def __init__(self, model_name='default', model_group='default', model_type=None, filter_scale=0, input_shape=None, # TBD load_args=False, **kwargs ): self.model_args = { 'model_name': model_name, 'model_group': model_group, 'model_type': model_type, 'filter_scale': filter_scale, 'input_shape': input_shape } for key in kwargs: self.model_args[key] = kwargs[key] self.model_dir = gouda.ensure_dir(project_path('results', model_group, model_name)) args_path = self.model_dir('model_args.json') if load_args: if args_path.exists(): self.model_args = gouda.load_json(args_path) self.model_args['model_name'] = model_name self.model_args['model_group'] = model_group else: raise ValueError("Cannot load model args. No file found at: {}".format(args_path.path)) if not args_path.exists(): # Only models without pre-existing model args will save in order to prevent overwriting gouda.save_json(self.model_args, args_path) self.compile()
def __init__(self): config_path = os.path.join(os.path.dirname(__file__), 'model_args.json') self.model_args = gouda.load_json(config_path) self.compile_model() self.model.load_weights( os.path.join(os.path.dirname(__file__), 'model_weights/model_weights.tf'))
def __init__(self, model_name='default', model_group='default', model_type='template', filter_scale=0, num_outputs=2, input_shape=[512, 512, 1], load_args=False, **kwargs): """Initialize a model for the network Parameters ---------- model_name : str The name of the model to use - should define the model level parameters model_group : str The group of models to use - should define the model structure or data paradigm filter_scale : int The scaling factor to use for the model layers (scales by powers of 2) input_shape : tuple of ints The shape of data to be passed to the model (not including batch size) load_args : bool Whether to use pre-existing arguments for the given model group+name """ if input_shape is None and load_args is False: raise ValueError("Input shape cannot be None for model object") self.model_dir = gouda.GoudaPath( gouda.ensure_dir(RESULTS_DIR, model_group, model_name)) if load_args: if self.model_dir('model_args.json').exists(): self.model_args = gouda.load_json( self.model_dir('model_args.json')) else: raise ValueError( "Cannot find model args for model {}/{}".format( model_group, model_name)) else: self.model_args = { 'model_name': model_name, 'model_group': model_group, 'model_type': model_type, 'filter_scale': filter_scale, 'input_shape': input_shape, } for key in kwargs: self.model_args[key] = kwargs[key] gouda.save_json(self.model_args, self.model_dir('model_args.json')) K.clear_session() self.model = lookup_model(model_type)(**self.model_args)
def load_args(self, args_path): """Load model arguments from a json file. NOTE ---- Custom methods/models/etc will be loaded with a value of 'custom' and should be replaced """ if os.path.exists(args_path): to_warn = [] loaded_args = gouda.load_json(args_path) for key in loaded_args: self.model_args[key] = loaded_args[key] if isinstance(loaded_args[key], str) and loaded_args[key].startswith('CUSTOM: '): to_warn.append(key) if len(to_warn) > 0: warnings.warn( 'Custom arguments for [{}] were found and should be replaced' .format(', '.join(to_warn))) else: raise ValueError('No file found at {}'.format(args_path))
def __init__(self, model_name='default', model_group='default', model_type='multires', filter_scale=0, out_layers=1, out_classes=2, input_shape=[1024, 1360, 1], patch_out=False, load_args=False, **kwargs): K.clear_session() self.loaded = False self.model_dir = gouda.GoudaPath( gouda.ensure_dir(RESULTS_DIR, model_group, model_name)) args_path = self.model_dir / 'model_args.json' if load_args: if not args_path.exists(): raise ValueError("No model arguments found at path: {}".format( args_path.abspath)) self.model_args = gouda.load_json(args_path) else: self.model_args = { 'model_name': model_name, 'model_group': model_group, 'model_type': model_type, 'filter_scale': filter_scale, 'out_layers': out_layers, 'out_classes': out_classes, 'input_shape': input_shape, 'patch_out': patch_out } for key in kwargs: self.model_args[key] = kwargs[key] gouda.save_json(self.model_args, args_path) model_func = get_model_func(self.model_args['model_type']) self.model = model_func(**self.model_args)
def train(self, train_data, val_data, metrics=None, starting_epoch=1, lr_type=None, loss_type=None, epochs=50, save_every=10, load_args=False, reduce_lr_on_plateau=False, extra_callbacks=[], version='default', **kwargs): """NOTE: logging_handler from the CoreModel is replaced by metrics in the distributed. This model relies on the keras model.fit methods more than the custom training loop. NOTE: extra_callbacks should not include TensorBoard or ModelCheckpoint, since they are already used. ReduceLROnPlateau and LRLogger will be already included as well if reduce_lr_on_plateau is True. """ log_dir = gouda.ensure_dir(self.model_dir(version)) args_path = log_dir('training_args.json') weights_dir = gouda.ensure_dir(log_dir('training_weights')) train_args = { 'epochs': epochs, 'lr_type': lr_type, 'loss_type': loss_type } for key in kwargs: train_args[key] = kwargs[key] if reduce_lr_on_plateau: if 'plateau_factor' not in train_args: train_args['plateau_factor'] = 0.1 if 'plateau_patience' not in train_args: train_args['plateau_patience'] = 3 if load_args: if args_path.exists(): train_args = gouda.load_json(args_path) else: raise ValueError("No training args file found at `{}`".format( args_path.abspath)) # TODO - check to see if dataset is distributed, requires manual batchsize if so # train_args['batch_size'] = 8 # train_args['val_batch_size'] = 8 for item in train_data.take(1): train_args['batch_size'] = item[0].numpy().shape[0] for item in val_data.take(1): train_args['val_batch_size'] = item[0].numpy().shape[0] self.compile_model(checking=True) if starting_epoch == 1: self.save_weights(weights_dir('model_weights_init.tf').abspath) # Set learning rate type and optimizer optimizer = self._setup_optimizer(train_args) # Set loss type if train_args['loss_type'] is None: if self.model_args['loss_type'] is None: raise ValueError("No loss function defined") train_args['loss_type'] = self.model_args['loss_type'] if isinstance(train_args['loss_type'], str): loss = get_loss_func(train_args['loss_type'])(**train_args) else: loss = train_args['loss_type'] train_args['loss_type'] = str(loss) # Currently, just uses the default training/validation steps # Save training args as json # save_args = train_args.copy() # for key in train_args: # key_type = str(type(save_args[key])) # if 'function' in key_type or 'class' in key_type: # save_args[key] = 'custom' save_args = clean_for_json(train_args.copy()) gouda.save_json(save_args, args_path) checkpoint_prefix = weights_dir('model_weights_e{epoch}').abspath callbacks = [ tf.keras.callbacks.TensorBoard(log_dir=log_dir.abspath), tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix, save_weights_only=True) ] if reduce_lr_on_plateau: callbacks.append( tf.keras.callbacks.ReduceLROnPlateau( monitor='val_loss', factor=train_args['plateau_factor'], patience=train_args['plateau_patience'])) callbacks.append(LRLogger()) callbacks += extra_callbacks with self.strategy.scope(): self.model.compile(loss=loss, optimizer=optimizer, metrics=metrics) try: self.model.fit(train_data, validation_data=val_data, epochs=epochs, initial_epoch=starting_epoch - 1, callbacks=callbacks) except KeyboardInterrupt: print("\nInterrupting model training...") self.save_weights(log_dir('model_weights.tf').abspath)
def train(self, train_data, val_data, starting_epoch=1, epochs=200, save_every=-1, version_name='default', load_args=False, **kwargs): train_args = kwargs for x, y in train_data.take(1): batch_size = y.numpy().shape[0] for x, y in val_data.take(1): val_batch_size = y.numpy().shape[0] version_dir = self.model_dir / version_name args_path = version_dir / 'training_args.json' if load_args: if not args_path.exists(): raise ValueError( "No training arguments found at path: {}".format( args_path.abspath)) train_args = gouda.load_json(args_path) else: defaults = { 'learning_rate': 1e-4, 'lr_decay_rate': None, 'lr_decay_steps': None, 'label_smoothing': 0.05, } train_args['version_name':version_name] for key in defaults: if key not in train_args: train_args[key] = defaults[key] train_args['batch_size'] = batch_size gouda.save_json(train_args, args_path) if train_args['lr_decay_rate'] is not None and train_args[ 'lr_decay_steps'] is not None: lr = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=train_args['learning_rate'], decay_steps=train_args['lr_decay_steps'], decay_rate=train_args['lr_decay_rate']) else: lr = train_args['learning_rate'] opt = tf.keras.optimizers.Adam(learning_rate=lr) loss_func = tf.keras.losses.BinaryCrossentropy( from_logits=False, label_smoothing=train_args['label_smoothing']) train_writer = tf.summary.create_file_writer(version_dir / 'train') train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32) train_bal = BalanceMetric('train_balance') train_acc = [ tf.keras.metrics.BinaryAccuracy('train_accuracy_{}'.format(i)) for i in range(self.model_args['out_classes']) ] train_mcc = [ MatthewsCorrelationCoefficient(name='train_mcc_{}'.format(i)) for i in range(self.model_args['out_classes']) ] val_writer = tf.summary.create_file_writer(version_dir / 'val') val_loss = tf.keras.metrics.Mean('val_loss', dtype=tf.float32) val_bal = BalanceMetric('val_balance') val_acc = [ tf.keras.metrics.BinaryAccuracy('val_accuracy_{}'.format(i)) for i in range(self.model_args['out_classes']) ] val_mcc = [ MatthewsCorrelationCoefficient(name='val_mcc_{}'.format(i)) for i in range(self.model_args['out_classes']) ] def train_step(model, optimizer, x, y, num_classes): with tf.GradientTape() as tape: predicted = model(x, training=True) loss = loss_func(y, predicted) grad = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grad, model.trainable_variables)) train_loss(loss) train_bal(y, predicted) y_split = tf.split(y, num_classes, axis=-1) pred_split = tf.split(predicted, num_classes, axis=-1) for acc, mcc, y, pred in zip(train_acc, train_mcc, y_split, pred_split): acc(y, pred) mcc(y, pred) def val_step(model, x, y, num_classes): predicted = model(x, training=False) loss = loss_func(y, predicted) val_loss(loss) val_bal(y, predicted) y_split = tf.split(y, num_classes, axis=-1) pred_split = tf.split(predicted, num_classes, axis=-1) for acc, mcc, y, pred in zip(val_acc, val_mcc, y_split, pred_split): acc(y, pred) mcc(y, pred) train_step = tf.function(train_step) val_step = tf.function(val_step) epoch_pbar = tqdm.tqdm(total=spochs, unit=' epochs', initial=starting_epoch) val_steps = StableCounter() val_batch_pbar = tqdm.tqdm(total=val_steps(), unit=' val samples', leave=False) for image, label in val_data: val_step(self.model, image, label, self.model_args['out_classes']) val_batch_pbar.update(val_batch_size) val_steps += val_batch_size val_steps.stop() val_batch_pbar.close() logstring = 'Untrained: ' with val_writer.as_default(): tf.summary.scalar('loss', val_loss.result(), step=0) logstring += 'Val Loss: {:.4f}'.format(val_loss.result()) tf.summary.scalar('balance', val_bal.result(), step=0) logstring += ', Val Balance: {:.4f}'.format(val_bal.result()) accuracies = [] for i, acc in enumerate(val_acc): tf.summary.scalar('accuracy_{}'.format(i), acc.result(), step=0) accuracies.append('{:.2f}'.format(acc.result() * 100)) logstring += ", Val Accuracy " + '/'.join(accuracies) mccs = [] for i, mcc in enumerate(val_mcc): tf.summary.scalar('mcc_{}'.format(i), mcc.result(), step=0) mccs.append("{:.4f}".format(mcc.result())) logstring += ", Val MCC " + '/'.join(mccs) epoch_pbar.write(logstring) val_loss.reset_states() val_bal.reset_states() for acc in val_acc: acc.reset_states() for mcc in val_mcc: mcc.reset_states() weights_dir = gouda.ensure_dir(version_dir / 'training_weights') self.model.save_weights(weights_dir / 'initial_weights.h5') train_steps = StableCounter() try: for epoch in range(starting_epoch, epochs): train_batch_pbar = tqdm.tqdm(total=train_steps(), unit=' samples', leave=False) for image, label in train_data: train_step(self.model, opt, image, label, self.model_args['train_classes']) train_batch_pbar.update(train_args['batch_size']) train_steps += train_args['batch_size'] train_steps.stop() train_batch_pbar.close() logstring = "Epoch {:04d}".format(epoch) with train_writer.as_default(): if not isinstance(lr, float): tf.summary.scalar('lr', lr(opt.iterations), step=epoch) tf.summar.scalar('loss', train_loss.result(), step=epoch) logstring += ', Loss: {:.4f}'.format(train_loss.result()) tf.summar.scalar('balance', train_bal.result(), step=epoch) logstring += ', Balance: {:.4f}'.format(train_bal.result()) accuracies = [] for i, acc in enumerate(train_acc): tf.summary.scalar('accuracy_{}'.format(i), acc.result(), step=epoch) accuracies.append("{:.2f}".format(acc.result() * 100)) logstring += ', Accuracy: ' + '/'.join(accuracies) mccs = [] for i, mcc in enumerate(train_mcc): tf.summary.scalar('mcc_{}'.format(i), mcc.result(), step=epoch) mccs.append("{:.4f}".format(mcc.result())) logstring += ', MCC: ' + '/'.join(mccs) train_loss.reset_states() train_bal.reset_states() for acc in train_acc: acc.reset_states() for mcc in train_mcc: mcc.reset_states() val_batch_pbar = tqdm.tqdm(total=val_steps(), unit=' val samples', leave=False) for image, label in val_data: val_step(self.model, image, label, self.model_args['train_classes']) val_batch_pbar.update(val_batch_size) val_batch_pbar.close() logstring += ' || ' with val_writer.as_default(): tf.summary.scalar('loss', val_loss.result(), step=epoch) logstring += 'Val Loss: {:.4f}'.format(val_loss.result()) tf.summary.scalar('balance', val_bal.result(), step=epoch) logstring += 'Val Balance: {:.4f}'.format(val_bal.result()) accuracies = [] for i, acc in enumerate(val_acc): tf.summary.scalar('accuracy_{}'.format(i), acc.result(), step=epoch) accuracies.append("{:.2f}".format(acc.result() * 100)) logstring += ', Val Accuracy: ' + '/'.join(accuracies) mccs = [] for i, mcc in enumerate(val_mcc): tf.summar.scalar('mcc_{}'.format(i), mcc.result(), step=epoch) mccs.append("{:.4f}".format(mcc.result())) logstring += ', Val MCC: ' + '/'.join(mccs) val_loss.reset_states() val_bal.reset_states() for acc in val_acc: acc.reset_states() for mcc in val_mcc: mcc.reset_states() epoch_pbar.write(log_string) if (epoch + 1) % save_every == 0 and save_every != -1: self.model.save_weights( weights_dir / 'model_weights_e{:03d}.h5'.format(epoch)) epoch_pbar.update(1) except KeyboardInterrupt: print("KeyboardInterrupt - stopping training...") self.model.save_weights(version_dir / 'model_weights.h5') epoch_pbar.close()
def train(self, train_data, val_data, starting_epoch=1, epochs=200, save_every=-1, version_name='default', load_args=False, **kwargs): """Train the model Parameters ---------- train_data : tf.data.Dataset The data to train on val_data : tf.data.Dataset The data to validate on starting_epoch : int The epoch to start on - can be set greater than 1 to continue previous training epochs : int The epoch to end on - if starting epoch is greater than 1, the model will still only train until it reaches this total epoch count save_every : int The number of epochs between each set of model weights to save version_name : str The name of the model to train - version name should group training/hyperparameters load_args : bool Whether to use pre-existing parameters for the given model group+name+version """ version_dir = gouda.ensure_dir(self.model_dir / version_name) weights_dir = gouda.ensure_dir(version_dir / 'training_weights') if load_args: if version_dir('train_args.json').exists(): train_args = gouda.load_json(version_dir('train_args.json')) else: raise ValueError("No existing args found for {}/{}/{}".format( self.model_args['model_group'], self.model_args['model_name'], version_name)) else: defaults = { 'learning_rate': 1e-4, 'lr_decay_steps': None, 'lr_decay_rate': None, 'label_smoothing': 0.05 } train_args = kwargs for item in defaults: if item not in train_args: train_args[item] = defaults[item] for x, y in train_data.take(1): batch_size = y.numpy().shape[0] for x, y in val_data.take(1): val_batch_size = y.numpy().shape[0] train_args['batch_size'] = batch_size train_args['val_batch_size'] = val_batch_size gouda.save_json(train_args, version_dir / 'train_args.json') if train_args['lr_decay_rate'] is not None and train_args[ 'lr_decay_steps'] is not None: lr = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=train_args['learning_rate'], decay_steps=train_args['lr_decay_steps'], decay_rate=train_args['lr_decay_rate']) else: lr = train_args['learning_rate'] opt = tf.keras.optimizers.Adam(learning_rate=lr) loss_func = tf.keras.losses.BinaryCrossentropy( from_logits=False, label_smoothing=train_args['label_smoothing']) # set up tensorboard train_writer = tf.summary.create_file_writer(version_dir / 'train') train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32) train_acc = tf.keras.metrics.BinaryAccuracy('train_accuracy') val_writer = tf.summary.create_file_writer(version_dir / 'val') val_loss = tf.keras.metrics.Mean('val_loss', dtype=tf.float32) val_acc = tf.keras.metrics.BinaryAccuracy('val_accuracy') # set up train/val steps def train_step(model, optimizer, x, y): with tf.GradientTape() as tape: predicted = model(x, training=True) loss = loss_func(y, predicted) grad = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grad, model.trainable_variables)) train_loss(loss) train_acc(y, predicted) def val_step(model, x, y): predicted = model(x, training=False) loss = loss_func(y, predicted) val_loss(loss) val_acc(y, predicted) # training loop epoch_pbar = tqdm.tqdm(total=epochs, unit=' epochs', initial=starting_epoch) # Baseline Validation val_steps = StableCounter() val_batch_pbar = tqdm.tqdm(total=None, unit=' val samples', leave=False) for image, label in val_data: val_step(self.model, image, label) val_batch_pbar.update(val_batch_size) val_steps += val_batch_size val_steps.stop() with val_writer.as_default(): tf.summary.scalar('loss', val_loss.result(), step=0) tf.summary.scalar('accuracy', val_acc.result(), step=0) log_string = 'Untrained: Val Loss: {:.4f}, Val Accuracy: {:6.2f}'.format( val_loss.result(), val_acc.result() * 100) val_batch_pbar.close() val_loss.reset_states() val_acc.reset_states() epoch_pbar.write(log_string) train_steps = StableCounter() self.model.save_weights(weights_dir('initial_weights.h5').abspath) try: for epoch in range(starting_epoch, epochs): train_batch_pbar = tqdm.tqdm(total=train_steps(), unit=' samples', leave=False) for image, label in train_data: train_step(self.model, opt, image, label) train_batch_pbar.update(batch_size) train_steps += batch_size train_steps.stop() with train_writer.as_default(): if not isinstance(lr, float): tf.summary.scalar('lr', lr(opt.iterations), step=epoch) tf.summary.scalar('loss', train_loss.result(), step=epoch) tf.summary.scalar('accuracy', train_acc.result(), step=epoch) train_batch_pbar.close() log_string = 'Epoch {:04d}, Loss: {:.4f}, Accuracy: {:6.2f}'.format( epoch, train_loss.result(), train_acc.result() * 100) val_batch_pbar = tqdm.tqdm(total=val_steps()) for image, label in val_data: val_step(self.model, image, label) val_batch_pbar.update(val_batch_size) with val_writer.as_default(): tf.summary.scalar('loss', val_loss.result(), step=epoch) tf.summary.scalar('accuracy', val_acc.result(), step=epoch) val_batch_pbar.close() log_string += ' || Val Loss: {:.4f}, Val Accuracy: {:6.2f}'.format( val_loss.result(), val_acc.result() * 100) if (epoch + 1) % save_every == 0 and save_every != -1: self.model.save_weights( weights_dir( 'model_weights_e{:03d}.h5'.format(epoch)).abspath) epoch_pbar.write(log_string) train_loss.reset_states() train_acc.reset_states() val_loss.reset_states() val_acc.reset_states() epoch_pbar.update(1) except KeyboardInterrupt: epoch_pbar.write('Stopping model with keypress...') epoch_pbar.close() self.model.save_weights(version_dir('model_weights.h5').abspath)
def train( self, train_data, val_data, num_train_samples=None, num_val_samples=None, starting_epoch=1, epochs=50, model_version='default', load_args=False, plot_model=True, learning_rate=1e-4, label_smoothing=0.1, loss_func='mixed', save_every=10, **kwargs ): # Set up directories log_dir = gouda.ensure_dir(self.model_dir(model_version)) args_path = log_dir('training_args.json') weights_dir = gouda.ensure_dir(log_dir('training_weights')) # Set up training args train_args = { 'learning_rate': learning_rate, 'label_smoothing': label_smoothing, 'loss_function': loss_func, 'lr_exp_decay_rate': None, # Multiplier for exponential decay (ie 0.2 means lr_2 = 0.2 * lr_1) 'lr_exp_decay_steps': None, # Steps between exponential lr decay 'lr_cosine_decay': False, # Whether to use cosine lr decay 'lr_cosine_decay_steps': epochs, # The number of steps to reach the minimum lr 'lr_cosine_decay_min_lr': 0.0 # The minimum lr when using steps < epochs } for key in kwargs: train_args[key] = kwargs[key] if load_args: if args_path.exists(): train_args = gouda.load_json(args_path.abspath) else: raise ValueError("Cannot load training args. No file found at: {}".format(args_path.path)) for x, y in train_data.take(1): train_args['train_batch_size'] = y.numpy().shape[0] for x, y in val_data.take(1): train_args['val_batch_size'] = y.numpy().shape[0] gouda.save_json(train_args, args_path) # Save initial weights and model structure if self.model is None: self.compile() self.model.save_weights(weights_dir('model_weights_init.h5').abspath) if plot_model: tf.keras.utils.plot_model(self.model, to_file=log_dir('model.png').abspath, show_shapes=True) # Set up loss if train_args['lr_exp_decay_rate'] is not None and train_args['lr_exp_decay_steps'] is not None: lr = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=train_args['learning_rate'], decay_steps=train_args['lr_exp_decay_steps'], decay_rate=train_args['lr_exp_decay_rate'] ) elif train_args['lr_cosine_decay']: alpha = train_args['lr_cosine_decay_min_lr'] / train_args['learning_rate'] lr = tf.keras.experimental.CosineDecay(train_args['learning_rate'], train_args['lr_cosine_decay_steps'], alpha=alpha) else: lr = train_args['learning_rate'] opt = tf.keras.optimizers.Adam(learning_rate=lr) loss_func = get_loss_func(train_args['loss_function'], **train_args) # if train_args['loss_function'] == 'bce': # loss_func = tf.keras.losses.BinaryCrossentropy(from_logits=False, label_smoothing=train_args['label_smoothing']) # elif train_args['loss_function'] == 'iou': # loss_func = IOU_loss # elif train_args['loss_function'] == 'mixed': # loss_func = mixed_IOU_BCE_loss(train_args['loss_alpha'], train_args['label_smoothing']) # elif # else: # raise NotImplementedError("Loss function `{}` hasn't been added yet".format(train_args['loss_function'])) # Set up logging train_writer = tf.summary.create_file_writer(log_dir('train').path) train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32) train_acc = tf.keras.metrics.BinaryAccuracy('train_accuracy') train_bal = BalanceMetric('train_balance') train_string = "Loss: {:.4f}, Accuracy: {:6.2f}, Balance: {:.2f}" val_writer = tf.summary.create_file_writer(log_dir('val').path) val_loss = tf.keras.metrics.Mean('val_loss', dtype=tf.float32) val_acc = tf.keras.metrics.BinaryAccuracy('val_accuracy') val_bal = BalanceMetric('val_balance') val_string = " || Val Loss: {:.4f}, Val Accuracy: {:6.2f}, Val Balance: {:.2f}" # Define train/val steps def train_step(model, optimizer, x, y): with tf.GradientTape() as tape: predicted = model(x, training=True) loss = loss_func(y, predicted) grad = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grad, model.trainable_variables)) train_loss(loss) train_acc(y, predicted) train_bal(y, predicted) def val_step(model, x, y): predicted = model(x, training=False) loss = loss_func(y, predicted) val_loss(loss) val_acc(y, predicted) val_bal(y, predicted) train_step = tf.function(train_step) val_step = tf.function(val_step) train_steps = StableCounter() if num_train_samples is not None: train_steps.set(num_train_samples) val_steps = StableCounter() if num_val_samples is not None: val_steps.set(num_val_samples) # Training loop epoch_pbar = tqdm.tqdm(total=epochs, unit=' epochs', initial=starting_epoch) val_batch_pbar = tqdm.tqdm(total=val_steps(), unit=' val samples', leave=False) for image, label in val_data: val_step(self.model, image, label) val_batch_pbar.update(train_args['val_batch_size']) val_steps += train_args['val_batch_size'] val_steps.stop() with val_writer.as_default(): tf.summary.scalar('loss', val_loss.result(), step=0) tf.summary.scalar('accuracy', val_acc.result(), step=0) tf.summary.scalar('balance', val_bal.result(), step=0) epoch_pbar.write('Pretrained - Val Loss: {:.4f}, Val Accuracy: {:6.2f}, Val Balance: {:.2f}'.format(val_loss.result(), 100 * val_acc.result(), val_bal.result())) val_batch_pbar.close() val_loss.reset_states() val_acc.reset_states() val_bal.reset_states() try: for epoch in range(starting_epoch, epochs): log_string = 'Epoch {:3d} - '.format(epoch) # Training loop train_batch_pbar = tqdm.tqdm(total=train_steps(), unit=' samples', leave=False) for image, label in train_data: train_step(self.model, opt, image, label) train_batch_pbar.update(train_args['train_batch_size']) train_steps += train_args['train_batch_size'] with train_writer.as_default(): tf.summary.scalar('loss', train_loss.result(), step=epoch) tf.summary.scalar('accuracy', train_acc.result(), step=epoch) tf.summary.scalar('balance', train_bal.result(), step=epoch) log_string += train_string.format(train_loss.result(), train_acc.result() * 100, train_bal.result()) train_batch_pbar.close() # Validation Loop val_batch_pbar = tqdm.tqdm(total=val_steps(), unit=' val samples', leave=False) for image, label in val_data: val_step(self.model, image, label) val_batch_pbar.update(train_args['val_batch_size']) with val_writer.as_default(): tf.summary.scalar('loss', val_loss.result(), step=epoch) tf.summary.scalar('accuracy', val_acc.result(), step=epoch) tf.summary.scalar('balance', val_bal.result(), step=epoch) log_string += val_string.format(val_loss.result(), val_acc.result() * 100, val_bal.result()) val_batch_pbar.close() if (epoch + 1) % 10 == 0: self.model.save_weights(weights_dir('model_weights_e{:03d}.h5'.format(epoch)).path) epoch_pbar.write(log_string) train_loss.reset_states() train_acc.reset_states() train_bal.reset_states() train_steps.stop() val_loss.reset_states() val_acc.reset_states() val_bal.reset_states() epoch_pbar.update(1) except KeyboardInterrupt: print("Interrupting training...") self.model.save_weights(log_dir('model_weights.h5').path) epoch_pbar.close()
def train( self, train_data, val_data, logging_handler=None, starting_epoch=1, lr_type=None, loss_type=None, epochs=50, save_every=10, early_stopping=10, # implement later - tie into logging load_args=False, sample_callback=None, version='default', **kwargs): log_dir = gouda.ensure_dir(self.model_dir(version)) args_path = log_dir('training_args.json') weights_dir = gouda.ensure_dir(log_dir('training_weights')) if logging_handler is None: logging_handler = EmptyLoggingHandler() train_args = { 'epochs': epochs, 'lr_type': lr_type, 'loss_type': loss_type } for key in kwargs: train_args[key] = kwargs[key] if load_args: if args_path.exists(): train_args = gouda.load_json(args_path) else: raise ValueError("No training args file found at `{}`".format( args_path.abspath)) for item in train_data.take(1): train_args['batch_size'] = item[0].numpy().shape[0] for item in val_data.take(1): train_args['val_batch_size'] = item[0].numpy().shape[0] self.compile_model(checking=True) if starting_epoch == 1: self.save_weights(weights_dir('model_weights_init.tf').abspath) # Set learning rate type and optimizer optimizer = self._setup_optimizer(train_args) # Set loss type if train_args['loss_type'] is None: if 'loss_type' not in self.model_args or self.model_args[ 'loss_type'] is None: raise ValueError( "No loss function defined. Use keyword 'loss_type' to define loss in model or training arguments." ) train_args['loss_type'] = self.model_args['loss_type'] if isinstance(train_args['loss_type'], str): loss = get_loss_func(train_args['loss_type'])(**train_args) else: loss = train_args['loss_type'] train_args['loss_type'] = str(loss) # Set training step if 'train_step' not in train_args: train_args['train_step'] = self.model_args['train_step'] if isinstance(train_args['train_step'], str): train_step = get_update_step(train_args['train_step'], is_training=True) else: train_step = train_args['train_step'] train_args['train_step'] = 'custom_train_func' # Set validation step if 'val_step' not in train_args: train_args['val_step'] = self.model_args['val_step'] if isinstance(train_args['val_step'], str): val_step = get_update_step(train_args['val_step'], is_training=False) else: val_step = train_args['val_step'] train_args['val_step'] = 'custom_val_func' # Save training args as json save_args = clean_for_json(train_args.copy()) gouda.save_json(save_args, args_path) # Start loggers logging_handler.start(log_dir, total_epochs=epochs) train_counter = StableCounter() if 'train_steps' in train_args: train_counter.set(train_args['train_steps']) val_counter = StableCounter() if 'val_steps' in train_args: val_counter.set(train_args['val_steps']) train_step = train_step(self.model, optimizer, loss, logging_handler) val_step = val_step(self.model, loss, logging_handler) epoch_pbar = tqdm.tqdm(total=epochs, unit=' epochs', initial=starting_epoch - 1) val_pbar = tqdm.tqdm(total=val_counter(), unit=' val samples', leave=False) try: for item in val_data: val_step(item) # logging_handler.val_step(val_step(item)) batch_size = item[0].shape[0] val_counter += batch_size val_pbar.update(batch_size) log_string = logging_handler.write('Pretrained') epoch_pbar.write(log_string) val_counter.stop() except KeyboardInterrupt: if 'val_steps' not in train_args: val_counter.reset() logging_handler.write("Skipping pre-training validation.") epoch_pbar.update(1) val_pbar.close() try: epoch_digits = str(gouda.num_digits(epochs)) for epoch in range(starting_epoch, epochs): train_pbar = tqdm.tqdm(total=train_counter(), unit=' samples', leave=False) for item in train_data: batch_size = item[0].shape[0] train_counter += batch_size train_pbar.update(batch_size) train_step(item) train_pbar.close() if sample_callback is not None: sample_callback(self.model, epoch) val_pbar = tqdm.tqdm(total=val_counter(), leave=False) for item in val_data: batch_size = item[0].shape[0] val_counter += batch_size val_pbar.update(batch_size) val_step(item) val_pbar.close() train_counter.stop() val_counter.stop() log_string = logging_handler.write(epoch) epoch_pbar.write(log_string) epoch_pbar.update(1) if (epoch + 1) % 10 == 0: weight_string = 'model_weights_e{:0' + epoch_digits + 'd}.tf' self.save_weights( weights_dir(weight_string.format(epoch)).abspath) except KeyboardInterrupt: print("Interrupting model training...") logging_handler.interrupt() epoch_pbar.close() self.save_weights(log_dir('model_weights.tf').abspath) logging_handler.stop()