres_hi = 0.1 self._pd_thres = 0.2 self._pd_lookahead = fft_length / 2 # empirically chosen ######################### # coarse timing offset estimator # self.tm = schmidl.modified_timing_metric(fft_length,[1]*(fft_length)) self.tm = schmidl.recursive_timing_metric(fft_length) self.connect(self.input, self.tm) assert (hasattr(block_header, 'sc_preamble_pos')) assert (block_header.sc_preamble_pos == 0 ) # TODO: relax this restriction if options.filter_timingmetric: timingmetric_shift = -2 #int(-cp_length * 0.8) tmfilter = gr.fir_filter_fff(1, [1. / cp_length] * cp_length) self.connect(self.tm, tmfilter) self.timing_metric = tmfilter print "Filtering timing metric, experimental" else: self.timing_metric = self.tm timingmetric_shift = int(-cp_length / 4) if options.log: log_to_file(self, self.timing_metric, "data/tm.float") # peak detection #threshold = gr.threshold_ff(self._pd_thres_lo,self._pd_thres_hi,0) #muted_tm = gr.multiply_ff() peak_detector = peak_detector_02_fb(self._pd_lookahead, self._pd_thres) #self.connect(self.timing_metric, threshold, (muted_tm,0)) #self.connect(self.timing_metric, (muted_tm,1)) #self.connect(muted_tm, peak_detector) self.connect(self.timing_metric, peak_detector) if options.log: pd_float = gr.char_to_float() self.connect(peak_detector, pd_float) log_to_file(self, pd_float, "data/peakdetector.float") if options.no_timesync: terminate_stream(self, peak_detector) trigger = [0] * (frame_length * block_length) trigger[block_length - 1] = 1 peak_detector = blocks.vector_source_b(trigger, True) print "Bypassing timing synchronisation" # TODO: refine detected peaks with 90% average method as proposed # from Schmidl & Cox: # Starting from peak, find first points to the left and right whose # value is less than or equal 90% of the peak value. New trigger point # is average of both # Frequency Offset Estimation # Used: Algorithm as proposed from Morelli & Mengali # Idea: Use periodic preamble, correlate identical parts, determine # phase offset. This phase offset is a function of the frequency offset. assert (hasattr(block_header, 'mm_preamble_pos')) foe = morelli_foe(fft_length, block_header.mm_periodic_parts) self.connect(self.input, (foe, 0)) if block_header.mm_preamble_pos > 0: delayed_trigger = gr.delay( gr.sizeof_char, block_header.mm_preamble_pos * block_length) self.connect(peak_detector, delayed_trigger, (foe, 1)) else: self.connect(peak_detector, (foe, 1)) self.freq_offset = foe if options.log: log_to_file(self, self.freq_offset, "data/freqoff_out.float") if options.average_freqoff: #avg_foe = gr.single_pole_iir_filter_ff( 0.1 ) avg_foe = ofdm.lms_fir_ff(20, 1e-3) self.connect(self.freq_offset, avg_foe) self.freq_offset = avg_foe #log_to_file( self, avg_foe, "data/freqoff_out_avg.float" ) print "EXPERIMENTAL!!! Filtering frequency offset estimate" if options.no_freqsync: terminate_stream(self, self.freq_offset) self.freq_offset = blocks.vector_source_f([0.0], True) print "Bypassing frequency offset estimator, offset=0.0" # TODO: dynamic solution frametrig_seq = concatenate([[1], [0] * (frame_length - 1)]) self.time_sync = peak_detector self.frame_trigger = blocks.vector_source_b(frametrig_seq, True) self.connect(self.frame_trigger, self.frame_trigger_out) ########################## # symbol extraction and processing # First, we extract the whole ofdm block, then we divide this block into # several ofdm symbols. This asserts that all symbols belonging to the # same ofdm block will be a consecutive order. # extract ofdm symbols # compensate frequency offset # TODO: use PLL and update/reset signals delayed_timesync = gr.delay(gr.sizeof_char, (frame_length - 1) * block_length + timingmetric_shift) self.connect(self.time_sync, delayed_timesync) self.block_sampler = vector_sampler(gr.sizeof_gr_complex, block_length * frame_length) self.discard_cp = vector_mask(block_length, cp_length, fft_length, []) if options.use_dpll: dpll = gr.dpll_bb(frame_length * block_length, .01) self.connect(delayed_timesync, dpll) if options.log: dpll_f = gr.char_to_float() delayed_timesync_f = gr.char_to_float() self.connect(dpll, dpll_f) self.connect(delayed_timesync, delayed_timesync_f) log_to_file(self, dpll_f, "data/dpll.float") log_to_file(self, delayed_timesync_f, "data/dpll_in.float") delayed_timesync = dpll print "Using DPLL, EXPERIMENTAL!!!!!" self.connect(self.input, self.block_sampler) self.connect(delayed_timesync, (self.block_sampler, 1)) if options.log: log_to_file(self, self.block_sampler, "data/block_sampler_out.compl") # TODO: dynamic solution self.ofdm_symbols = blocks.vector_to_stream( gr.sizeof_gr_complex * block_length, frame_length) self.connect(self.block_sampler, self.ofdm_symbols, self.discard_cp) if options.log: log_to_file(self, self.discard_cp, "data/discard_cp_out.compl") dcp_fft = gr.fft_vcc(fft_length, True, [], True) self.connect(self.discard_cp, dcp_fft) log_to_file(self, dcp_fft, "data/discard_cp_fft.compl") # reset phase accumulator inside freq_shift on every block start # setup output connection freq_shift = frequency_shift_vcc(fft_length, -1.0 / fft_length, cp_length) self.connect(self.discard_cp, (freq_shift, 0)) self.connect(self.freq_offset, (freq_shift, 1)) self.connect(self.frame_trigger, (freq_shift, 2)) self.connect(freq_shift, self.blocks_out) if options.log: log_to_file(self, freq_shift, "data/freqshift_out.compl") if options.no_freqshift: terminate_stream(self, freq_shift) freq_shift = self.discard_cp print "Bypassing frequency shift block"
def __init__(self, fft_length, block_length, block_header, range, options): gr.hier_block2.__init__( self, "integer_fo_estimator", gr.io_signature3(3, 3, gr.sizeof_gr_complex, gr.sizeof_float, gr.sizeof_char), gr.io_signature2(3, 3, gr.sizeof_float, gr.sizeof_char)) raise NotImplementedError, "Obsolete class" self._range = range # threshold after integer part frequency offset estimation # if peak value below threshold, assume false triggering self._thr_lo = 0.4 #0.19 # empirically found threshold. see ioe_metric.float self._thr_hi = 0.4 #0.2 # stuff to be removed after bugfix for hierblock2s self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.time_sync = gr.kludge_copy(gr.sizeof_char) self.epsilon = (self, 1) self.connect((self, 0), self.input) self.connect((self, 2), self.time_sync) delay(gr.sizeof_char, block_header.schmidl_fine_sync[0] * block_length) # sample ofdm symbol (preamble 1 and 2) sampler_symbol1 = vector_sampler(gr.sizeof_gr_complex, fft_length) sampler_symbol2 = vector_sampler(gr.sizeof_gr_complex, fft_length) time_delay1 = delay(gr.sizeof_char, block_length * block_header.schmidl_fine_sync[1]) self.connect(self.input, (sampler_symbol1, 0)) self.connect(self.input, (sampler_symbol2, 0)) if block_header.schmidl_fine_sync[0] > 0: time_delay0 = delay( gr.sizeof_char, block_length * block_header.schmidl_fine_sync[0]) self.connect(self.time_sync, time_delay0, (sampler_symbol1, 1)) else: self.connect(self.time_sync, (sampler_symbol1, 1)) self.connect(self.time_sync, time_delay1, (sampler_symbol2, 1)) # negative fractional frequency offset estimate epsilon = gr.multiply_const_ff(-1.0) self.connect(self.epsilon, epsilon) # compensate for fractional frequency offset on per symbol base # freq_shift: vector length, modulator sensitivity # freq_shift third input: reset phase accumulator # symbol/preamble 1 freq_shift_sym1 = frequency_shift_vcc(fft_length, 1.0 / fft_length) self.connect(sampler_symbol1, (freq_shift_sym1, 0)) self.connect(epsilon, (freq_shift_sym1, 1)) self.connect(gr.vector_source_b([1], True), (freq_shift_sym1, 2)) # symbol/preamble 2 freq_shift_sym2 = frequency_shift_vcc(fft_length, 1.0 / fft_length) self.connect(sampler_symbol2, (freq_shift_sym2, 0)) self.connect(epsilon, (freq_shift_sym2, 1)) self.connect(gr.vector_source_b([1], True), (freq_shift_sym2, 2)) # fourier transfrom on both preambles fft_sym1 = gr.fft_vcc(fft_length, True, [], True) # Forward + Blockshift fft_sym2 = gr.fft_vcc(fft_length, True, [], True) # Forward + Blockshift # calculate schmidl's metric for estimation of freq. offset's integer part assert (hasattr(block_header, "schmidl_fine_sync")) pre1 = block_header.pilotsym_fd[block_header.schmidl_fine_sync[0]] pre2 = block_header.pilotsym_fd[block_header.schmidl_fine_sync[1]] diff_pn = concatenate( [[conjugate(math.sqrt(2) * pre2[2 * i] / pre1[2 * i]), 0.0j] for i in arange(len(pre1) / 2)]) cfo_estimator = schmidl_cfo_estimator(fft_length, len(pre1), self._range, diff_pn) self.connect(freq_shift_sym1, fft_sym1, (cfo_estimator, 0)) # preamble 1 self.connect(freq_shift_sym2, fft_sym2, (cfo_estimator, 1)) # preamble 2 # search for maximum and its argument in interval [-range .. +range] #arg_max = arg_max_vff(2*self._range + 1) arg_max_s = gr.argmax_fs(2 * self._range + 1) arg_max = gr.short_to_float() ifo_max = gr.max_ff(2 * self._range + 1) # vlen ifo_estimate = gr.add_const_ff(-self._range) self.connect(cfo_estimator, arg_max_s, arg_max, ifo_estimate) self.connect(cfo_estimator, ifo_max) self.connect((arg_max_s, 1), gr.null_sink(gr.sizeof_short)) # threshold maximal value ifo_threshold = gr.threshold_ff(self._thr_lo, self._thr_hi, 0.0) ifo_thr_f2b = gr.float_to_char() self.connect(ifo_max, ifo_threshold, ifo_thr_f2b) # gating the streams ifo_estimate (integer part) and epsilon (frac. part) # if the metric's peak value was above the chosen threshold, assume to have # found a new burst. peak value below threshold results in blocking the # streams self.gate = gate_ff() self.connect(ifo_thr_f2b, (self.gate, 0)) # threshold stream self.connect(ifo_estimate, (self.gate, 1)) self.connect(epsilon, (self.gate, 2)) # peak filtering # resynchronize and suppress peaks that didn't match a preamble filtered_time_sync = peak_resync_bb(True) # replace self.connect(self.time_sync, (filtered_time_sync, 0)) self.connect(ifo_thr_f2b, (filtered_time_sync, 1)) # find complete estimation for frequency offset # add together fractional and integer part freq_offset = gr.add_ff() self.connect((self.gate, 1), gr.multiply_const_ff(-1.0), (freq_offset, 0)) # integer offset self.connect((self.gate, 2), (freq_offset, 1)) # frac offset # output connections self.connect(freq_offset, (self, 0)) self.connect(filtered_time_sync, (self, 1)) self.connect((self.gate, 0), (self, 2)) # used for frame trigger ######################################### # debugging if options.log: self.epsilon2_sink = gr.vector_sink_f() self.connect(epsilon, self.epsilon2_sink) self.connect( cfo_estimator, gr.file_sink(gr.sizeof_float * (self._range * 2 + 1), "data/ioe_metric.float")) # output joint stream preamble_stream = gr.streams_to_vector( fft_length * gr.sizeof_gr_complex, 2) self.connect(fft_sym1, (preamble_stream, 0)) self.connect(fft_sym2, (preamble_stream, 1)) self.connect( preamble_stream, gr.file_sink(gr.sizeof_gr_complex * 2 * fft_length, "data/preambles.compl")) # output, preambles before and after correction, magnitude and complex spectrum self.connect( sampler_symbol1, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre1_bef.compl")) self.connect( sampler_symbol1, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre1_bef.float")) self.connect( sampler_symbol2, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre2_bef.compl")) self.connect( sampler_symbol2, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre2_bef.float")) self.connect( freq_shift_sym1, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre1.compl")) self.connect( freq_shift_sym1, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre1.float")) self.connect( freq_shift_sym2, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre2.compl")) self.connect( freq_shift_sym2, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre2.float")) # calculate epsilon from corrected source to check function test_cp = cyclic_prefixer(fft_length, block_length) test_eps = foe(fft_length) self.connect(freq_shift_sym1, test_cp, test_eps, gr.file_sink(gr.sizeof_float, "data/eps_after.float")) try: gr.hier_block.update_var_names(self, "ifo_estimator", vars()) gr.hier_block.update_var_names(self, "ifo_estimator", vars(self)) except: pass
def __init__(self, fft_length, block_length, block_header, range, options): gr.hier_block2.__init__(self, "integer_fo_estimator", gr.io_signature3(3,3,gr.sizeof_gr_complex,gr.sizeof_float,gr.sizeof_char), gr.io_signature2(3,3,gr.sizeof_float,gr.sizeof_char)) raise NotImplementedError,"Obsolete class" self._range = range # threshold after integer part frequency offset estimation # if peak value below threshold, assume false triggering self._thr_lo = 0.4 #0.19 # empirically found threshold. see ioe_metric.float self._thr_hi = 0.4 #0.2 # stuff to be removed after bugfix for hierblock2s self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.time_sync = gr.kludge_copy(gr.sizeof_char) self.epsilon = (self,1) self.connect((self,0),self.input) self.connect((self,2),self.time_sync) delay(gr.sizeof_char, block_header.schmidl_fine_sync[0]*block_length) # sample ofdm symbol (preamble 1 and 2) sampler_symbol1 = vector_sampler(gr.sizeof_gr_complex,fft_length) sampler_symbol2 = vector_sampler(gr.sizeof_gr_complex,fft_length) time_delay1 = delay(gr.sizeof_char,block_length*block_header.schmidl_fine_sync[1]) self.connect(self.input, (sampler_symbol1,0)) self.connect(self.input, (sampler_symbol2,0)) if block_header.schmidl_fine_sync[0] > 0: time_delay0 = delay(gr.sizeof_char,block_length*block_header.schmidl_fine_sync[0]) self.connect(self.time_sync, time_delay0, (sampler_symbol1,1)) else: self.connect(self.time_sync, (sampler_symbol1,1)) self.connect(self.time_sync, time_delay1, (sampler_symbol2,1)) # negative fractional frequency offset estimate epsilon = gr.multiply_const_ff(-1.0) self.connect(self.epsilon, epsilon) # compensate for fractional frequency offset on per symbol base # freq_shift: vector length, modulator sensitivity # freq_shift third input: reset phase accumulator # symbol/preamble 1 freq_shift_sym1 = frequency_shift_vcc(fft_length, 1.0/fft_length) self.connect(sampler_symbol1, (freq_shift_sym1,0)) self.connect(epsilon, (freq_shift_sym1,1)) self.connect(gr.vector_source_b([1], True), (freq_shift_sym1,2)) # symbol/preamble 2 freq_shift_sym2 = frequency_shift_vcc(fft_length, 1.0/fft_length) self.connect(sampler_symbol2, (freq_shift_sym2,0)) self.connect(epsilon, (freq_shift_sym2,1)) self.connect(gr.vector_source_b([1], True), (freq_shift_sym2,2)) # fourier transfrom on both preambles fft_sym1 = gr.fft_vcc(fft_length, True, [], True) # Forward + Blockshift fft_sym2 = gr.fft_vcc(fft_length, True, [], True) # Forward + Blockshift # calculate schmidl's metric for estimation of freq. offset's integer part assert(hasattr(block_header, "schmidl_fine_sync")) pre1 = block_header.pilotsym_fd[block_header.schmidl_fine_sync[0]] pre2 = block_header.pilotsym_fd[block_header.schmidl_fine_sync[1]] diff_pn = concatenate([[conjugate(math.sqrt(2)*pre2[2*i]/pre1[2*i]),0.0j] for i in arange(len(pre1)/2)]) cfo_estimator = schmidl_cfo_estimator(fft_length, len(pre1), self._range, diff_pn) self.connect(freq_shift_sym1, fft_sym1, (cfo_estimator,0)) # preamble 1 self.connect(freq_shift_sym2, fft_sym2, (cfo_estimator,1)) # preamble 2 # search for maximum and its argument in interval [-range .. +range] #arg_max = arg_max_vff(2*self._range + 1) arg_max_s = gr.argmax_fs(2*self._range+1) arg_max = gr.short_to_float() ifo_max = gr.max_ff(2*self._range + 1) # vlen ifo_estimate = gr.add_const_ff(-self._range) self.connect(cfo_estimator, arg_max_s, arg_max, ifo_estimate) self.connect(cfo_estimator, ifo_max) self.connect((arg_max_s,1),gr.null_sink(gr.sizeof_short)) # threshold maximal value ifo_threshold = gr.threshold_ff(self._thr_lo, self._thr_hi, 0.0) ifo_thr_f2b = gr.float_to_char() self.connect(ifo_max, ifo_threshold, ifo_thr_f2b) # gating the streams ifo_estimate (integer part) and epsilon (frac. part) # if the metric's peak value was above the chosen threshold, assume to have # found a new burst. peak value below threshold results in blocking the # streams self.gate = gate_ff() self.connect(ifo_thr_f2b, (self.gate,0)) # threshold stream self.connect(ifo_estimate, (self.gate,1)) self.connect(epsilon, (self.gate,2)) # peak filtering # resynchronize and suppress peaks that didn't match a preamble filtered_time_sync = peak_resync_bb(True) # replace self.connect(self.time_sync, (filtered_time_sync,0)) self.connect(ifo_thr_f2b, (filtered_time_sync,1)) # find complete estimation for frequency offset # add together fractional and integer part freq_offset = gr.add_ff() self.connect((self.gate,1), gr.multiply_const_ff(-1.0), (freq_offset,0)) # integer offset self.connect((self.gate,2), (freq_offset,1)) # frac offset # output connections self.connect(freq_offset, (self,0)) self.connect(filtered_time_sync, (self,1)) self.connect((self.gate,0), (self,2)) # used for frame trigger ######################################### # debugging if options.log: self.epsilon2_sink = gr.vector_sink_f() self.connect(epsilon, self.epsilon2_sink) self.connect(cfo_estimator, gr.file_sink(gr.sizeof_float*(self._range*2+1), "data/ioe_metric.float")) # output joint stream preamble_stream = gr.streams_to_vector(fft_length * gr.sizeof_gr_complex, 2) self.connect(fft_sym1, (preamble_stream,0)) self.connect(fft_sym2, (preamble_stream,1)) self.connect(preamble_stream, gr.file_sink(gr.sizeof_gr_complex * 2 * fft_length, "data/preambles.compl")) # output, preambles before and after correction, magnitude and complex spectrum self.connect(sampler_symbol1, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre1_bef.compl")) self.connect(sampler_symbol1, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre1_bef.float")) self.connect(sampler_symbol2, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre2_bef.compl")) self.connect(sampler_symbol2, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre2_bef.float")) self.connect(freq_shift_sym1, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length,"data/pre1.compl")) self.connect(freq_shift_sym1, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length,"data/pre1.float")) self.connect(freq_shift_sym2, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length,"data/pre2.compl")) self.connect(freq_shift_sym2, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length,"data/pre2.float")) # calculate epsilon from corrected source to check function test_cp = cyclic_prefixer(fft_length, block_length) test_eps = foe(fft_length) self.connect(freq_shift_sym1, test_cp, test_eps, gr.file_sink(gr.sizeof_float, "data/eps_after.float")) try: gr.hier_block.update_var_names(self, "ifo_estimator", vars()) gr.hier_block.update_var_names(self, "ifo_estimator", vars(self)) except: pass
def __init__(self, mode, debug=False): """ OFDM time and coarse frequency synchronisation for DAB @param mode DAB mode (1-4) @param debug if True: write data streams out to files """ if mode<1 or mode>4: raise ValueError, "Invalid DAB mode: "+str(mode)+" (modes 1-4 exist)" # get the correct DAB parameters dp = parameters.dab_parameters(mode) rp = parameters.receiver_parameters(mode) gr.hier_block2.__init__(self,"ofdm_sync_dab", gr.io_signature(1, 1, gr.sizeof_gr_complex), # input signature gr.io_signature2(2, 2, gr.sizeof_gr_complex, gr.sizeof_char)) # output signature # workaround for a problem that prevents connecting more than one block directly (see trac ticket #161) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # # null-symbol detection # # (outsourced to detect_zero.py) self.ns_detect = detect_null.detect_null(dp.ns_length, debug) self.connect(self.input, self.ns_detect) # # fine frequency synchronisation # # the code for fine frequency synchronisation is adapted from # ofdm_sync_ml.py; it abuses the cyclic prefix to find the fine # frequency error, as suggested in "ML Estimation of Timing and # Frequency Offset in OFDM Systems", by Jan-Jaap van de Beek, # Magnus Sandell, Per Ola Börjesson, see # http://www.sm.luth.se/csee/sp/research/report/bsb96r.html self.ffs_delay = gr.delay(gr.sizeof_gr_complex, dp.fft_length) self.ffs_conj = gr.conjugate_cc() self.ffs_mult = gr.multiply_cc() # self.ffs_moving_sum = gr.fir_filter_ccf(1, [1]*dp.cp_length) self.ffs_moving_sum = dab_swig.moving_sum_cc(dp.cp_length) self.ffs_angle = gr.complex_to_arg() self.ffs_angle_scale = gr.multiply_const_ff(1./dp.fft_length) self.ffs_delay_sample_and_hold = gr.delay(gr.sizeof_char, dp.symbol_length) # sample the value at the end of the symbol .. self.ffs_sample_and_hold = gr.sample_and_hold_ff() self.ffs_delay_input_for_correction = gr.delay(gr.sizeof_gr_complex, dp.symbol_length) # by delaying the input, we can use the ff offset estimation from the first symbol to correct the first symbol itself self.ffs_nco = gr.frequency_modulator_fc(1) # ffs_sample_and_hold directly outputs phase error per sample self.ffs_mixer = gr.multiply_cc() # calculate fine frequency error self.connect(self.input, self.ffs_conj, self.ffs_mult) self.connect(self.input, self.ffs_delay, (self.ffs_mult, 1)) self.connect(self.ffs_mult, self.ffs_moving_sum, self.ffs_angle) # only use the value from the first half of the first symbol self.connect(self.ffs_angle, self.ffs_angle_scale, (self.ffs_sample_and_hold, 0)) self.connect(self.ns_detect, self.ffs_delay_sample_and_hold, (self.ffs_sample_and_hold, 1)) # do the correction self.connect(self.ffs_sample_and_hold, self.ffs_nco, (self.ffs_mixer, 0)) self.connect(self.input, self.ffs_delay_input_for_correction, (self.ffs_mixer, 1)) # output - corrected signal and start of DAB frames self.connect(self.ffs_mixer, (self, 0)) self.connect(self.ffs_delay_sample_and_hold, (self, 1)) if debug: self.connect(self.ffs_angle, gr.file_sink(gr.sizeof_float, "debug/ofdm_sync_dab_ffs_angle.dat")) self.connect(self.ffs_sample_and_hold, gr.multiply_const_ff(1./(dp.T*2*pi)), gr.file_sink(gr.sizeof_float, "debug/ofdm_sync_dab_fine_freq_err_f.dat")) self.connect(self.ffs_mixer, gr.file_sink(gr.sizeof_gr_complex, "debug/ofdm_sync_dab_fine_freq_corrected_c.dat"))
def __init__(self, options): gr.hier_block2.__init__(self, "fbmc_receive_path", gr.io_signature(1,1,gr.sizeof_gr_complex), gr.io_signature(0,0,0)) print "This is FBMC receive path 1x1" common_options.defaults(options) config = self.config = station_configuration() config.data_subcarriers = dsubc = options.subcarriers config.cp_length = 0 config.frame_data_blocks = options.data_blocks config._verbose = options.verbose #TODO: update config.fft_length = options.fft_length config.dc_null = options.dc_null config.training_data = default_block_header(dsubc, config.fft_length,config.dc_null,options) config.coding = options.coding config.ber_window = options.ber_window config.periodic_parts = 8 config.frame_id_blocks = 1 # FIXME self._options = copy.copy(options) #FIXME: do we need this? config.fbmc = options.fbmc config.block_length = config.fft_length + config.cp_length config.frame_data_part = config.frame_data_blocks + config.frame_id_blocks config.frame_length = config.training_data.fbmc_no_preambles + 2*config.frame_data_part config.postpro_frame_length = config.frame_data_part + \ config.training_data.no_pilotsyms config.subcarriers = dsubc + \ config.training_data.pilot_subcarriers config.virtual_subcarriers = config.fft_length - config.subcarriers - config.dc_null total_subc = config.subcarriers # check some bounds if config.fft_length < config.subcarriers: raise SystemError, "Subcarrier number must be less than FFT length" if config.fft_length < config.cp_length: raise SystemError, "Cyclic prefix length must be less than FFT length" #self.input = gr.kludge_copy(gr.sizeof_gr_complex) #self.connect( self, self.input ) self.input = self self.ideal = options.ideal self.ideal2 = options.ideal2 ## Inner receiver ## Timing & Frequency Synchronization ## Channel estimation + Equalization ## Phase Tracking for sampling clock frequency offset correction inner_receiver = self.inner_receiver = fbmc_inner_receiver( options, options.log ) self.connect( self.input, inner_receiver ) ofdm_blocks = ( inner_receiver, 2 ) frame_start = ( inner_receiver, 1 ) disp_ctf = ( inner_receiver, 0 ) #self.snr_est_preamble = ( inner_receiver, 3 ) #terminate_stream(self,snr_est_preamble) disp_cfo = ( inner_receiver, 3 ) if self.ideal is False and self.ideal2 is False: self.zmq_probe_freqoff = zeromq.pub_sink(gr.sizeof_float, 1, "tcp://*:5557") self.connect(disp_cfo, self.zmq_probe_freqoff) else: self.connect(disp_cfo, blocks.null_sink(gr.sizeof_float)) # for ID decoder used_id_bits = config.used_id_bits = 8 #TODO: constant in source code! rep_id_bits = config.rep_id_bits = dsubc/used_id_bits #BPSK if options.log: print "rep_id_bits %d" % (rep_id_bits) if dsubc % used_id_bits <> 0: raise SystemError,"Data subcarriers need to be multiple of 10" ## Workaround to avoid periodic structure seed(1) whitener_pn = [randint(0,1) for i in range(used_id_bits*rep_id_bits)] ## NOTE!!! BIG HACK!!! ## first preamble ain't equalized .... ## for Milan's SNR estimator ## Outer Receiver ## Make new inner receiver compatible with old outer receiver ## FIXME: renew outer receiver self.ctf = disp_ctf #frame_sampler = ofdm_frame_sampler(options) frame_sampler = fbmc_frame_sampler(options) self.connect( ofdm_blocks, frame_sampler) self.connect( frame_start, (frame_sampler,1) ) # # ft = [0] * config.frame_length # ft[0] = 1 # # # The next block ensures that only complete frames find their way into # # the old outer receiver. The dynamic frame start trigger is hence # # replaced with a static one, fixed to the frame length. # # frame_sampler = ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, # config.frame_length ) # self.symbol_output = blocks.vector_to_stream( gr.sizeof_gr_complex * total_subc, # config.frame_length ) # delayed_frame_start = blocks.delay( gr.sizeof_char, config.frame_length - 1 ) # damn_static_frame_trigger = blocks.vector_source_b( ft, True ) # # if options.enable_erasure_decision: # frame_gate = vector_sampler( # gr.sizeof_gr_complex * total_subc * config.frame_length, 1 ) # self.connect( ofdm_blocks, frame_sampler, frame_gate, # self.symbol_output ) # else: # self.connect( ofdm_blocks, frame_sampler, self.symbol_output ) # # self.connect( frame_start, delayed_frame_start, ( frame_sampler, 1 ) ) if options.enable_erasure_decision: frame_gate = frame_sampler.frame_gate self.symbol_output = frame_sampler orig_frame_start = frame_start frame_start = (frame_sampler,1) self.frame_trigger = frame_start #terminate_stream(self, self.frame_trigger) ## Pilot block filter pb_filt = self._pilot_block_filter = fbmc_pilot_block_filter() self.connect(self.symbol_output,pb_filt) self.connect(self.frame_trigger,(pb_filt,1)) self.frame_data_trigger = (pb_filt,1) #self.symbol_output = pb_filt #if options.log: #log_to_file(self, pb_filt, "data/pb_filt_out.compl") if config.fbmc: pda_in = pb_filt else: ## Pilot subcarrier filter ps_filt = self._pilot_subcarrier_filter = pilot_subcarrier_filter() self.connect(self.symbol_output,ps_filt) if options.log: log_to_file(self, ps_filt, "data/ps_filt_out.compl") pda_in = ps_filt ## Workaround to avoid periodic structure # for ID decoder seed(1) whitener_pn = [randint(0,1) for i in range(used_id_bits*rep_id_bits)] if not options.enable_erasure_decision: ## ID Block Filter # Filter ID block, skip data blocks id_bfilt = self._id_block_filter = vector_sampler( gr.sizeof_gr_complex * dsubc, 1 ) if not config.frame_id_blocks == 1: raise SystemExit, "# ID Blocks > 1 not supported" self.connect( pda_in , id_bfilt ) self.connect( self.frame_data_trigger, ( id_bfilt, 1 ) ) # trigger #log_to_file( self, id_bfilt, "data/id_bfilt.compl" ) ## ID Demapper and Decoder, soft decision self.id_dec = self._id_decoder = ofdm.coded_bpsk_soft_decoder( dsubc, used_id_bits, whitener_pn ) self.connect( id_bfilt, self.id_dec ) print "Using coded BPSK soft decoder for ID detection" else: # options.enable_erasure_decision: id_bfilt = self._id_block_filter = vector_sampler( gr.sizeof_gr_complex * total_subc, config.frame_id_blocks ) id_bfilt_trig_delay = 0 for x in range( config.frame_length ): if x in config.training_data.pilotsym_pos: id_bfilt_trig_delay += 1 else: break print "Position of ID block within complete frame: %d" %(id_bfilt_trig_delay) assert( id_bfilt_trig_delay > 0 ) # else not supported id_bfilt_trig = blocks.delay( gr.sizeof_char, id_bfilt_trig_delay ) self.connect( ofdm_blocks, id_bfilt ) self.connect( orig_frame_start, id_bfilt_trig, ( id_bfilt, 1 ) ) self.id_dec = self._id_decoder = ofdm.coded_bpsk_soft_decoder( total_subc, used_id_bits, whitener_pn, config.training_data.shifted_pilot_tones ) self.connect( id_bfilt, self.id_dec ) print "Using coded BPSK soft decoder for ID detection" # The threshold block either returns 1.0 if the llr-value from the # id decoder is below the threshold, else 0.0. Hence we convert this # into chars, 0 and 1, and use it as trigger for the sampler. min_llr = ( self.id_dec, 1 ) erasure_threshold = gr.threshold_ff( 10.0, 10.0, 0 ) # FIXME is it the optimal threshold? erasure_dec = gr.float_to_char() id_gate = vector_sampler( gr.sizeof_short, 1 ) ctf_gate = vector_sampler( gr.sizeof_float * total_subc, 1 ) self.connect( self.id_dec , id_gate ) self.connect( self.ctf, ctf_gate ) self.connect( min_llr, erasure_threshold, erasure_dec ) self.connect( erasure_dec, ( frame_gate, 1 ) ) self.connect( erasure_dec, ( id_gate, 1 ) ) self.connect( erasure_dec, ( ctf_gate, 1 ) ) self.id_dec = self._id_decoder = id_gate self.ctf = ctf_gate print "Erasure decision for IDs is enabled" if options.log: id_dec_f = gr.short_to_float() self.connect(self.id_dec,id_dec_f) log_to_file(self, id_dec_f, "data/id_dec_out.float") if options.log: log_to_file(self, id_bfilt, "data/id_blockfilter_out.compl") # TODO: refactor names if options.log: map_src_f = gr.char_to_float(dsubc) self.connect(map_src,map_src_f) log_to_file(self, map_src_f, "data/map_src_out.float") ## Allocation Control if options.static_allocation: #DEBUG if options.coding: mode = 1 # Coding mode 1-9 bitspermode = [0.5,1,1.5,2,3,4,4.5,5,6] # Information bits per mode bitcount_vec = [(int)(config.data_subcarriers*config.frame_data_blocks*bitspermode[mode-1])] bitloading = mode else: bitloading = 1 bitcount_vec = [config.data_subcarriers*config.frame_data_blocks*bitloading] #bitcount_vec = [config.data_subcarriers*config.frame_data_blocks] self.bitcount_src = blocks.vector_source_i(bitcount_vec,True,1) # 0s for ID block, then data #bitloading_vec = [0]*dsubc+[0]*(dsubc/2)+[2]*(dsubc/2) bitloading_vec = [0]*dsubc+[bitloading]*dsubc bitloading_src = blocks.vector_source_b(bitloading_vec,True,dsubc) power_vec = [1]*config.data_subcarriers power_src = blocks.vector_source_f(power_vec,True,dsubc) else: self.allocation_buffer = ofdm.allocation_buffer(config.data_subcarriers, config.frame_data_blocks, "tcp://"+options.tx_hostname+":3333",config.coding) self.bitcount_src = (self.allocation_buffer,0) bitloading_src = (self.allocation_buffer,1) power_src = (self.allocation_buffer,2) self.connect(self.id_dec, self.allocation_buffer) if options.benchmarking: self.allocation_buffer.set_allocation([4]*config.data_subcarriers,[1]*config.data_subcarriers) if options.log: log_to_file(self, self.bitcount_src, "data/bitcount_src_rx.int") log_to_file(self, bitloading_src, "data/bitloading_src_rx.char") log_to_file(self, power_src, "data/power_src_rx.cmplx") log_to_file(self, self.id_dec, "data/id_dec_rx.short") ## Power Deallocator pda = self._power_deallocator = multiply_frame_fc(config.frame_data_part, dsubc) self.connect(pda_in,(pda,0)) self.connect(power_src,(pda,1)) ## Demodulator # if 0: # ac_vector = [0.0+0.0j]*208 # ac_vector[0] = (2*10**(-0.452)) # ac_vector[3] = (10**(-0.651)) # ac_vector[7] = (10**(-1.151)) # csi_vector_inv=abs(numpy.fft.fft(numpy.sqrt(ac_vector)))**2 # dm_csi = numpy.fft.fftshift(csi_vector_inv) # TODO dm_csi = [1]*dsubc # TODO dm_csi = blocks.vector_source_f(dm_csi,True) ## Depuncturer dp_trig = [0]*(config.frame_data_blocks/2) dp_trig[0] = 1 dp_trig = blocks.vector_source_b(dp_trig,True) # TODO if(options.coding): fo=ofdm.fsm(1,2,[91,121]) if options.interleave: int_object=trellis.interleaver(2000,666) deinterlv = trellis.permutation(int_object.K(),int_object.DEINTER(),1,gr.sizeof_float) demod = self._data_demodulator = generic_softdemapper_vcf(dsubc, config.frame_data_part, config.coding) #self.connect(dm_csi,blocks.stream_to_vector(gr.sizeof_float,dsubc),(demod,2)) if(options.ideal): self.connect(dm_csi,blocks.stream_to_vector(gr.sizeof_float,dsubc),(demod,2)) else: dm_csi_filter = self.dm_csi_filter = filter.single_pole_iir_filter_ff(0.01,dsubc) self.connect(self.ctf, self.dm_csi_filter,(demod,2)) #log_to_file(self, dm_csi_filter, "data/softs_csi.float") #self.connect(dm_trig,(demod,3)) else: demod = self._data_demodulator = generic_demapper_vcb(dsubc, config.frame_data_part) if options.benchmarking: # Do receiver benchmarking until the number of frames x symbols are collected self.connect(pda,blocks.head(gr.sizeof_gr_complex*dsubc, options.N*config.frame_data_blocks),demod) else: self.connect(pda,demod) self.connect(bitloading_src,(demod,1)) if(options.coding): ## Depuncturing if not options.nopunct: depuncturing = depuncture_ff(dsubc,0) frametrigger_bitmap_filter = blocks.vector_source_b([1,0],True) self.connect(bitloading_src,(depuncturing,1)) self.connect(dp_trig,(depuncturing,2)) ## Decoding chunkdivisor = int(numpy.ceil(config.frame_data_blocks/5.0)) print "Number of chunks at Viterbi decoder: ", chunkdivisor decoding = self._data_decoder = ofdm.viterbi_combined_fb(fo,dsubc,-1,-1,2,chunkdivisor,[-1,-1,-1,1,1,-1,1,1],ofdm.TRELLIS_EUCLIDEAN) if options.log and options.coding: log_to_file(self, decoding, "data/decoded.char") if not options.nopunct: log_to_file(self, depuncturing, "data/vit_in.float") if not options.nopunct: if options.interleave: self.connect(demod,deinterlv,depuncturing,decoding) else: self.connect(demod,depuncturing,decoding) else: self.connect(demod,decoding) self.connect(self.bitcount_src, multiply_const_ii(1./chunkdivisor), (decoding,1)) if options.scatterplot or options.scatter_plot_before_phase_tracking: if self.ideal2 is False: scatter_vec_elem = self._scatter_vec_elem = ofdm.vector_element(dsubc,40) scatter_s2v = self._scatter_s2v = blocks.stream_to_vector(gr.sizeof_gr_complex,config.frame_data_blocks) scatter_id_filt = skip(gr.sizeof_gr_complex*dsubc,config.frame_data_blocks) scatter_id_filt.skip_call(0) scatter_trig = [0]*config.frame_data_part scatter_trig[0] = 1 scatter_trig = blocks.vector_source_b(scatter_trig,True) self.connect(scatter_trig,(scatter_id_filt,1)) self.connect(scatter_vec_elem,scatter_s2v) if not options.scatter_plot_before_phase_tracking: print "Enabling Scatterplot for data subcarriers" self.connect(pda,scatter_id_filt,scatter_vec_elem) # Work on this #scatter_sink = ofdm.scatterplot_sink(dsubc) #self.connect(pda,scatter_sink) #self.connect(map_src,(scatter_sink,1)) #self.connect(dm_trig,(scatter_sink,2)) #print "Enabled scatterplot gui interface" self.zmq_probe_scatter = zeromq.pub_sink(gr.sizeof_gr_complex,config.frame_data_blocks, "tcp://*:5560") self.connect(scatter_s2v, blocks.keep_one_in_n(gr.sizeof_gr_complex*config.frame_data_blocks,20), self.zmq_probe_scatter) else: print "Enabling Scatterplot for data before phase tracking" inner_rx = inner_receiver.before_phase_tracking #scatter_sink2 = ofdm.scatterplot_sink(dsubc,"phase_tracking") op = copy.copy(options) op.enable_erasure_decision = False new_framesampler = ofdm_frame_sampler(op) self.connect( inner_rx, new_framesampler ) self.connect( orig_frame_start, (new_framesampler,1) ) new_ps_filter = pilot_subcarrier_filter() new_pb_filter = fbmc_pilot_block_filter() self.connect( (new_framesampler,1), (new_pb_filter,1) ) self.connect( new_framesampler, new_pb_filter, new_ps_filter, scatter_id_filt, scatter_vec_elem ) #self.connect( new_ps_filter, scatter_sink2 ) #self.connect( map_src, (scatter_sink2,1)) #self.connect( dm_trig, (scatter_sink2,2)) if options.log: if(options.coding): log_to_file(self, demod, "data/data_stream_out.float") else: data_f = gr.char_to_float() self.connect(demod,data_f) log_to_file(self, data_f, "data/data_stream_out.float") if options.sfo_feedback: used_id_bits = 8 rep_id_bits = config.data_subcarriers/used_id_bits seed(1) whitener_pn = [randint(0,1) for i in range(used_id_bits*rep_id_bits)] id_enc = ofdm.repetition_encoder_sb(used_id_bits,rep_id_bits,whitener_pn) self.connect( self.id_dec, id_enc ) id_mod = ofdm_bpsk_modulator(dsubc) self.connect( id_enc, id_mod ) id_mod_conj = gr.conjugate_cc(dsubc) self.connect( id_mod, id_mod_conj ) id_mult = blocks.multiply_vcc(dsubc) self.connect( id_bfilt, ( id_mult,0) ) self.connect( id_mod_conj, ( id_mult,1) ) # id_mult_avg = filter.single_pole_iir_filter_cc(0.01,dsubc) # self.connect( id_mult, id_mult_avg ) id_phase = gr.complex_to_arg(dsubc) self.connect( id_mult, id_phase ) log_to_file( self, id_phase, "data/id_phase.float" ) est=ofdm.LS_estimator_straight_slope(dsubc) self.connect(id_phase,est) slope=blocks.multiply_const_ff(1e6/2/3.14159265) self.connect( (est,0), slope ) log_to_file( self, slope, "data/slope.float" ) log_to_file( self, (est,1), "data/offset.float" ) # ------------------------------------------------------------------------ # # Display some information about the setup if config._verbose: self._print_verbage() ## debug logging ## if options.log: # log_to_file(self,self.ofdm_symbols,"data/unequalized_rx_ofdm_symbols.compl") # log_to_file(self,self.ofdm_symbols,"data/unequalized_rx_ofdm_symbols.float",mag=True) fftlen = 256 my_window = window.hamming(fftlen) #.blackmanharris(fftlen) rxs_sampler = vector_sampler(gr.sizeof_gr_complex,fftlen) rxs_sampler_vect = concatenate([[1],[0]*49]) rxs_trigger = blocks.vector_source_b(rxs_sampler_vect.tolist(),True) rxs_window = blocks.multiply_const_vcc(my_window) rxs_spectrum = gr.fft_vcc(fftlen,True,[],True) rxs_mag = gr.complex_to_mag(fftlen) rxs_avg = filter.single_pole_iir_filter_ff(0.01,fftlen) #rxs_logdb = blocks.nlog10_ff(20.0,fftlen,-20*log10(fftlen)) rxs_logdb = gr.kludge_copy( gr.sizeof_float * fftlen ) rxs_decimate_rate = gr.keep_one_in_n(gr.sizeof_float*fftlen,1) self.connect(rxs_trigger,(rxs_sampler,1)) self.connect(self.input,rxs_sampler,rxs_window, rxs_spectrum,rxs_mag,rxs_avg,rxs_logdb, rxs_decimate_rate) log_to_file( self, rxs_decimate_rate, "data/psd_input.float" ) #output branches self.publish_rx_performance_measure()
def __init__(self, fft_length, block_length, frame_data_part, block_header, options): gr.hier_block2.__init__(self, "ofdm_receiver", gr.io_signature (1,1,gr.sizeof_gr_complex), gr.io_signature2(2,2,gr.sizeof_gr_complex*fft_length, gr.sizeof_char)) frame_length = frame_data_part + block_header.no_pilotsyms cp_length = block_length-fft_length self.input=gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) self.blocks_out = (self,0) self.frame_trigger_out = (self,1) self.snr_out = (self,2) if options.log: log_to_file(self, self.input, "data/receiver_input.compl") # peak detector: thresholds low, high #self._pd_thres_lo = 0.09 #self._pd_thres_hi = 0.1 self._pd_thres = 0.2 self._pd_lookahead = fft_length / 2 # empirically chosen ######################### # coarse timing offset estimator # self.tm = schmidl.modified_timing_metric(fft_length,[1]*(fft_length)) self.tm = schmidl.recursive_timing_metric(fft_length) self.connect(self.input,self.tm) assert(hasattr(block_header, 'sc_preamble_pos')) assert(block_header.sc_preamble_pos == 0) # TODO: relax this restriction if options.filter_timingmetric: timingmetric_shift = -2 #int(-cp_length * 0.8) tmfilter = gr.fir_filter_fff(1, [1./cp_length]*cp_length) self.connect( self.tm, tmfilter ) self.timing_metric = tmfilter print "Filtering timing metric, experimental" else: self.timing_metric = self.tm timingmetric_shift = int(-cp_length/4) if options.log: log_to_file(self, self.timing_metric, "data/tm.float") # peak detection #threshold = gr.threshold_ff(self._pd_thres_lo,self._pd_thres_hi,0) #muted_tm = gr.multiply_ff() peak_detector = peak_detector_02_fb(self._pd_lookahead, self._pd_thres) #self.connect(self.timing_metric, threshold, (muted_tm,0)) #self.connect(self.timing_metric, (muted_tm,1)) #self.connect(muted_tm, peak_detector) self.connect(self.timing_metric, peak_detector) if options.log: pd_float = gr.char_to_float() self.connect(peak_detector,pd_float) log_to_file(self, pd_float, "data/peakdetector.float") if options.no_timesync: terminate_stream( self, peak_detector ) trigger = [0]*(frame_length*block_length) trigger[ block_length-1 ] = 1 peak_detector = blocks.vector_source_b( trigger, True ) print "Bypassing timing synchronisation" # TODO: refine detected peaks with 90% average method as proposed # from Schmidl & Cox: # Starting from peak, find first points to the left and right whose # value is less than or equal 90% of the peak value. New trigger point # is average of both # Frequency Offset Estimation # Used: Algorithm as proposed from Morelli & Mengali # Idea: Use periodic preamble, correlate identical parts, determine # phase offset. This phase offset is a function of the frequency offset. assert(hasattr(block_header, 'mm_preamble_pos')) foe = morelli_foe(fft_length,block_header.mm_periodic_parts) self.connect(self.input,(foe,0)) if block_header.mm_preamble_pos > 0: delayed_trigger = gr.delay(gr.sizeof_char, block_header.mm_preamble_pos*block_length) self.connect(peak_detector,delayed_trigger,(foe,1)) else: self.connect(peak_detector,(foe,1)) self.freq_offset = foe if options.log: log_to_file(self, self.freq_offset, "data/freqoff_out.float") if options.average_freqoff: #avg_foe = gr.single_pole_iir_filter_ff( 0.1 ) avg_foe = ofdm.lms_fir_ff( 20, 1e-3 ) self.connect( self.freq_offset, avg_foe ) self.freq_offset = avg_foe #log_to_file( self, avg_foe, "data/freqoff_out_avg.float" ) print "EXPERIMENTAL!!! Filtering frequency offset estimate" if options.no_freqsync: terminate_stream( self, self.freq_offset ) self.freq_offset = blocks.vector_source_f( [0.0], True ) print "Bypassing frequency offset estimator, offset=0.0" # TODO: dynamic solution frametrig_seq = concatenate([[1],[0]*(frame_length-1)]) self.time_sync = peak_detector self.frame_trigger = blocks.vector_source_b(frametrig_seq,True) self.connect(self.frame_trigger, self.frame_trigger_out) ########################## # symbol extraction and processing # First, we extract the whole ofdm block, then we divide this block into # several ofdm symbols. This asserts that all symbols belonging to the # same ofdm block will be a consecutive order. # extract ofdm symbols # compensate frequency offset # TODO: use PLL and update/reset signals delayed_timesync = gr.delay(gr.sizeof_char, (frame_length-1)*block_length+timingmetric_shift) self.connect( self.time_sync, delayed_timesync ) self.block_sampler = vector_sampler(gr.sizeof_gr_complex,block_length*frame_length) self.discard_cp = vector_mask(block_length,cp_length,fft_length,[]) if options.use_dpll: dpll = gr.dpll_bb( frame_length * block_length , .01 ) self.connect( delayed_timesync, dpll ) if options.log: dpll_f = gr.char_to_float() delayed_timesync_f = gr.char_to_float() self.connect( dpll, dpll_f ) self.connect( delayed_timesync, delayed_timesync_f ) log_to_file( self, dpll_f, "data/dpll.float" ) log_to_file( self, delayed_timesync_f, "data/dpll_in.float" ) delayed_timesync = dpll print "Using DPLL, EXPERIMENTAL!!!!!" self.connect(self.input,self.block_sampler) self.connect(delayed_timesync,(self.block_sampler,1)) if options.log: log_to_file(self, self.block_sampler, "data/block_sampler_out.compl") # TODO: dynamic solution self.ofdm_symbols = blocks.vector_to_stream(gr.sizeof_gr_complex*block_length, frame_length) self.connect(self.block_sampler,self.ofdm_symbols,self.discard_cp) if options.log: log_to_file(self, self.discard_cp, "data/discard_cp_out.compl") dcp_fft = gr.fft_vcc(fft_length, True, [], True) self.connect(self.discard_cp,dcp_fft) log_to_file(self, dcp_fft, "data/discard_cp_fft.compl") # reset phase accumulator inside freq_shift on every block start # setup output connection freq_shift = frequency_shift_vcc(fft_length, -1.0/fft_length, cp_length) self.connect(self.discard_cp,(freq_shift,0)) self.connect(self.freq_offset,(freq_shift,1)) self.connect(self.frame_trigger,(freq_shift,2)) self.connect(freq_shift, self.blocks_out) if options.log: log_to_file(self, freq_shift, "data/freqshift_out.compl") if options.no_freqshift: terminate_stream( self, freq_shift ) freq_shift = self.discard_cp print "Bypassing frequency shift block"
def __init__(self, dab_params, rx_params, debug=False): """ OFDM time and coarse frequency synchronisation for DAB @param mode DAB mode (1-4) @param debug if True: write data streams out to files """ dp = dab_params rp = rx_params gr.hier_block2.__init__( self, "ofdm_sync_dab", gr.io_signature(1, 1, gr.sizeof_gr_complex), # input signature gr.io_signature2(2, 2, gr.sizeof_gr_complex, gr.sizeof_char)) # output signature # workaround for a problem that prevents connecting more than one block directly (see trac ticket #161) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # # null-symbol detection # # (outsourced to detect_zero.py) self.ns_detect = detect_null.detect_null(dp.ns_length, debug) self.connect(self.input, self.ns_detect) # # fine frequency synchronisation # # the code for fine frequency synchronisation is adapted from # ofdm_sync_ml.py; it abuses the cyclic prefix to find the fine # frequency error, as suggested in "ML Estimation of Timing and # Frequency Offset in OFDM Systems", by Jan-Jaap van de Beek, # Magnus Sandell, Per Ola Börjesson, see # http://www.sm.luth.se/csee/sp/research/report/bsb96r.html self.ffs_delay = blocks.delay(gr.sizeof_gr_complex, dp.fft_length) self.ffs_conj = blocks.conjugate_cc() self.ffs_mult = blocks.multiply_cc() self.ffs_moving_sum = dab_swig.moving_sum_cc(dp.cp_length) self.ffs_arg = blocks.complex_to_arg() self.ffs_sample_and_average = dab_swig.ofdm_ffs_sample( dp.symbol_length, dp.fft_length, rp.symbols_for_ffs_estimation, rp.ffs_alpha, dp.sample_rate) if rp.correct_ffe: self.ffs_delay_input_for_correction = blocks.delay( gr.sizeof_gr_complex, dp.symbol_length * rp.symbols_for_ffs_estimation ) # by delaying the input, we can use the ff offset estimation from the first symbol to correct the first symbol itself self.ffs_delay_frame_start = blocks.delay( gr.sizeof_char, dp.symbol_length * rp.symbols_for_ffs_estimation ) # sample the value at the end of the symbol .. self.ffs_nco = analog.frequency_modulator_fc( 1 ) # ffs_sample_and_hold directly outputs phase error per sample self.ffs_mixer = blocks.multiply_cc() # calculate fine frequency error self.connect(self.input, self.ffs_conj, self.ffs_mult) self.connect(self.input, self.ffs_delay, (self.ffs_mult, 1)) self.connect(self.ffs_mult, self.ffs_moving_sum, self.ffs_arg, (self.ffs_sample_and_average, 0)) self.connect(self.ns_detect, (self.ffs_sample_and_average, 1)) if rp.correct_ffe: # do the correction self.connect(self.ffs_sample_and_average, self.ffs_nco, (self.ffs_mixer, 0)) self.connect(self.input, self.ffs_delay_input_for_correction, (self.ffs_mixer, 1)) # output - corrected signal and start of DAB frames self.connect(self.ffs_mixer, (self, 0)) self.connect(self.ns_detect, self.ffs_delay_frame_start, (self, 1)) else: # just patch the signal through self.connect(self.ffs_sample_and_average, blocks.null_sink(gr.sizeof_float)) self.connect(self.input, (self, 0)) # frame start still needed .. self.connect(self.ns_detect, (self, 1)) if debug: self.connect( self.ffs_sample_and_average, blocks.multiply_const_ff(1. / (dp.T * 2 * pi)), gr.file_sink(gr.sizeof_float, "debug/ofdm_sync_dab_fine_freq_err_f.dat")) self.connect( self.ffs_mixer, blocks.file_sink( gr.sizeof_gr_complex, "debug/ofdm_sync_dab_fine_freq_corrected_c.dat"))
def __init__(self, mode, debug=False): """ OFDM time and coarse frequency synchronisation for DAB @param mode DAB mode (1-4) @param debug if True: write data streams out to files """ if mode < 1 or mode > 4: raise ValueError, "Invalid DAB mode: " + str( mode) + " (modes 1-4 exist)" # get the correct DAB parameters dp = parameters.dab_parameters(mode) rp = parameters.receiver_parameters(mode) gr.hier_block2.__init__( self, "ofdm_sync_dab", gr.io_signature(1, 1, gr.sizeof_gr_complex), # input signature gr.io_signature2(2, 2, gr.sizeof_gr_complex, gr.sizeof_char)) # output signature # workaround for a problem that prevents connecting more than one block directly (see trac ticket #161) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # # null-symbol detection # # (outsourced to detect_zero.py) self.ns_detect = detect_null.detect_null(dp.ns_length, debug) self.connect(self.input, self.ns_detect) # # fine frequency synchronisation # # the code for fine frequency synchronisation is adapted from # ofdm_sync_ml.py; it abuses the cyclic prefix to find the fine # frequency error, as suggested in "ML Estimation of Timing and # Frequency Offset in OFDM Systems", by Jan-Jaap van de Beek, # Magnus Sandell, Per Ola Börjesson, see # http://www.sm.luth.se/csee/sp/research/report/bsb96r.html self.ffs_delay = gr.delay(gr.sizeof_gr_complex, dp.fft_length) self.ffs_conj = gr.conjugate_cc() self.ffs_mult = gr.multiply_cc() # self.ffs_moving_sum = gr.fir_filter_ccf(1, [1]*dp.cp_length) self.ffs_moving_sum = dab_swig.moving_sum_cc(dp.cp_length) self.ffs_angle = gr.complex_to_arg() self.ffs_angle_scale = gr.multiply_const_ff(1. / dp.fft_length) self.ffs_delay_sample_and_hold = gr.delay( gr.sizeof_char, dp.symbol_length) # sample the value at the end of the symbol .. self.ffs_sample_and_hold = gr.sample_and_hold_ff() self.ffs_delay_input_for_correction = gr.delay( gr.sizeof_gr_complex, dp.symbol_length ) # by delaying the input, we can use the ff offset estimation from the first symbol to correct the first symbol itself self.ffs_nco = gr.frequency_modulator_fc( 1) # ffs_sample_and_hold directly outputs phase error per sample self.ffs_mixer = gr.multiply_cc() # calculate fine frequency error self.connect(self.input, self.ffs_conj, self.ffs_mult) self.connect(self.input, self.ffs_delay, (self.ffs_mult, 1)) self.connect(self.ffs_mult, self.ffs_moving_sum, self.ffs_angle) # only use the value from the first half of the first symbol self.connect(self.ffs_angle, self.ffs_angle_scale, (self.ffs_sample_and_hold, 0)) self.connect(self.ns_detect, self.ffs_delay_sample_and_hold, (self.ffs_sample_and_hold, 1)) # do the correction self.connect(self.ffs_sample_and_hold, self.ffs_nco, (self.ffs_mixer, 0)) self.connect(self.input, self.ffs_delay_input_for_correction, (self.ffs_mixer, 1)) # output - corrected signal and start of DAB frames self.connect(self.ffs_mixer, (self, 0)) self.connect(self.ffs_delay_sample_and_hold, (self, 1)) if debug: self.connect( self.ffs_angle, gr.file_sink(gr.sizeof_float, "debug/ofdm_sync_dab_ffs_angle.dat")) self.connect( self.ffs_sample_and_hold, gr.multiply_const_ff(1. / (dp.T * 2 * pi)), gr.file_sink(gr.sizeof_float, "debug/ofdm_sync_dab_fine_freq_err_f.dat")) self.connect( self.ffs_mixer, gr.file_sink(gr.sizeof_gr_complex, "debug/ofdm_sync_dab_fine_freq_corrected_c.dat"))
def __init__(self, dab_params, rx_params, verbose=False, debug=False): """ Hierarchical block for OFDM demodulation @param dab_params DAB parameter object (dab.parameters.dab_parameters) @param rx_params RX parameter object (dab.parameters.receiver_parameters) @param debug enables debug output to files @param verbose whether to produce verbose messages """ self.dp = dp = dab_params self.rp = rp = rx_params self.verbose = verbose if self.rp.softbits: gr.hier_block2.__init__(self,"ofdm_demod", gr.io_signature (1, 1, gr.sizeof_gr_complex), # input signature gr.io_signature2(2, 2, gr.sizeof_float*self.dp.num_carriers*2, gr.sizeof_char)) # output signature else: gr.hier_block2.__init__(self,"ofdm_demod", gr.io_signature (1, 1, gr.sizeof_gr_complex), # input signature gr.io_signature2(2, 2, gr.sizeof_char*self.dp.num_carriers/4, gr.sizeof_char)) # output signature # workaround for a problem that prevents connecting more than one block directly (see trac ticket #161) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # input filtering if self.rp.input_fft_filter: if verbose: print "--> RX filter enabled" lowpass_taps = gr.firdes_low_pass(1.0, # gain dp.sample_rate, # sampling rate rp.filt_bw, # cutoff frequency rp.filt_tb, # width of transition band gr.firdes.WIN_HAMMING) # Hamming window self.fft_filter = gr.fft_filter_ccc(1, lowpass_taps) # correct sample rate offset, if enabled if self.rp.autocorrect_sample_rate: if verbose: print "--> dynamic sample rate correction enabled" self.rate_detect_ns = detect_null.detect_null(dp.ns_length, False) self.rate_estimator = dab_swig.estimate_sample_rate_bf(dp.sample_rate, dp.frame_length) self.rate_prober = gr.probe_signal_f() self.connect(self.input, self.rate_detect_ns, self.rate_estimator, self.rate_prober) # self.resample = gr.fractional_interpolator_cc(0, 1) self.resample = dab_swig.fractional_interpolator_triggered_update_cc(0,1) self.connect(self.rate_detect_ns, (self.resample,1)) self.updater = Timer(0.1,self.update_correction) # self.updater = threading.Thread(target=self.update_correction) self.run_interpolater_update_thread = True self.updater.setDaemon(True) self.updater.start() else: self.run_interpolater_update_thread = False if self.rp.sample_rate_correction_factor != 1: if verbose: print "--> static sample rate correction enabled" self.resample = gr.fractional_interpolator_cc(0, self.rp.sample_rate_correction_factor) # timing and fine frequency synchronisation self.sync = ofdm_sync_dab2.ofdm_sync_dab(self.dp, self.rp, debug) # ofdm symbol sampler self.sampler = dab_swig.ofdm_sampler(dp.fft_length, dp.cp_length, dp.symbols_per_frame, rp.cp_gap) # fft for symbol vectors self.fft = gr.fft_vcc(dp.fft_length, True, [], True) # coarse frequency synchronisation self.cfs = dab_swig.ofdm_coarse_frequency_correct(dp.fft_length, dp.num_carriers, dp.cp_length) # diff phasor self.phase_diff = dab_swig.diff_phasor_vcc(dp.num_carriers) # remove pilot symbol self.remove_pilot = dab_swig.ofdm_remove_first_symbol_vcc(dp.num_carriers) # magnitude equalisation if self.rp.equalize_magnitude: if verbose: print "--> magnitude equalization enabled" self.equalizer = dab_swig.magnitude_equalizer_vcc(dp.num_carriers, rp.symbols_for_magnitude_equalization) # frequency deinterleaving self.deinterleave = dab_swig.frequency_interleaver_vcc(dp.frequency_deinterleaving_sequence_array) # symbol demapping self.demapper = dab_swig.qpsk_demapper_vcb(dp.num_carriers) # # connect everything # if self.rp.autocorrect_sample_rate or self.rp.sample_rate_correction_factor != 1: self.connect(self.input, self.resample) self.input2 = self.resample else: self.input2 = self.input if self.rp.input_fft_filter: self.connect(self.input2, self.fft_filter, self.sync) else: self.connect(self.input2, self.sync) # data stream self.connect((self.sync, 0), (self.sampler, 0), self.fft, (self.cfs, 0), self.phase_diff, (self.remove_pilot,0)) if self.rp.equalize_magnitude: self.connect((self.remove_pilot,0), (self.equalizer,0), self.deinterleave) else: self.connect((self.remove_pilot,0), self.deinterleave) if self.rp.softbits: if verbose: print "--> using soft bits" self.softbit_interleaver = dab_swig.complex_to_interleaved_float_vcf(self.dp.num_carriers) self.connect(self.deinterleave, self.softbit_interleaver, (self,0)) else: self.connect(self.deinterleave, self.demapper, (self,0)) # control stream self.connect((self.sync, 1), (self.sampler, 1), (self.cfs, 1), (self.remove_pilot,1)) if self.rp.equalize_magnitude: self.connect((self.remove_pilot,1), (self.equalizer,1), (self,1)) else: self.connect((self.remove_pilot,1), (self,1)) # calculate an estimate of the SNR self.phase_var_decim = gr.keep_one_in_n(gr.sizeof_gr_complex*self.dp.num_carriers, self.rp.phase_var_estimate_downsample) self.phase_var_arg = gr.complex_to_arg(dp.num_carriers) self.phase_var_v2s = gr.vector_to_stream(gr.sizeof_float, dp.num_carriers) self.phase_var_mod = dab_swig.modulo_ff(pi/2) self.phase_var_avg_mod = gr.iir_filter_ffd([rp.phase_var_estimate_alpha], [0,1-rp.phase_var_estimate_alpha]) self.phase_var_sub_avg = gr.sub_ff() self.phase_var_sqr = gr.multiply_ff() self.phase_var_avg = gr.iir_filter_ffd([rp.phase_var_estimate_alpha], [0,1-rp.phase_var_estimate_alpha]) self.probe_phase_var = gr.probe_signal_f() self.connect((self.remove_pilot,0), self.phase_var_decim, self.phase_var_arg, self.phase_var_v2s, self.phase_var_mod, (self.phase_var_sub_avg,0), (self.phase_var_sqr,0)) self.connect(self.phase_var_mod, self.phase_var_avg_mod, (self.phase_var_sub_avg,1)) self.connect(self.phase_var_sub_avg, (self.phase_var_sqr,1)) self.connect(self.phase_var_sqr, self.phase_var_avg, self.probe_phase_var) # measure processing rate self.measure_rate = dab_swig.measure_processing_rate(gr.sizeof_gr_complex, 2000000) self.connect(self.input, self.measure_rate) # debugging if debug: self.connect(self.fft, gr.file_sink(gr.sizeof_gr_complex*dp.fft_length, "debug/ofdm_after_fft.dat")) self.connect((self.cfs,0), gr.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_after_cfs.dat")) self.connect(self.phase_diff, gr.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_diff_phasor.dat")) self.connect((self.remove_pilot,0), gr.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_pilot_removed.dat")) self.connect((self.remove_pilot,1), gr.file_sink(gr.sizeof_char, "debug/ofdm_after_cfs_trigger.dat")) self.connect(self.deinterleave, gr.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_deinterleaved.dat")) if self.rp.equalize_magnitude: self.connect(self.equalizer, gr.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_equalizer.dat")) if self.rp.softbits: self.connect(self.softbit_interleaver, gr.file_sink(gr.sizeof_float*dp.num_carriers*2, "debug/softbits.dat"))
def __init__(self, dab_params, rx_params, debug=False): """ OFDM time and coarse frequency synchronisation for DAB @param mode DAB mode (1-4) @param debug if True: write data streams out to files """ dp = dab_params rp = rx_params gr.hier_block2.__init__(self,"ofdm_sync_dab", gr.io_signature(1, 1, gr.sizeof_gr_complex), # input signature gr.io_signature2(2, 2, gr.sizeof_gr_complex, gr.sizeof_char)) # output signature # workaround for a problem that prevents connecting more than one block directly (see trac ticket #161) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # # null-symbol detection # # (outsourced to detect_zero.py) self.ns_detect = detect_null.detect_null(dp.ns_length, debug) self.connect(self.input, self.ns_detect) # # fine frequency synchronisation # # the code for fine frequency synchronisation is adapted from # ofdm_sync_ml.py; it abuses the cyclic prefix to find the fine # frequency error, as suggested in "ML Estimation of Timing and # Frequency Offset in OFDM Systems", by Jan-Jaap van de Beek, # Magnus Sandell, Per Ola Börjesson, see # http://www.sm.luth.se/csee/sp/research/report/bsb96r.html self.ffs_delay = gr.delay(gr.sizeof_gr_complex, dp.fft_length) self.ffs_conj = gr.conjugate_cc() self.ffs_mult = gr.multiply_cc() self.ffs_moving_sum = dab_swig.moving_sum_cc(dp.cp_length) self.ffs_arg = gr.complex_to_arg() self.ffs_sample_and_average = dab_swig.ofdm_ffs_sample(dp.symbol_length, dp.fft_length, rp.symbols_for_ffs_estimation, rp.ffs_alpha, dp.sample_rate) if rp.correct_ffe: self.ffs_delay_input_for_correction = gr.delay(gr.sizeof_gr_complex, dp.symbol_length*rp.symbols_for_ffs_estimation) # by delaying the input, we can use the ff offset estimation from the first symbol to correct the first symbol itself self.ffs_delay_frame_start = gr.delay(gr.sizeof_char, dp.symbol_length*rp.symbols_for_ffs_estimation) # sample the value at the end of the symbol .. self.ffs_nco = gr.frequency_modulator_fc(1) # ffs_sample_and_hold directly outputs phase error per sample self.ffs_mixer = gr.multiply_cc() # calculate fine frequency error self.connect(self.input, self.ffs_conj, self.ffs_mult) self.connect(self.input, self.ffs_delay, (self.ffs_mult, 1)) self.connect(self.ffs_mult, self.ffs_moving_sum, self.ffs_arg, (self.ffs_sample_and_average, 0)) self.connect(self.ns_detect, (self.ffs_sample_and_average, 1)) if rp.correct_ffe: # do the correction self.connect(self.ffs_sample_and_average, self.ffs_nco, (self.ffs_mixer, 0)) self.connect(self.input, self.ffs_delay_input_for_correction, (self.ffs_mixer, 1)) # output - corrected signal and start of DAB frames self.connect(self.ffs_mixer, (self, 0)) self.connect(self.ns_detect, self.ffs_delay_frame_start, (self, 1)) else: # just patch the signal through self.connect(self.ffs_sample_and_average, gr.null_sink(gr.sizeof_float)) self.connect(self.input, (self,0)) # frame start still needed .. self.connect(self.ns_detect, (self,1)) if debug: self.connect(self.ffs_sample_and_average, gr.multiply_const_ff(1./(dp.T*2*pi)), gr.file_sink(gr.sizeof_float, "debug/ofdm_sync_dab_fine_freq_err_f.dat")) self.connect(self.ffs_mixer, gr.file_sink(gr.sizeof_gr_complex, "debug/ofdm_sync_dab_fine_freq_corrected_c.dat"))
def __init__( self, vlen, cp_len ): gr.hier_block2.__init__( self, "channel_estimator_003", gr.io_signature( 1, 1, gr.sizeof_gr_complex * vlen ), gr.io_signature( 1, 1, gr.sizeof_gr_complex * vlen ) ) self.ch_est = channel_estimator_001( vlen ) self.connect( self, self.ch_est ) cir_len = cp_len + 1 self.cir_len = cir_len self.vlen = vlen self.preamble_td = self.ch_est.td self.preamble_fd = self.ch_est.fd # CTF -> CIR self.cir_est = gr.fft_vcc( vlen, False, [], False ) # IFFT self.connect( self.ch_est, self.cir_est ) # CIR -> energy per sample self.cir_energy = gr.complex_to_mag_squared( vlen ) self.connect( self.cir_est, self.cir_energy ) # prepare cyclic convolution of CIR vector self.cyclic_cir = gr.streams_to_vector( gr.sizeof_float * vlen, 2 ) self.connect( self.cir_energy, ( self.cyclic_cir, 0 ) ) self.connect( self.cir_energy, ( self.cyclic_cir, 1 ) ) # Cyclic convolution of CIR vector # Pad CIR vector: 0 x cp_len, CIR, CIR, 0 x cp_len self.serial_ccir = gr.vector_to_stream( gr.sizeof_float, vlen * 2 ) self.padded_sccir = gr.stream_mux( gr.sizeof_float, [ cir_len-1, 2*vlen, cir_len-1 ] ) if cir_len > 1: self.conv = gr.fir_filter_fff( 1, [ 1 ] * cir_len ) else: self.conv = gr.kludge_copy( gr.sizeof_float ) self.connect( self.padded_sccir, self.conv ) self.null_source = gr.null_source( gr.sizeof_float ) self.connect( self.cyclic_cir, self.serial_ccir ) self.connect( self.null_source, ( self.padded_sccir, 0 ) ) self.connect( self.serial_ccir, ( self.padded_sccir, 1 ) ) self.connect( self.null_source, ( self.padded_sccir, 2 ) ) # Extract search window self.search_window = ofdm.vector_sampler( gr.sizeof_float, vlen ) periodic_trigger_seq = [ 0 ] * ( ( vlen + cir_len-1 ) * 2 ) periodic_trigger_seq[ cir_len-1 + cir_len-1 + vlen-1 ] = 1 self.sampler_trigsrc = gr.vector_source_b( periodic_trigger_seq, True ) self.connect( self.conv, self.search_window ) self.connect( self.sampler_trigsrc, ( self.search_window, 1 ) ) # Find point of maximum energy self.cir_start = gr.argmax_fs( vlen ) self.connect( self.search_window, self.cir_start ) self.connect( ( self.cir_start, 1 ), gr.null_sink( gr.sizeof_short ) ) # Set to zero all samples that do not belong to the CIR self.filtered_cir = ofdm.interp_cir_set_noncir_to_zero( vlen, cir_len ) #self.filtered_cir = gr.kludge_copy( gr.sizeof_gr_complex * vlen ) self.connect( self.cir_est, self.filtered_cir ) self.connect( self.cir_start, ( self.filtered_cir, 1 ) ) #self.connect( self.cir_start, gr.null_sink( gr.sizeof_short ) ) # CIR -> CTF self.filtered_ctf = gr.fft_vcc( vlen, True, [], False ) # FFT self.scaled_fctf = gr.multiply_const_vcc( [1./vlen]*vlen ) self.connect( self.filtered_cir, self.filtered_ctf ) self.connect( self.filtered_ctf, self.scaled_fctf ) # Output connection self.connect( self.scaled_fctf, self )