예제 #1
0
def testBook():
    g = Goodreads()
    book, similar_books = g.getBook('50')
    print book.id, book.gid, book.author, book.list_shelves
    for shelve in book.list_shelves:
        print shelve.shelve, shelve.count, shelve.gid
    return
def testBook():
    g=Goodreads()
    book, similar_books=g.getBook('50')
    print book.id, book.gid, book.author, book.list_shelves
    for shelve in book.list_shelves:
        print shelve.shelve, shelve.count, shelve.gid
    return
def testUserFriends():
    c=Cassandra()
    g=Goodreads(new=False)
    user=models.Users(id=uuid4(), gid='3371638', name='Katie')
    friends, friendRelation, total=g.getFriends(user)
    if(friends is None):
        print "Private"
    else:
        print len(friends), len(friendRelation), total
예제 #4
0
def testUserFriends():
    c = Cassandra()
    g = Goodreads(new=False)
    user = models.Users(id=uuid4(), gid='3371638', name='Katie')
    friends, friendRelation, total = g.getFriends(user)
    if (friends is None):
        print "Private"
    else:
        print len(friends), len(friendRelation), total
예제 #5
0
def retrieve_and_sort_books(languages=None, other=False, other_label='default',
                            year=None, details=False):
    session = GoodreadsSession(api_key, api_secret)
    goodreads = Goodreads(session)
    goodreads.initialise_user()

    books = goodreads.get_books()
    arranger = BookArranger(books)

    sorted_books = arranger.sort_by_language(languages, other, other_label,
                                             year)
    arranger.print_sorted_books_nicely(sorted_books, details)
예제 #6
0
def retrieve_and_sort_books(languages=None, other=False, other_label='default',
                            year=None, details=False, shelf='read'):
    session = GoodreadsSession(api_key, api_secret)
    goodreads = Goodreads(session)
    goodreads.initialise_user()

    books = goodreads.get_books(shelf)
    arranger = BookArranger(books)

    sorted_books = arranger.sort_by_language(languages, other, other_label,
                                             year)
    arranger.print_sorted_books_nicely(sorted_books, details)
예제 #7
0
def init():
    initialize_logger(os.getcwd())
    coloredlogs.install(level='DEBUG')
    coloredlogs.ColoredFormatter()
    c = Cassandra()
    syncTables()
    g = Goodreads()
    return (c, g)
예제 #8
0
def testUserReviews(c):
    #user=Users(id=uuid4(), gid='902976', name='Katie') #902976 katie, 1085121 Stephanie, 47225465 mio
    user = models.Users(id=uuid.uuid4(),
                        gid=1085121,
                        name='Simone',
                        friends_count=1,
                        small_user=True)
    u = c.get_user_if_exsists_or_save(user)
    reviewsDict, altready_retrieved = Goodreads().getUserReviews(u)
    if (altready_retrieved is False):
        c.saveUserReviews(u, reviewsDict)
    else:
        print "already retrieved"
예제 #9
0
import logging
from goodreads import Goodreads
from markdown_writer import write_book_to_md

logging.basicConfig(filename="output.log", level=logging.INFO)

if __name__ == "__main__":
    logging.info("/**********************START*************************/")
    books = Goodreads().retreive_books_from_shelf()

    for book in books:
        write_book_to_md(book)
    logging.info("/**********************COMPLETE*************************/")
def testUser():
    Cassandra()
    sync_table(models.Users)
    g=Goodreads()
    u=g.getUser('4134243')
    u.save()
예제 #11
0
def testUser():
    Cassandra()
    sync_table(models.Users)
    g = Goodreads()
    u = g.getUser('4134243')
    u.save()
예제 #12
0
def testBookReviews():
    Goodreads().getBookReviews('0142437174')
예제 #13
0
            print(f'wall: {time.time() - start}')
            f.write(f'wall: {time.time() - start}')


if __name__ == '__main__':
    args = config()

    devices = list(map(int, args.gpu.split(',')))
    n_gpus = len(devices)

    # For GCMC based on sample, we require node has its own features.
    # Otherwise (node_id is the feature), the model can not scale
    dataset = Goodreads(args.data_name,
                        'cpu',
                        mix_cpu_gpu=args.mix_cpu_gpu,
                        use_one_hot_fea=args.use_one_hot_fea,
                        symm=args.gcn_agg_norm_symm,
                        test_ratio=args.data_test_ratio,
                        valid_ratio=args.data_valid_ratio)
    print("Loading data finished ...\n")

    args.src_in_units = dataset.user_feature_shape[1]
    args.dst_in_units = dataset.item_feature_shape[1]
    args.rating_vals = dataset.possible_rating_values

    # cpu
    if devices[0] == -1:
        run(0, 0, args, ['cpu'], dataset)
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, args, devices, dataset)