예제 #1
0
def test_features():
    # Test that optimisation runs for a full-fledged GPAR.
    reg = GPARRegressor(replace=True, scale=1.0,
                        per=True, per_period=1.0, per_decay=10.0,
                        input_linear=True, input_linear_scale=0.1,
                        linear=True, linear_scale=1.0,
                        nonlinear=True, nonlinear_scale=1.0,
                        rq=True, noise=0.1)
    x = np.stack([np.linspace(0, 10, 20),
                  np.linspace(10, 20, 20)], axis=1)
    y = reg.sample(x, p=2)
    reg.fit(x, y, iters=10)
예제 #2
0
def test_fit():
    reg = GPARRegressor(replace=False,
                        impute=False,
                        normalise_y=True,
                        transform_y=squishing_transform)
    x = np.linspace(0, 5, 10)
    y = reg.sample(x, p=2)

    # TODO: Remove this once greedy search is implemented.
    yield raises, NotImplementedError, lambda: reg.fit(x, y, greedy=True)

    # Test that data is correctly transformed if it has an output with zero
    # variance.
    reg.fit(x, y, iters=0)
    yield ok, (~B.isnan(reg.y)).numpy().all()
    y_pathological = y.copy()
    y_pathological[:, 0] = 1
    reg.fit(x, y_pathological, iters=0)
    yield ok, (~B.isnan(reg.y)).numpy().all()

    # Test transformation and normalisation of outputs.
    z = B.linspace(-1, 1, 10, dtype=torch.float64)
    z = B.stack([z, 2 * z], axis=1)
    yield allclose, reg._untransform_y(reg._transform_y(z)), z
    yield allclose, reg._unnormalise_y(reg._normalise_y(z)), z

    # Test that fitting runs without issues.
    vs = reg.vs.detach()
    yield lambda x_, y_: reg.fit(x_, y_, fix=False), x, y
    reg.vs = vs
    yield lambda x_, y_: reg.fit(x, y, fix=True), x, y
예제 #3
0
def test_sample_and_predict():
    reg = GPARRegressor(replace=False,
                        impute=False,
                        linear=True,
                        linear_scale=1.,
                        nonlinear=False,
                        noise=1e-8,
                        normalise_y=False)
    x = np.linspace(0, 5, 10)

    # Test checks.
    yield raises, ValueError, lambda: reg.sample(x)
    yield raises, RuntimeError, lambda: reg.sample(x, posterior=True)

    # Test that output is simplified correctly.
    yield isinstance, reg.sample(x, p=2), np.ndarray
    yield isinstance, reg.sample(x, p=2, num_samples=2), list

    # Test that it produces random samples. Not sure how to test correctness.
    yield ge, np.sum(np.abs(reg.sample(x, p=2) - reg.sample(x, p=2))), 1e-2
    yield ge, np.sum(
        np.abs(
            reg.sample(x, p=2, latent=True) -
            reg.sample(x, p=2, latent=True))), 1e-3

    # Test that mean of posterior samples are around the data.
    y = reg.sample(x, p=2)
    reg.fit(x, y, iters=0)
    yield approx, y, np.mean(reg.sample(x, posterior=True, num_samples=20),
                             axis=0), 4
    yield approx, y, np.mean(reg.sample(x,
                                        latent=True,
                                        posterior=True,
                                        num_samples=20),
                             axis=0), 4

    # Test that prediction is around the data.
    yield approx, y, reg.predict(x, num_samples=20), 4
    yield approx, y, reg.predict(x, latent=True, num_samples=20), 4

    # Test that prediction is confident.
    _, lowers, uppers = reg.predict(x, num_samples=10, credible_bounds=True)
    yield ok, np.less_equal(uppers - lowers, 1e-3).all()
예제 #4
0
def test_logpdf():
    # Sample some data from a "sensitive" GPAR.
    reg = GPARRegressor(replace=False,
                        impute=False,
                        nonlinear=True,
                        nonlinear_scale=0.1,
                        linear=True,
                        linear_scale=10.,
                        noise=1e-4,
                        normalise_y=False)
    x = np.linspace(0, 5, 10)
    y = reg.sample(x, p=2, latent=True)

    # Extract models.
    gpar = _construct_gpar(reg, reg.vs, 1, 2)
    f1, e1 = gpar.layers[0]()
    f2, e2 = gpar.layers[1]()

    # Test computation under prior.
    logpdf1 = (f1 + e1)(B.array(x)).logpdf(B.array(y[:, 0]))
    x_stack = np.concatenate([x[:, None], y[:, 0:1]], axis=1)
    logpdf2 = (f2 + e2)(B.array(x_stack)).logpdf(B.array(y[:, 1]))
    yield approx, reg.logpdf(x, y), logpdf1 + logpdf2, 6

    # Test computation under posterior.
    e1_post = GP(e1.kernel, e1.mean, graph=e1.graph)
    e2_post = GP(e2.kernel, e2.mean, graph=e2.graph)
    f1_post = f1 | ((f1 + e1)(B.array(x)), B.array(y[:, 0]))
    f2_post = f2 | ((f2 + e2)(B.array(x_stack)), B.array(y[:, 1]))
    logpdf1 = (f1_post + e1_post)(B.array(x)).logpdf(B.array(y[:, 0]))
    logpdf2 = (f2_post + e2_post)(B.array(x_stack)).logpdf(B.array(y[:, 1]))
    yield raises, RuntimeError, lambda: reg.logpdf(x, y, posterior=True)
    reg.fit(x, y, iters=0)
    yield approx, reg.logpdf(x, y, posterior=True), logpdf1 + logpdf2, 6

    # Test that sampling missing gives a stochastic estimate.
    y[::2, 0] = np.nan
    yield ge, \
          np.abs(reg.logpdf(x, y, sample_missing=True) -
                 reg.logpdf(x, y, sample_missing=True)), \
          1e-3
예제 #5
0
def test_condition_and_fit():
    reg = GPARRegressor(replace=False, impute=False,
                        normalise_y=True, transform_y=squishing_transform)
    x = np.linspace(0, 5, 10)
    y = reg.sample(x, p=2)

    # Test that data is correctly normalised.
    reg.condition(x, y)
    approx(B.mean(reg.y, axis=0), B.zeros(reg.p))
    approx(B.std(reg.y, axis=0), B.ones(reg.p))

    # Test that data is correctly normalised if it has an output with zero
    # variance.
    y_pathological = y.copy()
    y_pathological[:, 0] = 1
    reg.condition(x, y_pathological)
    assert (~B.isnan(reg.y)).numpy().all()

    # Test transformation and normalisation of outputs.
    z = torch.linspace(-1, 1, 10, dtype=torch.float64)
    z = B.stack(z, 2 * z, axis=1)
    allclose(reg._untransform_y(reg._transform_y(z)), z)
    allclose(reg._unnormalise_y(reg._normalise_y(z)), z)

    # Test that fitting runs without issues.
    vs = reg.vs.copy(detach=True)
    reg.fit(x, y, fix=False)
    reg.vs = vs
    reg.fit(x, y, fix=True)

    # TODO: Remove this once greedy search is implemented.
    with pytest.raises(NotImplementedError):
        reg.fit(x, y, greedy=True)
예제 #6
0
파일: synthetic.py 프로젝트: lzongren/gpar
    # Add noise and subsample.
    y = f + noise * np.random.randn(n, 3)
    x_obs, y_obs = x[::8], y[::8]

    # Fit and predict GPAR.
    model = GPARRegressor(scale=0.1,
                          linear=True,
                          linear_scale=10.,
                          nonlinear=True,
                          nonlinear_scale=0.1,
                          noise=0.1,
                          impute=True,
                          replace=False,
                          normalise_y=False)
    model.fit(x_obs, y_obs)
    means, lowers, uppers = \
        model.predict(x, num_samples=100, credible_bounds=True, latent=True)

    # Fit and predict independent GPs: set markov=0.
    igp = GPARRegressor(scale=0.1,
                        linear=True,
                        linear_scale=10.,
                        nonlinear=True,
                        nonlinear_scale=0.1,
                        noise=0.1,
                        markov=0,
                        normalise_y=False)
    igp.fit(x_obs, y_obs)
    igp_means, igp_lowers, igp_uppers = \
        igp.predict(x, num_samples=100, credible_bounds=True, latent=True)
#                       markov=1,
#                       replace=True,
#                       noise=0.01)

# model = GPARRegressor(scale=args.synthetic_scales, scale_tie=True,
#                           linear=True, linear_scale=10., input_linear=False,
#                           nonlinear=False,
#                           markov=1,
#                           replace=True,
#                           noise=args.noise)

# time the fitting
start = time.time()

# Fit model and print hyperparameters.
model.fit(transform_x(x), y, iters=args.iters, trace=False, fix=True)
if args.joint:
    model.fit(transform_x(x), y, iters=args.iters, trace=False, fix=False)
print('Hyperparameters:')
for k, v in model.get_variables().items():
    print(k)
    print('   ', v)

# Predict.
# preds = []
# for i, x_test in enumerate(x_tests):
#     print('Predicting {}/{}'.format(i + 1, max_layers - min_layers + 1))
#     preds.append(model.predict(transform_x(x_test),
#                                num_samples=50,
#                                latent=True,
#                                credible_bounds=True))
예제 #8
0
x = np.linspace(0, 1, 100)
model = GPARRegressor(scale=0.1,
                      linear=False, nonlinear=True, nonlinear_scale=0.5,
                      impute=True, replace=True,
                      noise=0.1, normalise_y=True)

# Sample observations and discard some.
y = model.sample(x, p=3)
y_obs = y.copy()
y_obs[np.random.permutation(100)[:25], 0] = np.nan
y_obs[np.random.permutation(100)[:50], 1] = np.nan
y_obs[np.random.permutation(100)[:75], 2] = np.nan

# Fit model and predict.
model.fit(x, y)
means, lowers, uppers = \
    model.predict(x, num_samples=200, latent=False, credible_bounds=True)

# Plot the result.
plt.figure(figsize=(8, 6))

for i in range(3):
    plt.subplot(3, 1, i + 1)
    plt.plot(x, means[:, i], label='Prediction', style='pred')
    plt.fill_between(x, lowers[:, i], uppers[:, i], style='pred')
    plt.scatter(x, y[:, i], label='Truth', style='test')
    plt.scatter(x, y_obs[:, i], label='Observations', style='train')
    plt.ylabel(f'Output {i + 1}')
    wbml.plot.tweak(legend=i == 0)
                          nonlinear_with_inputs=False,
                          markov=1,
                          replace=True,
                          noise=0.01)

    while y_tested.shape[0] < args.max_evals:

        # Define the GPAR model for this iteration. TODO: reuse hyper parameters from previous run as a starting point?
        print(f'Running iteration {iteration}')

        # Fit the GPAR model. If joint, this means we want to co-fit the parameters after the first fitting
        # Potential looses some accuracy on each layer and sometimes goes unstable as a result
        print('\t Fitting model')
        model.fit(transform_x(x_tested),
                  y_tested,
                  trace=trace,
                  progressive=True,
                  iters=args.iters)
        if args.joint:
            model.fit(transform_x(x_tested),
                      y_tested,
                      trace=trace,
                      progressive=False,
                      iters=args.iters)

        # Sample the test points to allow us to plot the form of the GPAR function
        print('\t Predicting test points')
        test_samples = unnormalise(
            model.sample(transform_x(x_test),
                         num_samples=num_function_samples,
                         latent=True,
예제 #10
0
        print(f'Running iteration {iteration}')

        # Fit the GPAR model. If joint, this means we want to co-fit the parameters after the first fitting
        # Potential looses some accuracy on each layer and sometimes goes unstable as a result
        print('\t Fitting model')

        x_data = x.copy()
        y_data = y_normalised.copy()
        y_data[np.where(~y_tested)] = np.nan
        active_inds = np.where(y_tested[:, 0])
        x_data = x_data[active_inds]
        y_data = y_data[active_inds]

        model.fit(transform_x(x_data),
                  y_data,
                  trace=trace,
                  fix=True,
                  iters=args.iters)
        if args.joint:
            model.fit(transform_x(x_data),
                      y_data,
                      trace=trace,
                      fix=False,
                      iters=args.iters)

        # Sample the test points to allow us to plot the form of the GPAR function
        print('\t Predicting test points')
        test_samples = unnormalise(
            model.sample(transform_x(x_test),
                         num_samples=50,
                         latent=True,