async def sample_export_feature_values(): # Create a client client = aiplatform_v1beta1.FeaturestoreServiceAsyncClient() # Initialize request argument(s) destination = aiplatform_v1beta1.FeatureValueDestination() destination.bigquery_destination.output_uri = "output_uri_value" feature_selector = aiplatform_v1beta1.FeatureSelector() feature_selector.id_matcher.ids = ['ids_value_1', 'ids_value_2'] request = aiplatform_v1beta1.ExportFeatureValuesRequest( entity_type="entity_type_value", destination=destination, feature_selector=feature_selector, ) # Make the request operation = client.export_feature_values(request=request) print("Waiting for operation to complete...") response = await operation.result() # Handle the response print(response)
def sample_read_feature_values(): # Create a client client = aiplatform_v1beta1.FeaturestoreOnlineServingServiceClient() # Initialize request argument(s) feature_selector = aiplatform_v1beta1.FeatureSelector() feature_selector.id_matcher.ids = ['ids_value_1', 'ids_value_2'] request = aiplatform_v1beta1.ReadFeatureValuesRequest( entity_type="entity_type_value", entity_id="entity_id_value", feature_selector=feature_selector, ) # Make the request response = client.read_feature_values(request=request) # Handle the response print(response)
async def sample_streaming_read_feature_values(): # Create a client client = aiplatform_v1beta1.FeaturestoreOnlineServingServiceAsyncClient() # Initialize request argument(s) feature_selector = aiplatform_v1beta1.FeatureSelector() feature_selector.id_matcher.ids = ['ids_value_1', 'ids_value_2'] request = aiplatform_v1beta1.StreamingReadFeatureValuesRequest( entity_type="entity_type_value", entity_ids=['entity_ids_value_1', 'entity_ids_value_2'], feature_selector=feature_selector, ) # Make the request stream = await client.streaming_read_feature_values(request=request) # Handle the response async for response in stream: print(response)