def pipeline(): model_upload_op = ModelUploadOp( project=self._project, display_name=self._display_name, serving_container_image_uri=self._serving_container_image_uri, artifact_uri=self._artifact_uri ) endpoint_create_op = EndpointCreateOp( project=self._project, display_name=self._display_name ) model_deploy_op = ModelDeployOp( project=self._project, model=model_upload_op.outputs["model"] ) batch_predict_op = ModelBatchPredictOp( project=self._project, model=model_upload_op.outputs["model"], job_display_name=self._display_name, gcs_source=self._gcs_source, gcs_destination_prefix=self._gcs_destination_prefix )
def pipeline(): model_upload_op = ModelUploadOp( project=self._project, display_name=self._display_name, serving_container_image_uri=self._serving_container_image_uri, artifact_uri=self._artifact_uri) batch_predict_op = ModelBatchPredictOp( project=self._project, location=self._location, job_display_name=self._display_name, model=model_upload_op.outputs["model"], instances_format="instance_format", gcs_source_uris=[self._gcs_source], bigquery_source_input_uri="bigquery_source_input_uri", model_parameters={"foo": "bar"}, predictions_format="predictions_format", gcs_destination_output_uri_prefix=self._gcs_destination_prefix, bigquery_destination_output_uri= "bigquery_destination_output_uri", machine_type="machine_type", accelerator_type="accelerator_type", accelerator_count=1, starting_replica_count=2, max_replica_count=3, manual_batch_tuning_parameters_batch_size=4, generate_explanation=True, explanation_metadata={"xai_m": "bar"}, explanation_parameters={"xai_p": "foo"}, encryption_spec_key_name="some encryption_spec_key_name", labels={"foo": "bar"})
def pipeline(): dataset_create_op = ImageDatasetCreateOp( project=self._project, display_name=self._display_name, gcs_source=self._gcs_source, import_schema_uri=aiplatform.schema.dataset.ioformat.image. single_label_classification, ) training_job_run_op = AutoMLImageTrainingJobRunOp( project=self._project, display_name=self._display_name, prediction_type="classification", model_type="CLOUD", base_model=None, dataset=dataset_create_op.outputs["dataset"], model_display_name=self._model_display_name, training_fraction_split=0.6, validation_fraction_split=0.2, test_fraction_split=0.2, budget_milli_node_hours=8000, ) model_deploy_op = ModelDeployOp( project=self._project, model=training_job_run_op.outputs["model"] ) batch_predict_op = ModelBatchPredictOp( project=self._project, model=training_job_run_op.outputs["model"], job_display_name=self._display_name, gcs_source=self._gcs_source, gcs_destination_prefix=self._gcs_destination_prefix, ) dataset_export_op = ImageDatasetExportDataOp( project=self._project, dataset=dataset_create_op.outputs["dataset"], output_dir=self._gcs_output_dir, ) dataset_import_op = ImageDatasetImportDataOp( gcs_source=self._gcs_source, dataset=dataset_create_op.outputs["dataset"], import_schema_uri=aiplatform.schema.dataset.ioformat.image. single_label_classification )
def pipeline(): dataset_create_op = TextDatasetCreateOp( project=self._project, display_name=self._display_name, gcs_source=self._gcs_source, import_schema_uri=aiplatform.schema.dataset.ioformat.text. multi_label_classification, ) training_job_run_op = AutoMLTextTrainingJobRunOp( project=self._project, display_name=self._display_name, dataset=dataset_create_op.outputs["dataset"], prediction_type="classification", multi_label=True, training_fraction_split=0.6, validation_fraction_split=0.2, test_fraction_split=0.2, model_display_name=self._model_display_name, ) model_deploy_op = ModelDeployOp( project=self._project, model=training_job_run_op.outputs["model"] ) batch_predict_op = ModelBatchPredictOp( project=self._project, model=training_job_run_op.outputs["model"], job_display_name=self._display_name, gcs_source=self._gcs_source, gcs_destination_prefix=self._gcs_destination_prefix, ) dataset_export_op = TextDatasetExportDataOp( project=self._project, dataset=dataset_create_op.outputs["dataset"], output_dir=self._gcs_output_dir, ) dataset_import_op = TextDatasetImportDataOp( gcs_source=self._gcs_source, dataset=dataset_create_op.outputs["dataset"], import_schema_uri=aiplatform.schema.dataset.ioformat.text. multi_label_classification )
def pipeline(): dataset_create_op = TabularDatasetCreateOp( project=self._project, display_name=self._display_name, gcs_source=self._gcs_source, ) training_job_run_op = AutoMLTabularTrainingJobRunOp( project=self._project, display_name=self._display_name, optimization_prediction_type='regression', optimization_objective='minimize-rmse', column_transformations=[ { "numeric": { "column_name": "longitude" } }, ], target_column="longitude", dataset=dataset_create_op.outputs["dataset"], ) model_deploy_op = ModelDeployOp( project=self._project, model=training_job_run_op.outputs["model"] ) batch_predict_op = ModelBatchPredictOp( project=self._project, model=training_job_run_op.outputs["model"], job_display_name=self._display_name, gcs_source=self._gcs_source, gcs_destination_prefix=self._gcs_destination_prefix, ) dataset_export_op = TabularDatasetExportDataOp( project=self._project, dataset=dataset_create_op.outputs["dataset"], output_dir=self._gcs_output_dir, )