예제 #1
0
    def ibz2bz(self, atoms):
        """Transform wave functions in IBZ to the full BZ."""

        assert self.kd.comm.size == 1

        # New k-point descriptor for full BZ:
        kd = KPointDescriptor(self.kd.bzk_kc, nspins=self.nspins)
        #kd.set_symmetry(atoms, self.setups, enabled=False)
        kd.set_communicator(serial_comm)

        self.pt = LFC(self.gd, [setup.pt_j for setup in self.setups],
                      kd,
                      dtype=self.dtype)
        self.pt.set_positions(atoms.get_scaled_positions())

        self.initialize_wave_functions_from_restart_file()

        weight = 2.0 / kd.nspins / kd.nbzkpts

        # Build new list of k-points:
        kpt_u = []
        for s in range(self.nspins):
            for k in range(kd.nbzkpts):
                # Index of symmetry related point in the IBZ
                ik = self.kd.bz2ibz_k[k]
                r, u = self.kd.get_rank_and_index(s, ik)
                assert r == 0
                kpt = self.kpt_u[u]

                phase_cd = np.exp(2j * np.pi * self.gd.sdisp_cd *
                                  kd.bzk_kc[k, :, np.newaxis])

                # New k-point:
                kpt2 = KPoint(weight, s, k, k, phase_cd)
                kpt2.f_n = kpt.f_n / kpt.weight / kd.nbzkpts * 2 / self.nspins
                kpt2.eps_n = kpt.eps_n.copy()

                # Transform wave functions using symmetry operation:
                Psit_nG = self.gd.collect(kpt.psit_nG)
                if Psit_nG is not None:
                    Psit_nG = Psit_nG.copy()
                    for Psit_G in Psit_nG:
                        Psit_G[:] = self.kd.transform_wave_function(Psit_G, k)
                kpt2.psit_nG = self.gd.empty(self.bd.nbands, dtype=self.dtype)
                self.gd.distribute(Psit_nG, kpt2.psit_nG)

                # Calculate PAW projections:
                kpt2.P_ani = self.pt.dict(len(kpt.psit_nG))
                self.pt.integrate(kpt2.psit_nG, kpt2.P_ani, k)

                kpt_u.append(kpt2)

        self.kd = kd
        self.kpt_u = kpt_u
예제 #2
0
파일: fd.py 프로젝트: eojons/gpaw-scme
    def ibz2bz(self, atoms):
        """Transform wave functions in IBZ to the full BZ."""

        assert self.kd.comm.size == 1

        # New k-point descriptor for full BZ:
        kd = KPointDescriptor(self.kd.bzk_kc, nspins=self.nspins)
        kd.set_symmetry(atoms, self.setups, usesymm=None)
        kd.set_communicator(serial_comm)

        self.pt = LFC(self.gd, [setup.pt_j for setup in self.setups],
                      kd, dtype=self.dtype)
        self.pt.set_positions(atoms.get_scaled_positions())

        self.initialize_wave_functions_from_restart_file()

        weight = 2.0 / kd.nspins / kd.nbzkpts
        
        # Build new list of k-points:
        kpt_u = []
        for s in range(self.nspins):
            for k in range(kd.nbzkpts):
                # Index of symmetry related point in the IBZ
                ik = self.kd.bz2ibz_k[k]
                r, u = self.kd.get_rank_and_index(s, ik)
                assert r == 0
                kpt = self.kpt_u[u]
            
                phase_cd = np.exp(2j * np.pi * self.gd.sdisp_cd *
                                  kd.bzk_kc[k, :, np.newaxis])

                # New k-point:
                kpt2 = KPoint(weight, s, k, k, phase_cd)
                kpt2.f_n = kpt.f_n / kpt.weight / kd.nbzkpts * 2 / self.nspins
                kpt2.eps_n = kpt.eps_n.copy()
                
                # Transform wave functions using symmetry operation:
                Psit_nG = self.gd.collect(kpt.psit_nG)
                if Psit_nG is not None:
                    Psit_nG = Psit_nG.copy()
                    for Psit_G in Psit_nG:
                        Psit_G[:] = self.kd.transform_wave_function(Psit_G, k)
                kpt2.psit_nG = self.gd.empty(self.bd.nbands, dtype=self.dtype)
                self.gd.distribute(Psit_nG, kpt2.psit_nG)

                # Calculate PAW projections:
                kpt2.P_ani = self.pt.dict(len(kpt.psit_nG))
                self.pt.integrate(kpt2.psit_nG, kpt2.P_ani, k)
                
                kpt_u.append(kpt2)

        self.kd = kd
        self.kpt_u = kpt_u
예제 #3
0
파일: paw.py 프로젝트: robwarm/gpaw-symm
    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        self.set_text(par.txt, par.verbose)

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_av = atoms.get_initial_magnetic_moments()

        # Generate new xc functional only when it is reset by set
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, str):
                xc = XC(par.xc)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode

        if xc.orbital_dependent and mode == 'lcao':
            raise NotImplementedError('LCAO mode does not support '
                                      'orbital-dependent XC functionals.')

        if mode == 'pw':
            mode = PW()

        if mode == 'fd' and par.usefractrans:
            raise NotImplementedError('FD mode does not support '
                                      'fractional translations.')
        
        if mode == 'lcao' and par.usefractrans:
            raise Warning('Fractional translations have not been tested '
                          'with LCAO mode. Use with care!')

        if par.realspace is None:
            realspace = not isinstance(mode, PW)
        else:
            realspace = par.realspace
            if isinstance(mode, PW):
                assert not realspace

        if par.gpts is not None:
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace)

        if par.filter is None and not isinstance(mode, PW):
            gamma = 1.6
            hmax = ((np.linalg.inv(cell_cv)**2).sum(0)**-0.5 / N_c).max()
            
            def filter(rgd, rcut, f_r, l=0):
                gcut = np.pi / hmax - 2 / rcut / gamma
                f_r[:] = rgd.filter(f_r, rcut * gamma, gcut, l)
        else:
            filter = par.filter

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc,
                        filter, world)

        if magmom_av.ndim == 1:
            collinear = True
            magmom_av, magmom_a = np.zeros((natoms, 3)), magmom_av
            magmom_av[:, 2] = magmom_a
        else:
            collinear = False
            
        magnetic = magmom_av.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_av[0] = (0, 0, setups[0].get_hunds_rule_moment(par.charge))
            
        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a ' +
                             'spin-paired calculation!')

        if collinear:
            nspins = 1 + int(spinpol)
            ncomp = 1
        else:
            nspins = 1
            ncomp = 2

        # K-point descriptor
        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins, collinear, par.usefractrans)

        width = par.width
        if width is None:
            if pbc_c.any():
                width = 0.1  # eV
            else:
                width = 0.0
        else:
            assert par.occupations is None
      
        if hasattr(self, 'time') or par.dtype == complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        ## rbw: If usefractrans=True, kd.set_symmetry might overwrite N_c.
        ## This is necessary, because N_c must be dividable by 1/(fractional translation),
        ## f.e. fractional translations of a grid point must land on a grid point.
        N_c = kd.set_symmetry(atoms, setups, magmom_av, par.usesymm, N_c, world)

        nao = setups.nao
        nvalence = setups.nvalence - par.charge
        M_v = magmom_av.sum(0)
        M = np.dot(M_v, M_v)**0.5
        
        nbands = par.nbands
        if nbands is None:
            nbands = 0
            for setup in setups:
                nbands_from_atom = setup.get_default_nbands()
                
                # Any obscure setup errors?
                if nbands_from_atom < -(-setup.Nv // 2):
                    raise ValueError('Bad setup: This setup requests %d'
                                     ' bands but has %d electrons.'
                                     % (nbands_from_atom, setup.Nv))
                nbands += nbands_from_atom
            nbands = min(nao, nbands)
        elif nbands > nao and mode == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d'
                             % (nvalence, nbands))

        nbands *= ncomp

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                self.occupations = occupations.FermiDirac(width, par.fixmom)
            else:
                self.occupations = par.occupations

        self.occupations.magmom = M_v[2]

        cc = par.convergence

        if mode == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            self.scf = SCFLoop(
                cc['eigenstates'] / Hartree**2 * nvalence,
                cc['energy'] / Hartree * max(nvalence, 1),
                cc['density'] * nvalence,
                par.maxiter, par.fixdensity,
                niter_fixdensity)

        parsize_kpt = par.parallel['kpt']
        parsize_domain = par.parallel['domain']
        parsize_bands = par.parallel['band']

        if not realspace:
            pbc_c = np.ones(3, bool)

        if not self.wfs:
            if parsize_domain == 'domain only':  # XXX this was silly!
                parsize_domain = world.size

            parallelization = mpi.Parallelization(world,
                                                  nspins * kd.nibzkpts)
            ndomains = None
            if parsize_domain is not None:
                ndomains = np.prod(parsize_domain)
            if isinstance(mode, PW):
                if ndomains > 1:
                    raise ValueError('Planewave mode does not support '
                                     'domain decomposition.')
                ndomains = 1
            parallelization.set(kpt=parsize_kpt,
                                domain=ndomains,
                                band=parsize_bands)
            domain_comm, kpt_comm, band_comm = \
                parallelization.build_communicators()

            #domain_comm, kpt_comm, band_comm = mpi.distribute_cpus(
            #    parsize_domain, parsize_bands,
            #    nspins, kd.nibzkpts, world, par.idiotproof, mode)

            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']

            # Unfortunately we need to remember that we adjusted the
            # number of bands so we can print a warning if it differs
            # from the number specified by the user.  (The number can
            # be inferred from the input parameters, but it's tricky
            # because we allow negative numbers)
            self.nbands_parallelization_adjustment = -nbands % band_comm.size
            nbands += self.nbands_parallelization_adjustment

            # I would like to give the following error message, but apparently
            # there are cases, e.g. gpaw/test/gw_ppa.py, which involve
            # nbands > nao and are supposed to work that way.
            #if nbands > nao:
            #    raise ValueError('Number of bands %d adjusted for band '
            #                     'parallelization %d exceeds number of atomic '
            #                     'orbitals %d.  This problem can be fixed '
            #                     'by reducing the number of bands a bit.'
            #                     % (nbands, band_comm.size, nao))
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None and
                self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError('Density reinitialization conflict ' +
                        'with "fixdensity" - specify domain decomposition.')
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c,
                                            domain_comm, parsize_domain)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd, self.timer)

            if par.parallel['sl_auto']:
                # Choose scalapack parallelization automatically
                
                for key, val in par.parallel.items():
                    if (key.startswith('sl_') and key != 'sl_auto'
                        and val is not None):
                        raise ValueError("Cannot use 'sl_auto' together "
                                         "with '%s'" % key)
                max_scalapack_cpus = bd.comm.size * gd.comm.size
                nprow = max_scalapack_cpus
                npcol = 1
                
                # Get a sort of reasonable number of columns/rows
                while npcol < nprow and nprow % 2 == 0:
                    npcol *= 2
                    nprow //= 2
                assert npcol * nprow == max_scalapack_cpus

                # ScaLAPACK creates trouble if there aren't at least a few
                # whole blocks; choose block size so there will always be
                # several blocks.  This will crash for small test systems,
                # but so will ScaLAPACK in any case
                blocksize = min(-(-nbands // 4), 64)
                sl_default = (nprow, npcol, blocksize)
            else:
                sl_default = par.parallel['sl_default']

            if mode == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                lcaoksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, bd, dtype,
                                               nao=nao, timer=self.timer)

                if collinear:
                    self.wfs = LCAOWaveFunctions(lcaoksl, *args)
                else:
                    from gpaw.xc.noncollinear import \
                         NonCollinearLCAOWaveFunctions
                    self.wfs = NonCollinearLCAOWaveFunctions(lcaoksl, *args)

            elif mode == 'fd' or isinstance(mode, PW):
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = sl_default
                diagksl = get_KohnSham_layouts(sl_diagonalize, 'fd',
                                               gd, bd, dtype,
                                               buffer_size=buffer_size,
                                               timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = sl_default
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky, 'fd',
                                                gd, bd, dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)

                try:
                    lcaobd = BandDescriptor(lcaonbands, band_comm,
                                            parstride_bands)
                except RuntimeError:
                    initksl = None
                else:
                    # Layouts used for general diagonalizer
                    # (LCAO initialization)
                    sl_lcao = par.parallel['sl_lcao']
                    if sl_lcao is None:
                        sl_lcao = sl_default
                    initksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                                   gd, lcaobd, dtype,
                                                   nao=nao,
                                                   timer=self.timer)

                if hasattr(self, 'time'):
                    assert mode == 'fd'
                    from gpaw.tddft import TimeDependentWaveFunctions
                    self.wfs = TimeDependentWaveFunctions(par.stencils[0],
                        diagksl, orthoksl, initksl, gd, nvalence, setups,
                        bd, world, kd, self.timer)
                elif mode == 'fd':
                    self.wfs = FDWaveFunctions(par.stencils[0], diagksl,
                                               orthoksl, initksl, *args)
                else:
                    # Planewave basis:
                    self.wfs = mode(diagksl, orthoksl, initksl, *args)
            else:
                self.wfs = mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property

            if isinstance(xc, SIC):
                eigensolver.blocksize = 1
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd

            if realspace:
                self.density = RealSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear, par.stencils[1])
            else:
                self.density = ReciprocalSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear)

        self.density.initialize(setups, self.timer, magmom_av, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            if realspace:
                self.hamiltonian = RealSpaceHamiltonian(
                    gd, finegd, nspins, setups, self.timer, xc, par.external,
                    collinear, par.poissonsolver, par.stencils[1], world)
            else:
                self.hamiltonian = ReciprocalSpaceHamiltonian(
                    gd, finegd,
                    self.density.pd2, self.density.pd3,
                    nspins, setups, self.timer, xc, par.external,
                    collinear, world)
            
        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        self.timer.print_info(self)
        
        if dry_run:
            self.dry_run()
        
        self.initialized = True
예제 #4
0
파일: ut_invops.py 프로젝트: thonmaker/gpaw
class UTGaussianWavefunctionSetup(UTDomainParallelSetup):
    __doc__ = UTDomainParallelSetup.__doc__ + """
    The pseudo wavefunctions are moving gaussians centered around each atom."""

    allocated = False
    dtype = None

    # Default arguments for scaled Gaussian wave
    _sigma0 = 2.0 #0.75
    _k0_c = 2*np.pi*np.array([1/5., 1/3., 0.])

    def setUp(self):
        UTDomainParallelSetup.setUp(self)

        for virtvar in ['dtype']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Create randomized atoms
        self.atoms = create_random_atoms(self.gd, 5) # also tested: 10xNH3/BDA

        # XXX DEBUG START
        if False:
            from ase import view
            view(self.atoms*(1+2*self.gd.pbc_c))
        # XXX DEBUG END

        # Do we agree on the atomic positions?
        pos_ac = self.atoms.get_positions()
        pos_rac = np.empty((world.size,)+pos_ac.shape, pos_ac.dtype)
        world.all_gather(pos_ac, pos_rac)
        if (pos_rac-pos_rac[world.rank,...][np.newaxis,...]).any():
            raise RuntimeError('Discrepancy in atomic positions detected.')

        # Create setups for atoms
        self.Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(self.Z_a, p.setups, p.basis,
                             p.lmax, xc)

        # K-point descriptor
        bzk_kc = np.array([[0, 0, 0]], dtype=float)
        self.kd = KPointDescriptor(bzk_kc, 1)
        self.kd.set_symmetry(self.atoms, self.setups)
        self.kd.set_communicator(self.kpt_comm)

        # Create gamma-point dummy wavefunctions
        self.wfs = FDWFS(self.gd, self.bd, self.kd, self.setups,
                         self.block_comm, self.dtype)

        spos_ac = self.atoms.get_scaled_positions() % 1.0
        self.wfs.set_positions(spos_ac)
        self.pt = self.wfs.pt # XXX shortcut

        ## Also create pseudo partial waveves
        #from gpaw.lfc import LFC
        #self.phit = LFC(self.gd, [setup.phit_j for setup in self.setups], \
        #                self.kpt_comm, dtype=self.dtype)
        #self.phit.set_positions(spos_ac)

        self.r_cG = None
        self.buf_G = None
        self.psit_nG = None

        self.allocate()

    def tearDown(self):
        UTDomainParallelSetup.tearDown(self)
        del self.r_cG, self.buf_G, self.psit_nG
        del self.pt, self.setups, self.atoms
        self.allocated = False

    def allocate(self):
        self.r_cG = self.gd.get_grid_point_coordinates()
        cell_cv = self.atoms.get_cell() / Bohr
        assert np.abs(cell_cv-self.gd.cell_cv).max() < 1e-9
        center_c = 0.5*cell_cv.diagonal()

        self.buf_G = self.gd.empty(dtype=self.dtype)
        self.psit_nG = self.gd.empty(self.bd.mynbands, dtype=self.dtype)

        for myn,psit_G in enumerate(self.psit_nG):
            n = self.bd.global_index(myn)
            psit_G[:] = self.get_scaled_gaussian_wave(center_c, scale=10+2j*n)

            k_c = 2*np.pi*np.array([1/2., -1/7., 0.])
            for pos_c in self.atoms.get_positions() / Bohr:
                sigma = self._sigma0/(1+np.sum(pos_c**2))**0.5
                psit_G += self.get_scaled_gaussian_wave(pos_c, sigma, k_c, n+5j)

        self.allocated = True

    def get_scaled_gaussian_wave(self, pos_c, sigma=None, k_c=None, scale=None):
        if sigma is None:
            sigma = self._sigma0

        if k_c is None:
            k_c = self._k0_c

        if scale is None:
            A = None
        else:
            # 4*pi*int(exp(-r^2/(2*w^2))^2*r^2, r=0...infinity)= w^3*pi^(3/2)
            # = scale/A^2 -> A = scale*(sqrt(Pi)*w)^(-3/2) hence int -> scale^2
            A = scale/(sigma*(np.pi)**0.5)**1.5

        return gaussian_wave(self.r_cG, pos_c, sigma, k_c, A, self.dtype, self.buf_G)

    def check_and_plot(self, P_ani, P0_ani, digits, keywords=''):
        # Collapse into viewable matrices
        P_In = self.wfs.collect_projections(P_ani)
        P0_In = self.wfs.collect_projections(P0_ani)

        # Construct fingerprint of input matrices for comparison
        fingerprint = np.array([md5_array(P_In, numeric=True),
                                md5_array(P0_In, numeric=True)])

        # Compare fingerprints across all processors
        fingerprints = np.empty((world.size, 2), np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        # If assertion fails, catch temporarily while plotting, then re-raise
        try:
            self.assertAlmostEqual(np.abs(P_In-P0_In).max(), 0, digits)
        except AssertionError:
            if world.rank == 0 and mpl is not None:
                from matplotlib.figure import Figure
                fig = Figure()
                ax = fig.add_axes([0.0, 0.1, 1.0, 0.83])
                ax.set_title(self.__class__.__name__)
                im = ax.imshow(np.abs(P_In-P0_In), interpolation='nearest')
                fig.colorbar(im)
                fig.text(0.5, 0.05, 'Keywords: ' + keywords, \
                    horizontalalignment='center', verticalalignment='top')

                from matplotlib.backends.backend_agg import FigureCanvasAgg
                img = 'ut_invops_%s_%s.png' % (self.__class__.__name__, \
                    '_'.join(keywords.split(',')))
                FigureCanvasAgg(fig).print_figure(img.lower(), dpi=90)
            raise

    # =================================

    def test_projection_linearity(self):
        kpt = self.wfs.kpt_u[0]
        Q_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(self.psit_nG, Q_ani, q=kpt.q)

        for Q_ni in Q_ani.values():
            self.assertTrue(Q_ni.dtype == self.dtype)

        P0_ani = dict([(a,Q_ni.copy()) for a,Q_ni in Q_ani.items()])
        self.pt.add(self.psit_nG, Q_ani, q=kpt.q)
        self.pt.integrate(self.psit_nG, P0_ani, q=kpt.q)

        #rank_a = self.gd.get_ranks_from_positions(spos_ac)
        #my_atom_indices = np.argwhere(self.gd.comm.rank == rank_a).ravel()

        #                                                ~ a   ~ a'
        #TODO XXX should fix PairOverlap-ish stuff for < p  | phi  > overlaps
        #                                                 i      i'

        #spos_ac = self.pt.spos_ac # NewLFC doesn't have this
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        gpo = GridPairOverlap(self.gd, self.setups)
        B_aa = gpo.calculate_overlaps(spos_ac, self.pt)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        P_ani = dict([(a,Q_ni.copy()) for a,Q_ni in Q_ani.items()])
        for a1 in range(len(self.atoms)):
            if a1 in P_ani.keys():
                P_ni = P_ani[a1]
            else:
                # Atom a1 is not in domain so allocate a temporary buffer
                P_ni = np.zeros((self.bd.mynbands,self.setups[a1].ni,),
                                 dtype=self.dtype)
            for a2, Q_ni in Q_ani.items():
                # B_aa are the projector overlaps across atomic pairs
                B_ii = gpo.extract_atomic_pair_matrix(B_aa, a1, a2)
                P_ni += np.dot(Q_ni, B_ii.T) #sum over a2 and last i in B_ii
            self.gd.comm.sum(P_ni)

        self.check_and_plot(P_ani, P0_ani, 8, 'projection,linearity')

    def test_extrapolate_overlap(self):
        kpt = self.wfs.kpt_u[0]
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        P_ani = ppo.apply(self.psit_nG, work_nG, self.wfs, kpt, \
            calculate_P_ani=True, extrapolate_P_ani=True)

        P0_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(work_nG, P0_ani, kpt.q)
        del work_nG

        self.check_and_plot(P_ani, P0_ani, 11, 'extrapolate,overlap')

    def test_extrapolate_inverse(self):
        kpt = self.wfs.kpt_u[0]
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        P_ani = ppo.apply_inverse(self.psit_nG, work_nG, self.wfs, kpt, \
            calculate_P_ani=True, extrapolate_P_ani=True)

        P0_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(work_nG, P0_ani, kpt.q)
        del work_nG

        self.check_and_plot(P_ani, P0_ani, 11, 'extrapolate,inverse')

    def test_overlap_inverse_after(self):
        kpt = self.wfs.kpt_u[0]
        kpt.P_ani = self.pt.dict(self.bd.mynbands)
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        self.pt.integrate(self.psit_nG, kpt.P_ani, kpt.q)
        P0_ani = dict([(a,P_ni.copy()) for a,P_ni in kpt.P_ani.items()])
        ppo.apply(self.psit_nG, work_nG, self.wfs, kpt, calculate_P_ani=False)

        res_nG = np.empty_like(self.psit_nG)
        ppo.apply_inverse(work_nG, res_nG, self.wfs, kpt, calculate_P_ani=True)
        del work_nG

        P_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(res_nG, P_ani, kpt.q)

        abserr = np.empty(1, dtype=float)
        for n in range(self.nbands):
            band_rank, myn = self.bd.who_has(n)
            if band_rank == self.bd.comm.rank:
                abserr[:] = np.abs(self.psit_nG[myn] - res_nG[myn]).max()
                self.gd.comm.max(abserr)
            self.bd.comm.broadcast(abserr, band_rank)
            self.assertAlmostEqual(abserr.item(), 0, 10)

        self.check_and_plot(P_ani, P0_ani, 10, 'overlap,inverse,after')

    def test_overlap_inverse_before(self):
        kpt = self.wfs.kpt_u[0]
        kpt.P_ani = self.pt.dict(self.bd.mynbands)
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        self.pt.integrate(self.psit_nG, kpt.P_ani, kpt.q)
        P0_ani = dict([(a,P_ni.copy()) for a,P_ni in kpt.P_ani.items()])
        ppo.apply_inverse(self.psit_nG, work_nG, self.wfs, kpt, calculate_P_ani=False)

        res_nG = np.empty_like(self.psit_nG)
        ppo.apply(work_nG, res_nG, self.wfs, kpt, calculate_P_ani=True)
        del work_nG

        P_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(res_nG, P_ani, kpt.q)

        abserr = np.empty(1, dtype=float)
        for n in range(self.nbands):
            band_rank, myn = self.bd.who_has(n)
            if band_rank == self.bd.comm.rank:
                abserr[:] = np.abs(self.psit_nG[myn] - res_nG[myn]).max()
                self.gd.comm.max(abserr)
            self.bd.comm.broadcast(abserr, band_rank)
            self.assertAlmostEqual(abserr.item(), 0, 10)

        self.check_and_plot(P_ani, P0_ani, 10, 'overlap,inverse,before')
예제 #5
0
class UTGaussianWavefunctionSetup(UTDomainParallelSetup):
    __doc__ = UTDomainParallelSetup.__doc__ + """
    The pseudo wavefunctions are moving gaussians centered around each atom."""

    allocated = False
    dtype = None

    # Default arguments for scaled Gaussian wave
    _sigma0 = 2.0 #0.75
    _k0_c = 2*np.pi*np.array([1/5., 1/3., 0.])

    def setUp(self):
        UTDomainParallelSetup.setUp(self)

        for virtvar in ['dtype']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Create randomized atoms
        self.atoms = create_random_atoms(self.gd, 5) # also tested: 10xNH3/BDA

        # XXX DEBUG START
        if False:
            from ase import view
            view(self.atoms*(1+2*self.gd.pbc_c))
        # XXX DEBUG END

        # Do we agree on the atomic positions?
        pos_ac = self.atoms.get_positions()
        pos_rac = np.empty((world.size,)+pos_ac.shape, pos_ac.dtype)
        world.all_gather(pos_ac, pos_rac)
        if (pos_rac-pos_rac[world.rank,...][np.newaxis,...]).any():
            raise RuntimeError('Discrepancy in atomic positions detected.')

        # Create setups for atoms
        self.Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(self.Z_a, p.setups, p.basis,
                             p.lmax, xc)

        # K-point descriptor
        bzk_kc = np.array([[0, 0, 0]], dtype=float)
        self.kd = KPointDescriptor(bzk_kc, 1)
        self.kd.set_symmetry(self.atoms, self.setups, usesymm=True)
        self.kd.set_communicator(self.kpt_comm)
        
        # Create gamma-point dummy wavefunctions
        self.wfs = FDWFS(self.gd, self.bd, self.kd, self.setups,
                         self.dtype)
        
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        self.wfs.set_positions(spos_ac)
        self.pt = self.wfs.pt # XXX shortcut

        ## Also create pseudo partial waveves
        #from gpaw.lfc import LFC
        #self.phit = LFC(self.gd, [setup.phit_j for setup in self.setups], \
        #                self.kpt_comm, dtype=self.dtype)
        #self.phit.set_positions(spos_ac)

        self.r_cG = None
        self.buf_G = None
        self.psit_nG = None

        self.allocate()

    def tearDown(self):
        UTDomainParallelSetup.tearDown(self)
        del self.r_cG, self.buf_G, self.psit_nG
        del self.pt, self.setups, self.atoms
        self.allocated = False

    def allocate(self):
        self.r_cG = self.gd.get_grid_point_coordinates()
        cell_cv = self.atoms.get_cell() / Bohr
        assert np.abs(cell_cv-self.gd.cell_cv).max() < 1e-9
        center_c = 0.5*cell_cv.diagonal()

        self.buf_G = self.gd.empty(dtype=self.dtype)
        self.psit_nG = self.gd.empty(self.bd.mynbands, dtype=self.dtype)

        for myn,psit_G in enumerate(self.psit_nG):
            n = self.bd.global_index(myn)
            psit_G[:] = self.get_scaled_gaussian_wave(center_c, scale=10+2j*n)

            k_c = 2*np.pi*np.array([1/2., -1/7., 0.])
            for pos_c in self.atoms.get_positions() / Bohr:
                sigma = self._sigma0/(1+np.sum(pos_c**2))**0.5
                psit_G += self.get_scaled_gaussian_wave(pos_c, sigma, k_c, n+5j)

        self.allocated = True

    def get_scaled_gaussian_wave(self, pos_c, sigma=None, k_c=None, scale=None):
        if sigma is None:
            sigma = self._sigma0

        if k_c is None:
            k_c = self._k0_c

        if scale is None:
            A = None
        else:
            # 4*pi*int(exp(-r^2/(2*w^2))^2*r^2, r=0...infinity)= w^3*pi^(3/2)
            # = scale/A^2 -> A = scale*(sqrt(Pi)*w)^(-3/2) hence int -> scale^2
            A = scale/(sigma*(np.pi)**0.5)**1.5

        return gaussian_wave(self.r_cG, pos_c, sigma, k_c, A, self.dtype, self.buf_G)

    def check_and_plot(self, P_ani, P0_ani, digits, keywords=''):
        # Collapse into viewable matrices
        P_In = self.wfs.collect_projections(P_ani)
        P0_In = self.wfs.collect_projections(P0_ani)

        # Construct fingerprint of input matrices for comparison
        fingerprint = np.array([md5_array(P_In, numeric=True),
                                md5_array(P0_In, numeric=True)])

        # Compare fingerprints across all processors
        fingerprints = np.empty((world.size, 2), np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        # If assertion fails, catch temporarily while plotting, then re-raise
        try:
            self.assertAlmostEqual(np.abs(P_In-P0_In).max(), 0, digits)
        except AssertionError:
            if world.rank == 0 and mpl is not None:
                from matplotlib.figure import Figure
                fig = Figure()
                ax = fig.add_axes([0.0, 0.1, 1.0, 0.83])
                ax.set_title(self.__class__.__name__)
                im = ax.imshow(np.abs(P_In-P0_In), interpolation='nearest')
                fig.colorbar(im)
                fig.text(0.5, 0.05, 'Keywords: ' + keywords, \
                    horizontalalignment='center', verticalalignment='top')

                from matplotlib.backends.backend_agg import FigureCanvasAgg
                img = 'ut_invops_%s_%s.png' % (self.__class__.__name__, \
                    '_'.join(keywords.split(',')))
                FigureCanvasAgg(fig).print_figure(img.lower(), dpi=90)
            raise

    # =================================

    def test_projection_linearity(self):
        kpt = self.wfs.kpt_u[0]
        Q_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(self.psit_nG, Q_ani, q=kpt.q)

        for Q_ni in Q_ani.values():
            self.assertTrue(Q_ni.dtype == self.dtype)

        P0_ani = dict([(a,Q_ni.copy()) for a,Q_ni in Q_ani.items()])
        self.pt.add(self.psit_nG, Q_ani, q=kpt.q)
        self.pt.integrate(self.psit_nG, P0_ani, q=kpt.q)

        #rank_a = self.gd.get_ranks_from_positions(spos_ac)
        #my_atom_indices = np.argwhere(self.gd.comm.rank == rank_a).ravel()

        #                                                ~ a   ~ a'
        #TODO XXX should fix PairOverlap-ish stuff for < p  | phi  > overlaps
        #                                                 i      i'

        #spos_ac = self.pt.spos_ac # NewLFC doesn't have this
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        gpo = GridPairOverlap(self.gd, self.setups)
        B_aa = gpo.calculate_overlaps(spos_ac, self.pt)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        P_ani = dict([(a,Q_ni.copy()) for a,Q_ni in Q_ani.items()])
        for a1 in range(len(self.atoms)):
            if a1 in P_ani.keys():
                P_ni = P_ani[a1]
            else:
                # Atom a1 is not in domain so allocate a temporary buffer
                P_ni = np.zeros((self.bd.mynbands,self.setups[a1].ni,),
                                 dtype=self.dtype)
            for a2, Q_ni in Q_ani.items():
                # B_aa are the projector overlaps across atomic pairs
                B_ii = gpo.extract_atomic_pair_matrix(B_aa, a1, a2)
                P_ni += np.dot(Q_ni, B_ii.T) #sum over a2 and last i in B_ii
            self.gd.comm.sum(P_ni)

        self.check_and_plot(P_ani, P0_ani, 8, 'projection,linearity')

    def test_extrapolate_overlap(self):
        kpt = self.wfs.kpt_u[0]
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        P_ani = ppo.apply(self.psit_nG, work_nG, self.wfs, kpt, \
            calculate_P_ani=True, extrapolate_P_ani=True)

        P0_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(work_nG, P0_ani, kpt.q)
        del work_nG

        self.check_and_plot(P_ani, P0_ani, 11, 'extrapolate,overlap')

    def test_extrapolate_inverse(self):
        kpt = self.wfs.kpt_u[0]
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        P_ani = ppo.apply_inverse(self.psit_nG, work_nG, self.wfs, kpt, \
            calculate_P_ani=True, extrapolate_P_ani=True)

        P0_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(work_nG, P0_ani, kpt.q)
        del work_nG

        self.check_and_plot(P_ani, P0_ani, 11, 'extrapolate,inverse')

    def test_overlap_inverse_after(self):
        kpt = self.wfs.kpt_u[0]
        kpt.P_ani = self.pt.dict(self.bd.mynbands)
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        self.pt.integrate(self.psit_nG, kpt.P_ani, kpt.q)
        P0_ani = dict([(a,P_ni.copy()) for a,P_ni in kpt.P_ani.items()])
        ppo.apply(self.psit_nG, work_nG, self.wfs, kpt, calculate_P_ani=False)

        res_nG = np.empty_like(self.psit_nG)
        ppo.apply_inverse(work_nG, res_nG, self.wfs, kpt, calculate_P_ani=True)
        del work_nG

        P_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(res_nG, P_ani, kpt.q)

        abserr = np.empty(1, dtype=float)
        for n in range(self.nbands):
            band_rank, myn = self.bd.who_has(n)
            if band_rank == self.bd.comm.rank:
                abserr[:] = np.abs(self.psit_nG[myn] - res_nG[myn]).max()
                self.gd.comm.max(abserr)
            self.bd.comm.broadcast(abserr, band_rank)
            self.assertAlmostEqual(abserr.item(), 0, 10)

        self.check_and_plot(P_ani, P0_ani, 10, 'overlap,inverse,after')

    def test_overlap_inverse_before(self):
        kpt = self.wfs.kpt_u[0]
        kpt.P_ani = self.pt.dict(self.bd.mynbands)
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        self.pt.integrate(self.psit_nG, kpt.P_ani, kpt.q)
        P0_ani = dict([(a,P_ni.copy()) for a,P_ni in kpt.P_ani.items()])
        ppo.apply_inverse(self.psit_nG, work_nG, self.wfs, kpt, calculate_P_ani=False)

        res_nG = np.empty_like(self.psit_nG)
        ppo.apply(work_nG, res_nG, self.wfs, kpt, calculate_P_ani=True)
        del work_nG

        P_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(res_nG, P_ani, kpt.q)

        abserr = np.empty(1, dtype=float)
        for n in range(self.nbands):
            band_rank, myn = self.bd.who_has(n)
            if band_rank == self.bd.comm.rank:
                abserr[:] = np.abs(self.psit_nG[myn] - res_nG[myn]).max()
                self.gd.comm.max(abserr)
            self.bd.comm.broadcast(abserr, band_rank)
            self.assertAlmostEqual(abserr.item(), 0, 10)

        self.check_and_plot(P_ani, P0_ani, 10, 'overlap,inverse,before')
예제 #6
0
class PhononCalculator:
    """This class defines the interface for phonon calculations."""
    def __init__(self,
                 calc,
                 gamma=True,
                 symmetry=False,
                 e_ph=False,
                 communicator=serial_comm):
        """Inititialize class with a list of atoms.

        The atoms object must contain a converged ground-state calculation.

        The set of q-vectors in which the dynamical matrix will be calculated
        is determined from the ``symmetry`` kwarg. For now, only time-reversal
        symmetry is used to generate the irrecducible BZ.

        Add a little note on parallelization strategy here.

        Parameters
        ----------
        calc: str or Calculator
            Calculator containing a ground-state calculation.
        gamma: bool
            Gamma-point calculation with respect to the q-vector of the
            dynamical matrix. When ``False``, the Monkhorst-Pack grid from the
            ground-state calculation is used.
        symmetry: bool
            Use symmetries to reduce the q-vectors of the dynamcial matrix
            (None, False or True). The different options are equivalent to the
            old style options in a ground-state calculation (see usesymm).
        e_ph: bool
            Save the derivative of the effective potential.
        communicator: Communicator
            Communicator for parallelization over k-points and real-space
            domain.
        """

        # XXX
        assert symmetry in [None, False], "Spatial symmetries not allowed yet"

        if isinstance(calc, str):
            self.calc = GPAW(calc, communicator=serial_comm, txt=None)
        else:
            self.calc = calc

        cell_cv = self.calc.atoms.get_cell()
        setups = self.calc.wfs.setups
        # XXX - no clue how to get magmom - ignore it for the moment
        # m_av = magmom_av.round(decimals=3)  # round off
        # id_a = zip(setups.id_a, *m_av.T)
        id_a = setups.id_a

        if symmetry is None:
            self.symmetry = Symmetry(id_a,
                                     cell_cv,
                                     point_group=False,
                                     time_reversal=False)
        else:
            self.symmetry = Symmetry(id_a,
                                     cell_cv,
                                     point_group=False,
                                     time_reversal=True)

        # Make sure localized functions are initialized
        self.calc.set_positions()
        # Note that this under some circumstances (e.g. when called twice)
        # allocates a new array for the P_ani coefficients !!

        # Store useful objects
        self.atoms = self.calc.get_atoms()
        # Get rid of ``calc`` attribute
        self.atoms.calc = None

        # Boundary conditions
        pbc_c = self.calc.atoms.get_pbc()

        if np.all(pbc_c == False):
            self.gamma = True
            self.dtype = float
            kpts = None
            # Multigrid Poisson solver
            poisson_solver = PoissonSolver()
        else:
            if gamma:
                self.gamma = True
                self.dtype = float
                kpts = None
            else:
                self.gamma = False
                self.dtype = complex
                # Get k-points from ground-state calculation
                kpts = self.calc.input_parameters.kpts

            # FFT Poisson solver
            poisson_solver = FFTPoissonSolver(dtype=self.dtype)

        # K-point descriptor for the q-vectors of the dynamical matrix
        # Note, no explicit parallelization here.
        self.kd = KPointDescriptor(kpts, 1)
        self.kd.set_symmetry(self.atoms, self.symmetry)
        self.kd.set_communicator(serial_comm)

        # Number of occupied bands
        nvalence = self.calc.wfs.nvalence
        nbands = nvalence // 2 + nvalence % 2
        assert nbands <= self.calc.wfs.bd.nbands

        # Extract other useful objects
        # Ground-state k-point descriptor - used for the k-points in the
        # ResponseCalculator
        # XXX replace communicators when ready to parallelize
        kd_gs = self.calc.wfs.kd
        gd = self.calc.density.gd
        kpt_u = self.calc.wfs.kpt_u
        setups = self.calc.wfs.setups
        dtype_gs = self.calc.wfs.dtype

        # WaveFunctions
        wfs = WaveFunctions(nbands, kpt_u, setups, kd_gs, gd, dtype=dtype_gs)

        # Linear response calculator
        self.response_calc = ResponseCalculator(self.calc,
                                                wfs,
                                                dtype=self.dtype)

        # Phonon perturbation
        self.perturbation = PhononPerturbation(self.calc,
                                               self.kd,
                                               poisson_solver,
                                               dtype=self.dtype)

        # Dynamical matrix
        self.dyn = DynamicalMatrix(self.atoms, self.kd, dtype=self.dtype)

        # Electron-phonon couplings
        if e_ph:
            self.e_ph = ElectronPhononCoupling(self.atoms,
                                               gd,
                                               self.kd,
                                               dtype=self.dtype)
        else:
            self.e_ph = None

        # Initialization flag
        self.initialized = False

        # Parallel communicator for parallelization over kpts and domain
        self.comm = communicator

    def initialize(self):
        """Initialize response calculator and perturbation."""

        # Get scaled atomic positions
        spos_ac = self.atoms.get_scaled_positions()

        self.perturbation.initialize(spos_ac)
        self.response_calc.initialize(spos_ac)

        self.initialized = True

    def __getstate__(self):
        """Method used when pickling.

        Bound method attributes cannot be pickled and must therefore be deleted
        before an instance is dumped to file.

        """

        # Get state of object and take care of troublesome attributes
        state = dict(self.__dict__)
        state['kd'].__dict__['comm'] = serial_comm
        state.pop('calc')
        state.pop('perturbation')
        state.pop('response_calc')

        return state

    def run(self, qpts_q=None, clean=False, name=None, path=None):
        """Run calculation for atomic displacements and update matrix.

        Parameters
        ----------
        qpts: List
            List of q-points indices for which the dynamical matrix will be
            calculated (only temporary).

        """

        if not self.initialized:
            self.initialize()

        if self.gamma:
            qpts_q = [0]
        elif qpts_q is None:
            qpts_q = range(self.kd.nibzkpts)
        else:
            assert isinstance(qpts_q, list)

        # Update name and path attributes
        self.set_name_and_path(name=name, path=path)
        # Get string template for filenames
        filename_str = self.get_filename_string()

        # Delay the ranks belonging to the same k-point/domain decomposition
        # equally
        time.sleep(rank // self.comm.size)

        # XXX Make a single ground_state_contributions member function
        # Ground-state contributions to the force constants
        self.dyn.density_ground_state(self.calc)
        # self.dyn.wfs_ground_state(self.calc, self.response_calc)

        # Calculate linear response wrt q-vectors and displacements of atoms
        for q in qpts_q:

            if not self.gamma:
                self.perturbation.set_q(q)

            # First-order contributions to the force constants
            for a in self.dyn.indices:
                for v in [0, 1, 2]:

                    # Check if the calculation has already been done
                    filename = filename_str % (q, a, v)
                    # Wait for all sub-ranks to enter
                    self.comm.barrier()

                    if os.path.isfile(os.path.join(self.path, filename)):
                        continue

                    if self.comm.rank == 0:
                        fd = open(os.path.join(self.path, filename), 'w')

                    # Wait for all sub-ranks here
                    self.comm.barrier()

                    components = ['x', 'y', 'z']
                    symbols = self.atoms.get_chemical_symbols()
                    print("q-vector index: %i" % q)
                    print("Atom index: %i" % a)
                    print("Atomic symbol: %s" % symbols[a])
                    print("Component: %s" % components[v])

                    # Set atom and cartesian component of perturbation
                    self.perturbation.set_av(a, v)
                    # Calculate linear response
                    self.response_calc(self.perturbation)

                    # Calculate row of the matrix of force constants
                    self.dyn.calculate_row(self.perturbation,
                                           self.response_calc)

                    # Write force constants to file
                    if self.comm.rank == 0:
                        self.dyn.write(fd, q, a, v)
                        fd.close()

                    # Store effective potential derivative
                    if self.e_ph is not None:
                        v1_eff_G = self.perturbation.v1_G + \
                            self.response_calc.vHXC1_G
                        self.e_ph.v1_eff_qavG.append(v1_eff_G)

                    # Wait for the file-writing rank here
                    self.comm.barrier()

        # XXX
        # Check that all files are valid and collect in a single file
        # Remove the files
        if clean:
            self.clean()

    def get_atoms(self):
        """Return atoms."""

        return self.atoms

    def get_dynamical_matrix(self):
        """Return reference to ``dyn`` attribute."""

        return self.dyn

    def get_filename_string(self):
        """Return string template for force constant filenames."""

        name_str = (self.name + '.' +
                    'q_%%0%ii_' % len(str(self.kd.nibzkpts)) +
                    'a_%%0%ii_' % len(str(len(self.atoms))) + 'v_%i' + '.pckl')

        return name_str

    def set_atoms(self, atoms):
        """Set atoms to be included in the calculation.

        Parameters
        ----------
        atoms: list
            Can be either a list of strings, ints or ...
        """

        assert isinstance(atoms, list)

        if isinstance(atoms[0], str):
            assert np.all([isinstance(atom, str) for atom in atoms])
            sym_a = self.atoms.get_chemical_symbols()
            # List for atomic indices
            indices = []
            for type in atoms:
                indices.extend(
                    [a for a, atom in enumerate(sym_a) if atom == type])
        else:
            assert np.all([isinstance(atom, int) for atom in atoms])
            indices = atoms

        self.dyn.set_indices(indices)

    def set_name_and_path(self, name=None, path=None):
        """Set name and path of the force constant files.

        name: str
            Base name for the files which the elements of the matrix of force
            constants will be written to.
        path: str
            Path specifying the directory where the files will be dumped.
        """

        if name is None:
            self.name = 'phonon.' + self.atoms.get_chemical_formula()
        else:
            self.name = name
        # self.name += '.nibzkpts_%i' % self.kd.nibzkpts

        if path is None:
            self.path = '.'
        else:
            self.path = path

        # Set corresponding attributes in the ``dyn`` attribute
        filename_str = self.get_filename_string()
        self.dyn.set_name_and_path(filename_str, self.path)

    def clean(self):
        """Delete generated files."""

        filename_str = self.get_filename_string()

        for q in range(self.kd.nibzkpts):
            for a in range(len(self.atoms)):
                for v in [0, 1, 2]:
                    filename = filename_str % (q, a, v)
                    if os.path.isfile(os.path.join(self.path, filename)):
                        os.remove(filename)

    def band_structure(self, path_kc, modes=False, acoustic=True):
        """Calculate phonon dispersion along a path in the Brillouin zone.

        The dynamical matrix at arbitrary q-vectors is obtained by Fourier
        transforming the real-space matrix. In case of negative eigenvalues
        (squared frequency), the corresponding negative frequency is returned.

        Parameters
        ----------
        path_kc: ndarray
            List of k-point coordinates (in units of the reciprocal lattice
            vectors) specifying the path in the Brillouin zone for which the
            dynamical matrix will be calculated.
        modes: bool
            Returns both frequencies and modes (mass scaled) when True.
        acoustic: bool
            Restore the acoustic sum-rule in the calculated force constants.
        """

        for k_c in path_kc:
            assert np.all(np.asarray(k_c) <= 1.0), \
                "Scaled coordinates must be given"

        # Assemble the dynanical matrix from calculated force constants
        self.dyn.assemble(acoustic=acoustic)
        # Get the dynamical matrix in real-space
        DR_lmn, R_clmn = self.dyn.real_space()

        # Reshape for the evaluation of the fourier sums
        shape = DR_lmn.shape
        DR_m = DR_lmn.reshape((-1, ) + shape[-2:])
        R_cm = R_clmn.reshape((3, -1))

        # Lists for frequencies and modes along path
        omega_kn = []
        u_kn = []
        # Number of atoms included
        N = len(self.dyn.get_indices())

        # Mass prefactor for the normal modes
        m_inv_av = self.dyn.get_mass_array()

        for q_c in path_kc:

            # Evaluate fourier transform
            phase_m = np.exp(-2.j * pi * np.dot(q_c, R_cm))
            # Dynamical matrix in unit of Ha / Bohr**2 / amu
            D_q = np.sum(phase_m[:, np.newaxis, np.newaxis] * DR_m, axis=0)

            if modes:
                omega2_n, u_avn = la.eigh(D_q, UPLO='L')
                # Sort eigenmodes according to eigenvalues (see below) and
                # multiply with mass prefactor
                u_nav = u_avn[:, omega2_n.argsort()].T.copy() * m_inv_av
                # Multiply with mass prefactor
                u_kn.append(u_nav.reshape((3 * N, -1, 3)))
            else:
                omega2_n = la.eigvalsh(D_q, UPLO='L')

            # Sort eigenvalues in increasing order
            omega2_n.sort()
            # Use dtype=complex to handle negative eigenvalues
            omega_n = np.sqrt(omega2_n.astype(complex))

            # Take care of imaginary frequencies
            if not np.all(omega2_n >= 0.):
                indices = np.where(omega2_n < 0)[0]
                print(("WARNING, %i imaginary frequencies at "
                       "q = (% 5.2f, % 5.2f, % 5.2f) ; (omega_q =% 5.3e*i)" %
                       (len(indices), q_c[0], q_c[1], q_c[2],
                        omega_n[indices][0].imag)))

                omega_n[indices] = -1 * np.sqrt(np.abs(omega2_n[indices].real))

            omega_kn.append(omega_n.real)

        # Conversion factor from sqrt(Ha / Bohr**2 / amu) -> eV
        s = units.Hartree**0.5 * units._hbar * 1.e10 / \
            (units._e * units._amu)**(0.5) / units.Bohr
        # Convert to eV and Ang
        omega_kn = s * np.asarray(omega_kn)
        if modes:
            u_kn = np.asarray(u_kn) * units.Bohr
            return omega_kn, u_kn

        return omega_kn

    def write_modes(self,
                    q_c,
                    branches=0,
                    kT=units.kB * 300,
                    repeat=(1, 1, 1),
                    nimages=30,
                    acoustic=True):
        """Write mode to trajectory file.

        The classical equipartioning theorem states that each normal mode has
        an average energy::

            <E> = 1/2 * k_B * T = 1/2 * omega^2 * Q^2

                =>

              Q = sqrt(k_B*T) / omega

        at temperature T. Here, Q denotes the normal coordinate of the mode.

        Parameters
        ----------
        q_c: ndarray
            q-vector of the modes.
        branches: int or list
            Branch index of calculated modes.
        kT: float
            Temperature in units of eV. Determines the amplitude of the atomic
            displacements in the modes.
        repeat: tuple
            Repeat atoms (l, m, n) times in the directions of the lattice
            vectors. Displacements of atoms in repeated cells carry a Bloch
            phase factor given by the q-vector and the cell lattice vector R_m.
        nimages: int
            Number of images in an oscillation.

        """

        if isinstance(branches, int):
            branch_n = [branches]
        else:
            branch_n = list(branches)

        # Calculate modes
        omega_n, u_n = self.band_structure([q_c],
                                           modes=True,
                                           acoustic=acoustic)

        # Repeat atoms
        atoms = self.atoms * repeat
        pos_mav = atoms.positions.copy()
        # Total number of unit cells
        M = np.prod(repeat)

        # Corresponding lattice vectors R_m
        R_cm = np.indices(repeat[::-1]).reshape(3, -1)[::-1]
        # Bloch phase
        phase_m = np.exp(2.j * pi * np.dot(q_c, R_cm))
        phase_ma = phase_m.repeat(len(self.atoms))

        for n in branch_n:
            omega = omega_n[0, n]
            u_av = u_n[0, n]  # .reshape((-1, 3))
            # Mean displacement at high T ?
            u_av *= sqrt(kT / abs(omega))

            mode_av = np.zeros((len(self.atoms), 3), dtype=self.dtype)
            indices = self.dyn.get_indices()
            mode_av[indices] = u_av
            mode_mav = (np.vstack([mode_av] * M) *
                        phase_ma[:, np.newaxis]).real

            traj = Trajectory('%s.mode.%d.traj' % (self.name, n), 'w')

            for x in np.linspace(0, 2 * pi, nimages, endpoint=False):
                # XXX Is it correct to take out the sine component here ?
                atoms.set_positions(pos_mav + sin(x) * mode_mav)
                traj.write(atoms)

            traj.close()
예제 #7
0
    def create_wave_functions(self, mode, realspace, nspins, nbands, nao,
                              nvalence, setups, magmom_a, cell_cv, pbc_c):
        par = self.parameters

        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins)

        self.timer.start('Set symmetry')
        kd.set_symmetry(self.atoms, self.symmetry, comm=self.world)
        self.timer.stop('Set symmetry')

        self.log(kd)

        parallelization = mpi.Parallelization(self.world, nspins * kd.nibzkpts)

        parsize_kpt = self.parallel['kpt']
        parsize_domain = self.parallel['domain']
        parsize_bands = self.parallel['band']

        ndomains = None
        if parsize_domain is not None:
            ndomains = np.prod(parsize_domain)
        if mode.name == 'pw':
            if ndomains is not None and ndomains > 1:
                raise ValueError('Planewave mode does not support '
                                 'domain decomposition.')
            ndomains = 1
        parallelization.set(kpt=parsize_kpt,
                            domain=ndomains,
                            band=parsize_bands)
        comms = parallelization.build_communicators()
        domain_comm = comms['d']
        kpt_comm = comms['k']
        band_comm = comms['b']
        kptband_comm = comms['D']
        domainband_comm = comms['K']

        self.comms = comms

        if par.gpts is not None:
            if par.h is not None:
                raise ValueError("""You can't use both "gpts" and "h"!""")
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace,
                                            kd.symmetry)

        self.symmetry.check_grid(N_c)

        kd.set_communicator(kpt_comm)

        parstride_bands = self.parallel['stridebands']

        # Unfortunately we need to remember that we adjusted the
        # number of bands so we can print a warning if it differs
        # from the number specified by the user.  (The number can
        # be inferred from the input parameters, but it's tricky
        # because we allow negative numbers)
        self.nbands_parallelization_adjustment = -nbands % band_comm.size
        nbands += self.nbands_parallelization_adjustment

        bd = BandDescriptor(nbands, band_comm, parstride_bands)

        # Construct grid descriptor for coarse grids for wave functions:
        gd = self.create_grid_descriptor(N_c, cell_cv, pbc_c, domain_comm,
                                         parsize_domain)

        if hasattr(self, 'time') or mode.force_complex_dtype:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        wfs_kwargs = dict(gd=gd,
                          nvalence=nvalence,
                          setups=setups,
                          bd=bd,
                          dtype=dtype,
                          world=self.world,
                          kd=kd,
                          kptband_comm=kptband_comm,
                          timer=self.timer)

        if self.parallel['sl_auto']:
            # Choose scalapack parallelization automatically

            for key, val in self.parallel.items():
                if (key.startswith('sl_') and key != 'sl_auto'
                        and val is not None):
                    raise ValueError("Cannot use 'sl_auto' together "
                                     "with '%s'" % key)
            max_scalapack_cpus = bd.comm.size * gd.comm.size
            nprow = max_scalapack_cpus
            npcol = 1

            # Get a sort of reasonable number of columns/rows
            while npcol < nprow and nprow % 2 == 0:
                npcol *= 2
                nprow //= 2
            assert npcol * nprow == max_scalapack_cpus

            # ScaLAPACK creates trouble if there aren't at least a few
            # whole blocks; choose block size so there will always be
            # several blocks.  This will crash for small test systems,
            # but so will ScaLAPACK in any case
            blocksize = min(-(-nbands // 4), 64)
            sl_default = (nprow, npcol, blocksize)
        else:
            sl_default = self.parallel['sl_default']

        if mode.name == 'lcao':
            # Layouts used for general diagonalizer
            sl_lcao = self.parallel['sl_lcao']
            if sl_lcao is None:
                sl_lcao = sl_default
            lcaoksl = get_KohnSham_layouts(sl_lcao,
                                           'lcao',
                                           gd,
                                           bd,
                                           domainband_comm,
                                           dtype,
                                           nao=nao,
                                           timer=self.timer)

            self.wfs = mode(lcaoksl, **wfs_kwargs)

        elif mode.name == 'fd' or mode.name == 'pw':
            # buffer_size keyword only relevant for fdpw
            buffer_size = self.parallel['buffer_size']
            # Layouts used for diagonalizer
            sl_diagonalize = self.parallel['sl_diagonalize']
            if sl_diagonalize is None:
                sl_diagonalize = sl_default
            diagksl = get_KohnSham_layouts(
                sl_diagonalize,
                'fd',  # XXX
                # choice of key 'fd' not so nice
                gd,
                bd,
                domainband_comm,
                dtype,
                buffer_size=buffer_size,
                timer=self.timer)

            # Layouts used for orthonormalizer
            sl_inverse_cholesky = self.parallel['sl_inverse_cholesky']
            if sl_inverse_cholesky is None:
                sl_inverse_cholesky = sl_default
            if sl_inverse_cholesky != sl_diagonalize:
                message = 'sl_inverse_cholesky != sl_diagonalize ' \
                    'is not implemented.'
                raise NotImplementedError(message)
            orthoksl = get_KohnSham_layouts(sl_inverse_cholesky,
                                            'fd',
                                            gd,
                                            bd,
                                            domainband_comm,
                                            dtype,
                                            buffer_size=buffer_size,
                                            timer=self.timer)

            # Use (at most) all available LCAO for initialization
            lcaonbands = min(nbands, nao // band_comm.size * band_comm.size)

            try:
                lcaobd = BandDescriptor(lcaonbands, band_comm, parstride_bands)
            except RuntimeError:
                initksl = None
            else:
                # Layouts used for general diagonalizer
                # (LCAO initialization)
                sl_lcao = self.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                initksl = get_KohnSham_layouts(sl_lcao,
                                               'lcao',
                                               gd,
                                               lcaobd,
                                               domainband_comm,
                                               dtype,
                                               nao=nao,
                                               timer=self.timer)

            self.wfs = mode(diagksl, orthoksl, initksl, **wfs_kwargs)
        else:
            self.wfs = mode(self, **wfs_kwargs)

        self.log(self.wfs, '\n')
예제 #8
0
파일: paw.py 프로젝트: qsnake/gpaw
    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        self.set_text(par.txt, par.verbose)

        natoms = len(atoms)

        pos_av = atoms.get_positions() / Bohr
        cell_cv = atoms.get_cell()
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_a = atoms.get_initial_magnetic_moments()

        magnetic = magmom_a.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True

        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a '
                             'spin-paired calculation!')

        nspins = 1 + int(spinpol)
        
        if isinstance(par.xc, str):
            xc = XC(par.xc)
        else:
            xc = par.xc

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc, world)

        # K-point descriptor
        kd = KPointDescriptor(par.kpts, nspins)

        width = par.width
        if width is None:
            if kd.gamma:
                width = 0.0
            else:
                width = 0.1  # eV
        else:
            assert par.occupations is None
      
        if par.gpts is not None and par.h is None:
            N_c = np.array(par.gpts)
        else:
            if par.h is None:
                self.text('Using default value for grid spacing.')
                h = 0.2 
            else:
                h = par.h
            N_c = h2gpts(h, cell_cv)

        cell_cv /= Bohr


        if hasattr(self, 'time') or par.dtype==complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        kd.set_symmetry(atoms, setups, par.usesymm, N_c)

        nao = setups.nao
        nvalence = setups.nvalence - par.charge

        nbands = par.nbands
        if nbands is None:
            nbands = nao
        elif nbands > nao and par.mode == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: ' +
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        M = magmom_a.sum()
        if par.hund:
            f_si = setups[0].calculate_initial_occupation_numbers(
                magmom=0, hund=True, charge=par.charge, nspins=nspins)
            Mh = f_si[0].sum() - f_si[1].sum()
            if magnetic and M != Mh:
                raise RuntimeError('You specified a magmom that does not'
                                   'agree with hunds rule!')
            else:
                M = Mh

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands:
            raise ValueError('Too few bands!  Electrons: %d, bands: %d'
                             % (nvalence, nbands))

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                self.occupations = occupations.FermiDirac(width, par.fixmom)
            else:
                self.occupations = par.occupations

        self.occupations.magmom = M

        cc = par.convergence

        if par.mode == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            self.scf = SCFLoop(
                cc['eigenstates'] * nvalence,
                cc['energy'] / Hartree * max(nvalence, 1),
                cc['density'] * nvalence,
                par.maxiter, par.fixdensity,
                niter_fixdensity)

        parsize, parsize_bands = par.parallel['domain'], par.parallel['band']

        if parsize_bands is None:
            parsize_bands = 1

        # TODO delete/restructure so all checks are in BandDescriptor
        if nbands % parsize_bands != 0:
            raise RuntimeError('Cannot distribute %d bands to %d processors' %
                               (nbands, parsize_bands))

        if not self.wfs:
            if parsize == 'domain only': #XXX this was silly!
                parsize = world.size

            domain_comm, kpt_comm, band_comm = mpi.distribute_cpus(parsize,
                parsize_bands, nspins, kd.nibzkpts, world, par.idiotproof)

            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None and
                self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError("I'm confused - please specify parsize."
                                       )
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c,
                                            domain_comm, parsize)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd, self.timer)

            if par.mode == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = par.parallel['sl_default']
                lcaoksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, bd, dtype,
                                               nao=nao, timer=self.timer)

                self.wfs = LCAOWaveFunctions(lcaoksl, *args)
            elif par.mode == 'fd' or isinstance(par.mode, PW):
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = par.parallel['sl_default']
                diagksl = get_KohnSham_layouts(sl_diagonalize, 'fd',
                                               gd, bd, dtype,
                                               buffer_size=buffer_size,
                                               timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = par.parallel['sl_default']
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky, 'fd',
                                                gd, bd, dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)
                lcaobd = BandDescriptor(lcaonbands, band_comm, parstride_bands)
                assert nbands <= nao or bd.comm.size == 1
                assert lcaobd.mynbands == min(bd.mynbands, nao) #XXX

                # Layouts used for general diagonalizer (LCAO initialization)
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = par.parallel['sl_default']
                initksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, lcaobd, dtype, 
                                               nao=nao,
                                               timer=self.timer)

                if par.mode == 'fd':
                    self.wfs = FDWaveFunctions(par.stencils[0], diagksl,
                                               orthoksl, initksl, *args)
                else:
                    # Planewave basis:
                    self.wfs = par.mode(diagksl, orthoksl, initksl,
                                        gd, nvalence, setups, bd,
                                        world, kd, self.timer)
            else:
                self.wfs = par.mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, par.mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd
            self.density = Density(gd, finegd, nspins,
                                   par.charge + setups.core_charge)

        self.density.initialize(setups, par.stencils[1], self.timer,
                                magmom_a, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            self.hamiltonian = Hamiltonian(gd, finegd, nspins,
                                           setups, par.stencils[1], self.timer,
                                           xc, par.poissonsolver,
                                           par.external)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        if dry_run:
            self.dry_run()

        self.initialized = True
예제 #9
0
class UTKPointParallelSetup(TestCase):
    """
    Setup a simple kpoint parallel calculation."""

    # Number of bands
    nbands = 1

    # Spin-polarized
    nspins = 1

    # Mean spacing and number of grid points per axis (G x G x G)
    h = 0.25 / Bohr
    G = 48

    ## Symmetry-reduction of k-points TODO
    #symmetry = p.usesymm #XXX 'None' is an allowed value!!!

    # Whether spin/k-points are equally distributed (determines nibzkpts)
    equipartition = None
    nibzkpts = None

    gamma = False # can't be gamma point when nibzkpts > 1 ...
    dtype = complex #XXX virtual so far..

    # =================================

    def setUp(self):
        for virtvar in ['equipartition']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        kpts = {'even' : (12,1,2), \
                'prime': (23,1,1)}[self.equipartition]

        #primes = [i for i in xrange(50,1,-1) if ~np.any(i%np.arange(2,i)==0)]
        bzk_kc = kpts2ndarray(kpts)
        assert p.usesymm == None
        self.nibzkpts = len(bzk_kc)

        #parsize_domain, parsize_bands = create_parsize_minbands(self.nbands, world.size)
        parsize_domain, parsize_bands = 1, 1 #XXX
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize_domain,
            parsize_bands, self.nspins, self.nibzkpts)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm, p.parallel['stridebands'])

        # Set up grid descriptor:
        res, ngpts = shapeopt(300, self.G**3, 3, 0.2)
        cell_c = self.h * np.array(ngpts)
        pbc_c = (True, False, True)
        self.gd = GridDescriptor(ngpts, cell_c, pbc_c, domain_comm, parsize_domain)

        # Create randomized gas-like atomic configuration
        self.atoms = create_random_atoms(self.gd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Set up kpoint descriptor:
        self.kd = KPointDescriptor(bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, usesymm=p.usesymm)
        self.kd.set_communicator(kpt_comm)

    def tearDown(self):
        del self.bd, self.gd, self.kd
        del self.setups, self.atoms

    def get_parsizes(self): #XXX NO LONGER IN UT_HSOPS?!?
        # Careful, overwriting imported GPAW params may cause amnesia in Python.
        from gpaw import parsize_domain, parsize_bands

        # Choose the largest possible parallelization over kpoint/spins
        test_parsize_ks_pairs = gcd(self.nspins*self.nibzkpts, world.size)
        remsize = world.size//test_parsize_ks_pairs

        # If parsize_bands is not set, choose the largest possible
        test_parsize_bands = parsize_bands or gcd(self.nbands, remsize)

        # If parsize_bands is not set, choose as few domains as possible
        test_parsize_domain = parsize_domain or (remsize//test_parsize_bands)

        return test_parsize_domain, test_parsize_bands

    # =================================

    def verify_comm_sizes(self): #TODO needs work
        if world.size == 1:
            return
        comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
                                                   self.gd.comm, self.kd.comm]])
        self._parinfo =  '%d world, %d band, %d domain, %d kpt' % comm_sizes
        #self.assertEqual((self.nspins*self.nibzkpts) % self.kd.comm.size, 0) #XXX

    def verify_slice_consistency(self):
        for kpt_rank in range(self.kd.comm.size):
            uslice = self.kd.get_slice(kpt_rank)
            myus = np.arange(*uslice.indices(self.kd.nks))
            for myu,u in enumerate(myus):
                self.assertEqual(self.kd.who_has(u), (kpt_rank, myu))

    def verify_combination_consistency(self):
        for u in range(self.kd.nks):
            s, k = self.kd.what_is(u)
            self.assertEqual(self.kd.where_is(s, k), u)

        for s in range(self.kd.nspins):
            for k in range(self.kd.nibzkpts):
                u = self.kd.where_is(s, k)
                self.assertEqual(self.kd.what_is(u), (s,k,))

    def verify_indexing_consistency(self):
        for u in range(self.kd.nks):
            kpt_rank, myu = self.kd.who_has(u)
            self.assertEqual(self.kd.global_index(myu, kpt_rank), u)

        for kpt_rank in range(self.kd.comm.size):
            for myu in range(self.kd.get_count(kpt_rank)):
                u = self.kd.global_index(myu, kpt_rank)
                self.assertEqual(self.kd.who_has(u), (kpt_rank, myu))

    def verify_ranking_consistency(self):
        ranks = self.kd.get_ranks()

        for kpt_rank in range(self.kd.comm.size):
            my_indices = self.kd.get_indices(kpt_rank)
            matches = np.argwhere(ranks == kpt_rank).ravel()
            self.assertTrue((matches == my_indices).all())
            for myu in range(self.kd.get_count(kpt_rank)):
                u = self.kd.global_index(myu, kpt_rank)
                self.assertEqual(my_indices[myu], u)
예제 #10
0
파일: ut_redist.py 프로젝트: qsnake/gpaw
class UTDomainParallelSetup(TestCase):
    """
    Setup a simple domain parallel calculation."""

    # Number of bands
    nbands = 12

    # Spin-polarized
    nspins = 1

    # Mean spacing and number of grid points per axis (G x G x G)
    h = 0.25 / Bohr
    G = 48

    # Type of boundary conditions employed (determines nibzkpts and dtype)
    boundaries = None
    nibzkpts = None
    dtype = None

    timer = nulltimer

    def setUp(self):
        for virtvar in ['boundaries']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Basic unit cell information:
        res, N_c = shapeopt(100, self.G**3, 3, 0.2)
        #N_c = 4*np.round(np.array(N_c)/4) # makes domain decomposition easier
        cell_cv = self.h * np.diag(N_c)
        pbc_c = {'zero'    : (False,False,False), \
                 'periodic': (True,True,True), \
                 'mixed'   : (True, False, True)}[self.boundaries]

        # Create randomized gas-like atomic configuration on interim grid
        tmpgd = GridDescriptor(N_c, cell_cv, pbc_c)
        self.atoms = create_random_atoms(tmpgd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        assert 1 == self.nspins
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Decide how many kpoints to sample from the 1st Brillouin Zone
        kpts_c = np.ceil((10/Bohr)/np.sum(cell_cv**2,axis=1)**0.5).astype(int)
        kpts_c = tuple(kpts_c * pbc_c + 1 - pbc_c)
        self.bzk_kc = kpts2ndarray(kpts_c)

        # Set up k-point descriptor
        self.kd = KPointDescriptor(self.bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, p.usesymm)

        # Set the dtype
        if self.kd.gamma:
            self.dtype = float
        else:
            self.dtype = complex
            
        # Create communicators
        parsize, parsize_bands = self.get_parsizes()
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize,
            parsize_bands, self.nspins, self.kd.nibzkpts)

        self.kd.set_communicator(kpt_comm)
        
        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm)

        # Set up grid descriptor:
        self.gd = GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize)

        # Set up kpoint/spin descriptor (to be removed):
        self.kd_old = KPointDescriptorOld(self.nspins, self.kd.nibzkpts,
                                          kpt_comm, self.kd.gamma, self.dtype)

       
    def tearDown(self):
        del self.atoms, self.bd, self.gd, self.kd, self.kd_old

    def get_parsizes(self):
        # Careful, overwriting imported GPAW params may cause amnesia in Python.
        from gpaw import parsize, parsize_bands

        # D: number of domains
        # B: number of band groups
        if parsize is None:
            D = min(world.size, 2)
        else:
            D = parsize
        assert world.size % D == 0
        if parsize_bands is None:
            B = world.size // D
        else:
            B = parsize_bands
        return D, B

    # =================================

    def verify_comm_sizes(self):
        if world.size == 1:
            return
        comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
                                                   self.gd.comm, self.kd_old.comm]])
        self._parinfo =  '%d world, %d band, %d domain, %d kpt' % comm_sizes
        self.assertEqual(self.nbands % self.bd.comm.size, 0)
        self.assertEqual((self.nspins * self.kd.nibzkpts) % self.kd_old.comm.size, 0)
예제 #11
0
class UTKPointParallelSetup(TestCase):
    """
    Setup a simple kpoint parallel calculation."""

    # Number of bands
    nbands = 1

    # Spin-polarized
    nspins = 1

    # Mean spacing and number of grid points per axis (G x G x G)
    h = 0.25 / Bohr
    G = 48

    ## Symmetry-reduction of k-points TODO
    #symmetry = p.usesymm #XXX 'None' is an allowed value!!!

    # Whether spin/k-points are equally distributed (determines nibzkpts)
    equipartition = None
    nibzkpts = None

    gamma = False # can't be gamma point when nibzkpts > 1 ...
    dtype = complex #XXX virtual so far..

    # =================================

    def setUp(self):
        for virtvar in ['equipartition']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        kpts = {'even' : (12,1,2), \
                'prime': (23,1,1)}[self.equipartition]

        #primes = [i for i in xrange(50,1,-1) if ~np.any(i%np.arange(2,i)==0)]
        bzk_kc = kpts2ndarray(kpts)
        assert p.usesymm == None
        self.nibzkpts = len(bzk_kc)

        #parsize, parsize_bands = create_parsize_minbands(self.nbands, world.size)
        parsize, parsize_bands = 1, 1 #XXX
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize,
            parsize_bands, self.nspins, self.nibzkpts)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm, p.parallel['stridebands'])

        # Set up grid descriptor:
        res, ngpts = shapeopt(300, self.G**3, 3, 0.2)
        cell_c = self.h * np.array(ngpts)
        pbc_c = (True, False, True)
        self.gd = GridDescriptor(ngpts, cell_c, pbc_c, domain_comm, parsize)

        # Create randomized gas-like atomic configuration
        self.atoms = create_random_atoms(self.gd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Set up kpoint descriptor:
        self.kd = KPointDescriptor(bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, p.usesymm)
        self.kd.set_communicator(kpt_comm)

    def tearDown(self):
        del self.bd, self.gd, self.kd
        del self.setups, self.atoms

    def get_parsizes(self): #XXX NO LONGER IN UT_HSOPS?!?
        # Careful, overwriting imported GPAW params may cause amnesia in Python.
        from gpaw import parsize, parsize_bands

        # Choose the largest possible parallelization over kpoint/spins
        test_parsize_ks_pairs = gcd(self.nspins*self.nibzkpts, world.size)
        remsize = world.size//test_parsize_ks_pairs

        # If parsize_bands is not set, choose the largest possible
        test_parsize_bands = parsize_bands or gcd(self.nbands, remsize)

        # If parsize_bands is not set, choose as few domains as possible
        test_parsize = parsize or (remsize//test_parsize_bands)

        return test_parsize, test_parsize_bands

    # =================================

    def verify_comm_sizes(self): #TODO needs work
        if world.size == 1:
            return
        comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
                                                   self.gd.comm, self.kd.comm]])
        self._parinfo =  '%d world, %d band, %d domain, %d kpt' % comm_sizes
        #self.assertEqual((self.nspins*self.nibzkpts) % self.kd.comm.size, 0) #XXX

    def verify_slice_consistency(self):
        for kpt_rank in range(self.kd.comm.size):
            uslice = self.kd.get_slice(kpt_rank)
            myus = np.arange(*uslice.indices(self.kd.nks))
            for myu,u in enumerate(myus):
                self.assertEqual(self.kd.who_has(u), (kpt_rank, myu))

    def verify_combination_consistency(self):
        for u in range(self.kd.nks):
            s, k = self.kd.what_is(u)
            self.assertEqual(self.kd.where_is(s, k), u)

        for s in range(self.kd.nspins):
            for k in range(self.kd.nibzkpts):
                u = self.kd.where_is(s, k)
                self.assertEqual(self.kd.what_is(u), (s,k,))

    def verify_indexing_consistency(self):
        for u in range(self.kd.nks):
            kpt_rank, myu = self.kd.who_has(u)
            self.assertEqual(self.kd.global_index(myu, kpt_rank), u)

        for kpt_rank in range(self.kd.comm.size):
            for myu in range(self.kd.get_count(kpt_rank)):
                u = self.kd.global_index(myu, kpt_rank)
                self.assertEqual(self.kd.who_has(u), (kpt_rank, myu))

    def verify_ranking_consistency(self):
        ranks = self.kd.get_ranks()

        for kpt_rank in range(self.kd.comm.size):
            my_indices = self.kd.get_indices(kpt_rank)
            matches = np.argwhere(ranks == kpt_rank).ravel()
            self.assertTrue((matches == my_indices).all())
            for myu in range(self.kd.get_count(kpt_rank)):
                u = self.kd.global_index(myu, kpt_rank)
                self.assertEqual(my_indices[myu], u)
예제 #12
0
    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        if 'txt' in self._changed_keywords:
            self.set_txt(par.txt)
        self.verbose = par.verbose

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_av = atoms.get_initial_magnetic_moments()

        self.check_atoms()

        # Generate new xc functional only when it is reset by set
        # XXX sounds like this should use the _changed_keywords dictionary.
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, str):
                xc = XC(par.xc)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode

        if mode == 'fd':
            mode = FD()
        elif mode == 'pw':
            mode = pw.PW()
        elif mode == 'lcao':
            mode = LCAO()
        else:
            assert hasattr(mode, 'name'), str(mode)

        if xc.orbital_dependent and mode.name == 'lcao':
            raise NotImplementedError('LCAO mode does not support '
                                      'orbital-dependent XC functionals.')

        if par.realspace is None:
            realspace = (mode.name != 'pw')
        else:
            realspace = par.realspace
            if mode.name == 'pw':
                assert not realspace

        if par.filter is None and mode.name != 'pw':
            gamma = 1.6
            if par.gpts is not None:
                h = ((np.linalg.inv(cell_cv)**2).sum(0)**-0.5 / par.gpts).max()
            else:
                h = (par.h or 0.2) / Bohr

            def filter(rgd, rcut, f_r, l=0):
                gcut = np.pi / h - 2 / rcut / gamma
                f_r[:] = rgd.filter(f_r, rcut * gamma, gcut, l)
        else:
            filter = par.filter

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc, filter,
                        world)

        if magmom_av.ndim == 1:
            collinear = True
            magmom_av, magmom_a = np.zeros((natoms, 3)), magmom_av
            magmom_av[:, 2] = magmom_a
        else:
            collinear = False

        magnetic = magmom_av.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_av[0] = (0, 0, setups[0].get_hunds_rule_moment(par.charge))

        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a ' +
                             'spin-paired calculation!')

        if collinear:
            nspins = 1 + int(spinpol)
            ncomp = 1
        else:
            nspins = 1
            ncomp = 2

        if par.usesymm != 'default':
            warnings.warn('Use "symmetry" keyword instead of ' +
                          '"usesymm" keyword')
            par.symmetry = usesymm2symmetry(par.usesymm)

        symm = par.symmetry
        if symm == 'off':
            symm = {'point_group': False, 'time_reversal': False}

        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins, collinear)
        m_av = magmom_av.round(decimals=3)  # round off
        id_a = zip(setups.id_a, *m_av.T)
        symmetry = Symmetry(id_a, cell_cv, atoms.pbc, **symm)
        kd.set_symmetry(atoms, symmetry, comm=world)
        setups.set_symmetry(symmetry)

        if par.gpts is not None:
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace,
                                            kd.symmetry)

        symmetry.check_grid(N_c)

        width = par.width
        if width is None:
            if pbc_c.any():
                width = 0.1  # eV
            else:
                width = 0.0
        else:
            assert par.occupations is None

        if hasattr(self, 'time') or par.dtype == complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        nao = setups.nao
        nvalence = setups.nvalence - par.charge
        M_v = magmom_av.sum(0)
        M = np.dot(M_v, M_v)**0.5

        nbands = par.nbands

        orbital_free = any(setup.orbital_free for setup in setups)
        if orbital_free:
            nbands = 1

        if isinstance(nbands, basestring):
            if nbands[-1] == '%':
                basebands = int(nvalence + M + 0.5) // 2
                nbands = int((float(nbands[:-1]) / 100) * basebands)
            else:
                raise ValueError('Integer Expected: Only use a string '
                                 'if giving a percentage of occupied bands')

        if nbands is None:
            nbands = 0
            for setup in setups:
                nbands_from_atom = setup.get_default_nbands()

                # Any obscure setup errors?
                if nbands_from_atom < -(-setup.Nv // 2):
                    raise ValueError('Bad setup: This setup requests %d'
                                     ' bands but has %d electrons.' %
                                     (nbands_from_atom, setup.Nv))
                nbands += nbands_from_atom
            nbands = min(nao, nbands)
        elif nbands > nao and mode.name == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands and not orbital_free:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d' %
                             (nvalence, nbands))

        nbands *= ncomp

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                if orbital_free:
                    width = 0.0  # even for PBC
                    self.occupations = occupations.TFOccupations(
                        width, par.fixmom)
                else:
                    self.occupations = occupations.FermiDirac(
                        width, par.fixmom)
            else:
                self.occupations = par.occupations

            # If occupation numbers are changed, and we have wave functions,
            # recalculate the occupation numbers
            if self.wfs is not None and not isinstance(self.wfs,
                                                       EmptyWaveFunctions):
                self.occupations.calculate(self.wfs)

        self.occupations.magmom = M_v[2]

        cc = par.convergence

        if mode.name == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            force_crit = cc['forces']
            if force_crit is not None:
                force_crit /= Hartree / Bohr
            self.scf = SCFLoop(cc['eigenstates'] / Hartree**2 * nvalence,
                               cc['energy'] / Hartree * max(nvalence, 1),
                               cc['density'] * nvalence, par.maxiter,
                               par.fixdensity, niter_fixdensity, force_crit)

        parsize_kpt = par.parallel['kpt']
        parsize_domain = par.parallel['domain']
        parsize_bands = par.parallel['band']

        if not realspace:
            pbc_c = np.ones(3, bool)

        if not self.wfs:
            if parsize_domain == 'domain only':  # XXX this was silly!
                parsize_domain = world.size

            parallelization = mpi.Parallelization(world, nspins * kd.nibzkpts)
            ndomains = None
            if parsize_domain is not None:
                ndomains = np.prod(parsize_domain)
            if mode.name == 'pw':
                if ndomains > 1:
                    raise ValueError('Planewave mode does not support '
                                     'domain decomposition.')
                ndomains = 1
            parallelization.set(kpt=parsize_kpt,
                                domain=ndomains,
                                band=parsize_bands)
            comms = parallelization.build_communicators()
            domain_comm = comms['d']
            kpt_comm = comms['k']
            band_comm = comms['b']
            kptband_comm = comms['D']
            domainband_comm = comms['K']

            self.comms = comms
            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']

            # Unfortunately we need to remember that we adjusted the
            # number of bands so we can print a warning if it differs
            # from the number specified by the user.  (The number can
            # be inferred from the input parameters, but it's tricky
            # because we allow negative numbers)
            self.nbands_parallelization_adjustment = -nbands % band_comm.size
            nbands += self.nbands_parallelization_adjustment

            # I would like to give the following error message, but apparently
            # there are cases, e.g. gpaw/test/gw_ppa.py, which involve
            # nbands > nao and are supposed to work that way.
            #if nbands > nao:
            #    raise ValueError('Number of bands %d adjusted for band '
            #                     'parallelization %d exceeds number of atomic '
            #                     'orbitals %d.  This problem can be fixed '
            #                     'by reducing the number of bands a bit.'
            #                     % (nbands, band_comm.size, nao))
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None
                    and self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError(
                        'Density reinitialization conflict ' +
                        'with "fixdensity" - specify domain decomposition.')
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c, domain_comm,
                                            parsize_domain)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd, kptband_comm,
                    self.timer)

            if par.parallel['sl_auto']:
                # Choose scalapack parallelization automatically

                for key, val in par.parallel.items():
                    if (key.startswith('sl_') and key != 'sl_auto'
                            and val is not None):
                        raise ValueError("Cannot use 'sl_auto' together "
                                         "with '%s'" % key)
                max_scalapack_cpus = bd.comm.size * gd.comm.size
                nprow = max_scalapack_cpus
                npcol = 1

                # Get a sort of reasonable number of columns/rows
                while npcol < nprow and nprow % 2 == 0:
                    npcol *= 2
                    nprow //= 2
                assert npcol * nprow == max_scalapack_cpus

                # ScaLAPACK creates trouble if there aren't at least a few
                # whole blocks; choose block size so there will always be
                # several blocks.  This will crash for small test systems,
                # but so will ScaLAPACK in any case
                blocksize = min(-(-nbands // 4), 64)
                sl_default = (nprow, npcol, blocksize)
            else:
                sl_default = par.parallel['sl_default']

            if mode.name == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                lcaoksl = get_KohnSham_layouts(sl_lcao,
                                               'lcao',
                                               gd,
                                               bd,
                                               domainband_comm,
                                               dtype,
                                               nao=nao,
                                               timer=self.timer)

                self.wfs = mode(collinear, lcaoksl, *args)

            elif mode.name == 'fd' or mode.name == 'pw':
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = sl_default
                diagksl = get_KohnSham_layouts(
                    sl_diagonalize,
                    'fd',  # XXX
                    # choice of key 'fd' not so nice
                    gd,
                    bd,
                    domainband_comm,
                    dtype,
                    buffer_size=buffer_size,
                    timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = sl_default
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky,
                                                'fd',
                                                gd,
                                                bd,
                                                domainband_comm,
                                                dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)

                try:
                    lcaobd = BandDescriptor(lcaonbands, band_comm,
                                            parstride_bands)
                except RuntimeError:
                    initksl = None
                else:
                    # Layouts used for general diagonalizer
                    # (LCAO initialization)
                    sl_lcao = par.parallel['sl_lcao']
                    if sl_lcao is None:
                        sl_lcao = sl_default
                    initksl = get_KohnSham_layouts(sl_lcao,
                                                   'lcao',
                                                   gd,
                                                   lcaobd,
                                                   domainband_comm,
                                                   dtype,
                                                   nao=nao,
                                                   timer=self.timer)

                if hasattr(self, 'time'):
                    assert mode.name == 'fd'
                    from gpaw.tddft import TimeDependentWaveFunctions
                    self.wfs = TimeDependentWaveFunctions(
                        par.stencils[0], diagksl, orthoksl, initksl, gd,
                        nvalence, setups, bd, world, kd, kptband_comm,
                        self.timer)
                elif mode.name == 'fd':
                    self.wfs = mode(par.stencils[0], diagksl, orthoksl,
                                    initksl, *args)
                else:
                    assert mode.name == 'pw'
                    self.wfs = mode(diagksl, orthoksl, initksl, *args)
            else:
                self.wfs = mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property

            if isinstance(xc, SIC):
                eigensolver.blocksize = 1
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd

            if realspace:
                self.density = RealSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear, par.stencils[1])
            else:
                self.density = pw.ReciprocalSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear)

        self.density.initialize(setups, self.timer, magmom_av, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            if realspace:
                self.hamiltonian = RealSpaceHamiltonian(
                    gd, finegd, nspins, setups, self.timer, xc, world,
                    self.wfs.kptband_comm, par.external, collinear,
                    par.poissonsolver, par.stencils[1])
            else:
                self.hamiltonian = pw.ReciprocalSpaceHamiltonian(
                    gd, finegd, self.density.pd2, self.density.pd3, nspins,
                    setups, self.timer, xc, world, self.wfs.kptband_comm,
                    par.external, collinear)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        self.timer.print_info(self)

        if dry_run:
            self.dry_run()

        if realspace and \
                self.hamiltonian.poisson.get_description() == 'FDTD+TDDFT':
            self.hamiltonian.poisson.set_density(self.density)
            self.hamiltonian.poisson.print_messages(self.text)
            self.txt.flush()

        self.initialized = True
        self._changed_keywords.clear()
예제 #13
0
파일: hybridk.py 프로젝트: yihsuanliu/gpaw
class HybridXC(XCFunctional):
    orbital_dependent = True

    def __init__(self, name, hybrid=None, xc=None, finegrid=False, alpha=None):
        """Mix standard functionals with exact exchange.

        name: str
            Name of hybrid functional.
        hybrid: float
            Fraction of exact exchange.
        xc: str or XCFunctional object
            Standard DFT functional with scaled down exchange.
        finegrid: boolean
            Use fine grid for energy functional evaluations?
        """

        if name == 'EXX':
            assert hybrid is None and xc is None
            hybrid = 1.0
            xc = XC(XCNull())
        elif name == 'PBE0':
            assert hybrid is None and xc is None
            hybrid = 0.25
            xc = XC('HYB_GGA_XC_PBEH')
        elif name == 'B3LYP':
            assert hybrid is None and xc is None
            hybrid = 0.2
            xc = XC('HYB_GGA_XC_B3LYP')

        if isinstance(xc, str):
            xc = XC(xc)

        self.hybrid = hybrid
        self.xc = xc
        self.type = xc.type
        self.alpha = alpha
        self.exx = 0.0

        XCFunctional.__init__(self, name)

    def get_setup_name(self):
        return 'PBE'

    def calculate_radial(self,
                         rgd,
                         n_sLg,
                         Y_L,
                         v_sg,
                         dndr_sLg=None,
                         rnablaY_Lv=None,
                         tau_sg=None,
                         dedtau_sg=None):
        return self.xc.calculate_radial(rgd, n_sLg, Y_L, v_sg, dndr_sLg,
                                        rnablaY_Lv)

    def initialize(self, density, hamiltonian, wfs, occupations):
        self.xc.initialize(density, hamiltonian, wfs, occupations)
        self.nspins = wfs.nspins
        self.setups = wfs.setups
        self.density = density
        self.kpt_u = wfs.kpt_u

        self.gd = density.gd
        self.kd = wfs.kd
        self.bd = wfs.bd

        N_c = self.gd.N_c
        N = self.gd.N_c.prod()
        vol = self.gd.dv * N

        if self.alpha is None:
            self.alpha = 6 * vol**(2 / 3.0) / pi**2

        self.gamma = (vol / (2 * pi)**2 * sqrt(pi / self.alpha) *
                      self.kd.nbzkpts)
        ecut = 0.5 * pi**2 / (self.gd.h_cv**2).sum(1).max()

        if self.kd.N_c is None:
            self.bzk_kc = np.zeros((1, 3))
            dfghdfgh
        else:
            n = self.kd.N_c * 2 - 1
            bzk_kc = np.indices(n).transpose((1, 2, 3, 0))
            bzk_kc.shape = (-1, 3)
            bzk_kc -= self.kd.N_c - 1
            self.bzk_kc = bzk_kc.astype(float) / self.kd.N_c

        self.pwd = PWDescriptor(ecut, self.gd, self.bzk_kc)

        n = 0
        for k_c, Gpk2_G in zip(self.bzk_kc[:], self.pwd.G2_qG):
            if (k_c > -0.5).all() and (k_c <= 0.5).all():  #XXX???
                if k_c.any():
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G),
                                         Gpk2_G**-1)
                else:
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G[1:]),
                                         Gpk2_G[1:]**-1)
                n += 1

        assert n == self.kd.N_c.prod()

        self.ghat = LFC(self.gd, [setup.ghat_l for setup in density.setups],
                        dtype=complex)
        self.ghat.set_k_points(self.bzk_kc)

        self.fullkd = KPointDescriptor(self.kd.bzk_kc, nspins=1)

        class S:
            id_a = []

            def set_symmetry(self, s):
                pass

        self.fullkd.set_symmetry(Atoms(pbc=True), S(), False)
        self.fullkd.set_communicator(world)
        self.pt = LFC(self.gd, [setup.pt_j for setup in density.setups],
                      dtype=complex)
        self.pt.set_k_points(self.fullkd.ibzk_kc)

        self.interpolator = density.interpolator

    def set_positions(self, spos_ac):
        self.ghat.set_positions(spos_ac)
        self.pt.set_positions(spos_ac)

    def calculate(self, gd, n_sg, v_sg=None, e_g=None):
        # Normal XC contribution:
        exc = self.xc.calculate(gd, n_sg, v_sg, e_g)

        # Add EXX contribution:
        return exc + self.exx

    def calculate_exx(self):
        """Non-selfconsistent calculation."""

        kd = self.kd
        K = self.fullkd.nibzkpts
        assert self.nspins == 1
        Q = K // world.size
        assert Q * world.size == K
        parallel = (world.size > self.nspins)

        self.exx = 0.0
        self.exx_skn = np.zeros((self.nspins, K, self.bd.nbands))

        kpt_u = []
        for k in range(world.rank * Q, (world.rank + 1) * Q):
            k_c = self.fullkd.ibzk_kc[k]
            for k1, k1_c in enumerate(kd.bzk_kc):
                if abs(k1_c - k_c).max() < 1e-10:
                    break

            # Index of symmetry related point in the irreducible BZ
            ik = kd.kibz_k[k1]
            kpt = self.kpt_u[ik]

            # KPoint from ground-state calculation
            phase_cd = np.exp(2j * pi * self.gd.sdisp_cd * k_c[:, np.newaxis])
            kpt2 = KPoint0(kpt.weight, kpt.s, k, None, phase_cd)
            kpt2.psit_nG = np.empty_like(kpt.psit_nG)
            kpt2.f_n = kpt.f_n / kpt.weight / K * 2
            for n, psit_G in enumerate(kpt2.psit_nG):
                psit_G[:] = kd.transform_wave_function(kpt.psit_nG[n], k1)

            kpt2.P_ani = self.pt.dict(len(kpt.psit_nG))
            self.pt.integrate(kpt2.psit_nG, kpt2.P_ani, k)
            kpt_u.append(kpt2)

        for s in range(self.nspins):
            kpt1_q = [KPoint(self.fullkd, kpt) for kpt in kpt_u if kpt.s == s]
            kpt2_q = kpt1_q[:]

            if len(kpt1_q) == 0:
                # No s-spins on this CPU:
                continue

            # Send rank:
            srank = self.fullkd.get_rank_and_index(s, (kpt1_q[0].k - 1) % K)[0]

            # Receive rank:
            rrank = self.fullkd.get_rank_and_index(s,
                                                   (kpt1_q[-1].k + 1) % K)[0]

            # Shift k-points K // 2 times:
            for i in range(K // 2 + 1):
                if i < K // 2:
                    if parallel:
                        kpt = kpt2_q[-1].next()
                        kpt.start_receiving(rrank)
                        kpt2_q[0].start_sending(srank)
                    else:
                        kpt = kpt2_q[0]

                for kpt1, kpt2 in zip(kpt1_q, kpt2_q):
                    if 2 * i == K:
                        self.apply(kpt1, kpt2, invert=(kpt1.k > kpt2.k))
                    else:
                        self.apply(kpt1, kpt2)
                        self.apply(kpt1, kpt2, invert=True)

                if i < K // 2:
                    if parallel:
                        kpt.wait()
                        kpt2_q[0].wait()
                    kpt2_q.pop(0)
                    kpt2_q.append(kpt)

        self.exx = world.sum(self.exx)
        world.sum(self.exx_skn)
        self.exx += self.calculate_paw_correction()

    def apply(self, kpt1, kpt2, invert=False):
        #print world.rank,kpt1.k,kpt2.k,invert
        k1_c = self.fullkd.ibzk_kc[kpt1.k]
        k2_c = self.fullkd.ibzk_kc[kpt2.k]
        if invert:
            k2_c = -k2_c
        k12_c = k1_c - k2_c
        N_c = self.gd.N_c
        eikr_R = np.exp(2j * pi * np.dot(np.indices(N_c).T, k12_c / N_c).T)

        for q, k_c in enumerate(self.bzk_kc):
            if abs(k_c + k12_c).max() < 1e-9:
                q0 = q
                break

        for q, k_c in enumerate(self.bzk_kc):
            if abs(k_c - k12_c).max() < 1e-9:
                q00 = q
                break

        Gpk2_G = self.pwd.G2_qG[q0]
        if Gpk2_G[0] == 0:
            Gpk2_G = Gpk2_G.copy()
            Gpk2_G[0] = 1.0 / self.gamma

        N = N_c.prod()
        vol = self.gd.dv * N
        nspins = self.nspins

        same = (kpt1.k == kpt2.k)

        for n1, psit1_R in enumerate(kpt1.psit_nG):
            f1 = kpt1.f_n[n1]
            for n2, psit2_R in enumerate(kpt2.psit_nG):
                if same and n2 > n1:
                    continue

                f2 = kpt2.f_n[n2]

                nt_R = self.calculate_pair_density(n1, n2, kpt1, kpt2, q0,
                                                   invert)

                nt_G = self.pwd.fft(nt_R * eikr_R) / N
                vt_G = nt_G.copy()
                vt_G *= -pi * vol / Gpk2_G
                e = np.vdot(nt_G, vt_G).real * nspins * self.hybrid
                if same and n1 == n2:
                    e /= 2

                self.exx += e * f1 * f2
                self.ekin -= 2 * e * f1 * f2
                self.exx_skn[kpt1.s, kpt1.k, n1] += f2 * e
                self.exx_skn[kpt2.s, kpt2.k, n2] += f1 * e

                calculate_potential = not True
                if calculate_potential:
                    vt_R = self.pwd.ifft(vt_G).conj() * eikr_R * N / vol
                    if kpt1 is kpt2 and not invert and n1 == n2:
                        kpt1.vt_nG[n1] = 0.5 * f1 * vt_R

                    if invert:
                        kpt1.Htpsit_nG[n1] += \
                                           f2 * nspins * psit2_R.conj() * vt_R
                    else:
                        kpt1.Htpsit_nG[n1] += f2 * nspins * psit2_R * vt_R

                    if kpt1 is not kpt2:
                        if invert:
                            kpt2.Htpsit_nG[n2] += (f1 * nspins *
                                                   psit1_R.conj() * vt_R)
                        else:
                            kpt2.Htpsit_nG[n2] += (f1 * nspins * psit1_R *
                                                   vt_R.conj())

    def calculate_paw_correction(self):
        exx = 0
        deg = 2 // self.nspins  # spin degeneracy
        for a, D_sp in self.density.D_asp.items():
            setup = self.setups[a]
            for D_p in D_sp:
                D_ii = unpack2(D_p)
                ni = len(D_ii)

                for i1 in range(ni):
                    for i2 in range(ni):
                        A = 0.0
                        for i3 in range(ni):
                            p13 = packed_index(i1, i3, ni)
                            for i4 in range(ni):
                                p24 = packed_index(i2, i4, ni)
                                A += setup.M_pp[p13, p24] * D_ii[i3, i4]
                        p12 = packed_index(i1, i2, ni)
                        exx -= self.hybrid / deg * D_ii[i1, i2] * A

                if setup.X_p is not None:
                    exx -= self.hybrid * np.dot(D_p, setup.X_p)
            exx += self.hybrid * setup.ExxC
        return exx

    def calculate_pair_density(self, n1, n2, kpt1, kpt2, q, invert):
        if invert:
            nt_G = kpt1.psit_nG[n1].conj() * kpt2.psit_nG[n2].conj()
        else:
            nt_G = kpt1.psit_nG[n1].conj() * kpt2.psit_nG[n2]

        Q_aL = {}
        for a, P1_ni in kpt1.P_ani.items():
            P1_i = P1_ni[n1]
            P2_i = kpt2.P_ani[a][n2]
            if invert:
                D_ii = np.outer(P1_i.conj(), P2_i.conj())
            else:
                D_ii = np.outer(P1_i.conj(), P2_i)
            D_p = pack(D_ii)
            Q_aL[a] = np.dot(D_p, self.setups[a].Delta_pL)

        self.ghat.add(nt_G, Q_aL, q)
        return nt_G
예제 #14
0
파일: hybridk.py 프로젝트: qsnake/gpaw
class HybridXC(XCFunctional):
    orbital_dependent = True
    def __init__(self, name, hybrid=None, xc=None, finegrid=False,
                 alpha=None):
        """Mix standard functionals with exact exchange.

        name: str
            Name of hybrid functional.
        hybrid: float
            Fraction of exact exchange.
        xc: str or XCFunctional object
            Standard DFT functional with scaled down exchange.
        finegrid: boolean
            Use fine grid for energy functional evaluations?
        """

        if name == 'EXX':
            assert hybrid is None and xc is None
            hybrid = 1.0
            xc = XC(XCNull())
        elif name == 'PBE0':
            assert hybrid is None and xc is None
            hybrid = 0.25
            xc = XC('HYB_GGA_XC_PBEH')
        elif name == 'B3LYP':
            assert hybrid is None and xc is None
            hybrid = 0.2
            xc = XC('HYB_GGA_XC_B3LYP')
            
        if isinstance(xc, str):
            xc = XC(xc)

        self.hybrid = hybrid
        self.xc = xc
        self.type = xc.type
        self.alpha = alpha
        self.exx = 0.0
        
        XCFunctional.__init__(self, name)

    def get_setup_name(self):
        return 'PBE'

    def calculate_radial(self, rgd, n_sLg, Y_L, v_sg,
                         dndr_sLg=None, rnablaY_Lv=None,
                         tau_sg=None, dedtau_sg=None):
        return self.xc.calculate_radial(rgd, n_sLg, Y_L, v_sg,
                                        dndr_sLg, rnablaY_Lv)
    
    def initialize(self, density, hamiltonian, wfs, occupations):
        self.xc.initialize(density, hamiltonian, wfs, occupations)
        self.nspins = wfs.nspins
        self.setups = wfs.setups
        self.density = density
        self.kpt_u = wfs.kpt_u
        
        self.gd = density.gd
        self.kd = wfs.kd
        self.bd = wfs.bd

        N_c = self.gd.N_c
        N = self.gd.N_c.prod()
        vol = self.gd.dv * N
        
        if self.alpha is None:
            self.alpha = 6 * vol**(2 / 3.0) / pi**2
            
        self.gamma = (vol / (2 * pi)**2 * sqrt(pi / self.alpha) *
                      self.kd.nbzkpts)
        ecut = 0.5 * pi**2 / (self.gd.h_cv**2).sum(1).max()

        if self.kd.N_c is None:
            self.bzk_kc = np.zeros((1, 3))
            dfghdfgh
        else:
            n = self.kd.N_c * 2 - 1
            bzk_kc = np.indices(n).transpose((1, 2, 3, 0))
            bzk_kc.shape = (-1, 3)
            bzk_kc -= self.kd.N_c - 1
            self.bzk_kc = bzk_kc.astype(float) / self.kd.N_c
        
        self.pwd = PWDescriptor(ecut, self.gd, self.bzk_kc)

        n = 0
        for k_c, Gpk2_G in zip(self.bzk_kc[:], self.pwd.G2_qG):
            if (k_c > -0.5).all() and (k_c <= 0.5).all(): #XXX???
                if k_c.any():
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G),
                                         Gpk2_G**-1)
                else:
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G[1:]),
                                         Gpk2_G[1:]**-1)
                n += 1

        assert n == self.kd.N_c.prod()
        
        self.ghat = LFC(self.gd,
                        [setup.ghat_l for setup in density.setups],
                        dtype=complex
                        )
        self.ghat.set_k_points(self.bzk_kc)
        
        self.fullkd = KPointDescriptor(self.kd.bzk_kc, nspins=1)
        class S:
            id_a = []
            def set_symmetry(self, s): pass
            
        self.fullkd.set_symmetry(Atoms(pbc=True), S(), False)
        self.fullkd.set_communicator(world)
        self.pt = LFC(self.gd, [setup.pt_j for setup in density.setups],
                      dtype=complex)
        self.pt.set_k_points(self.fullkd.ibzk_kc)

        self.interpolator = density.interpolator

    def set_positions(self, spos_ac):
        self.ghat.set_positions(spos_ac)
        self.pt.set_positions(spos_ac)
    
    def calculate(self, gd, n_sg, v_sg=None, e_g=None):
        # Normal XC contribution:
        exc = self.xc.calculate(gd, n_sg, v_sg, e_g)

        # Add EXX contribution:
        return exc + self.exx

    def calculate_exx(self):
        """Non-selfconsistent calculation."""

        kd = self.kd
        K = self.fullkd.nibzkpts
        assert self.nspins == 1
        Q = K // world.size
        assert Q * world.size == K
        parallel = (world.size > self.nspins)
        
        self.exx = 0.0
        self.exx_skn = np.zeros((self.nspins, K, self.bd.nbands))

        kpt_u = []
        for k in range(world.rank * Q, (world.rank + 1) * Q):
            k_c = self.fullkd.ibzk_kc[k]
            for k1, k1_c in enumerate(kd.bzk_kc):
                if abs(k1_c - k_c).max() < 1e-10:
                    break
                
            # Index of symmetry related point in the irreducible BZ
            ik = kd.kibz_k[k1]
            kpt = self.kpt_u[ik]

            # KPoint from ground-state calculation
            phase_cd = np.exp(2j * pi * self.gd.sdisp_cd * k_c[:, np.newaxis])
            kpt2 = KPoint0(kpt.weight, kpt.s, k, None, phase_cd)
            kpt2.psit_nG = np.empty_like(kpt.psit_nG)
            kpt2.f_n = kpt.f_n / kpt.weight / K * 2
            for n, psit_G in enumerate(kpt2.psit_nG):
                psit_G[:] = kd.transform_wave_function(kpt.psit_nG[n], k1)

            kpt2.P_ani = self.pt.dict(len(kpt.psit_nG))
            self.pt.integrate(kpt2.psit_nG, kpt2.P_ani, k)
            kpt_u.append(kpt2)

        for s in range(self.nspins):
            kpt1_q = [KPoint(self.fullkd, kpt) for kpt in kpt_u if kpt.s == s]
            kpt2_q = kpt1_q[:]

            if len(kpt1_q) == 0:
                # No s-spins on this CPU:
                continue

            # Send rank:
            srank = self.fullkd.get_rank_and_index(s, (kpt1_q[0].k - 1) % K)[0]

            # Receive rank:
            rrank = self.fullkd.get_rank_and_index(s, (kpt1_q[-1].k + 1) % K)[0]

            # Shift k-points K // 2 times:
            for i in range(K // 2 + 1):
                if i < K // 2:
                    if parallel:
                        kpt = kpt2_q[-1].next()
                        kpt.start_receiving(rrank)
                        kpt2_q[0].start_sending(srank)
                    else:
                        kpt = kpt2_q[0]

                for kpt1, kpt2 in zip(kpt1_q, kpt2_q):
                    if 2 * i == K:
                        self.apply(kpt1, kpt2, invert=(kpt1.k > kpt2.k))
                    else:
                        self.apply(kpt1, kpt2)
                        self.apply(kpt1, kpt2, invert=True)

                if i < K // 2:
                    if parallel:
                        kpt.wait()
                        kpt2_q[0].wait()
                    kpt2_q.pop(0)
                    kpt2_q.append(kpt)
            
        self.exx = world.sum(self.exx)
        world.sum(self.exx_skn)
        self.exx += self.calculate_paw_correction()
        
    def apply(self, kpt1, kpt2, invert=False):
        #print world.rank,kpt1.k,kpt2.k,invert
        k1_c = self.fullkd.ibzk_kc[kpt1.k]
        k2_c = self.fullkd.ibzk_kc[kpt2.k]
        if invert:
            k2_c = -k2_c
        k12_c = k1_c - k2_c
        N_c = self.gd.N_c
        eikr_R = np.exp(2j * pi * np.dot(np.indices(N_c).T, k12_c / N_c).T)

        for q, k_c in enumerate(self.bzk_kc):
            if abs(k_c + k12_c).max() < 1e-9:
                q0 = q
                break

        for q, k_c in enumerate(self.bzk_kc):
            if abs(k_c - k12_c).max() < 1e-9:
                q00 = q
                break

        Gpk2_G = self.pwd.G2_qG[q0]
        if Gpk2_G[0] == 0:
            Gpk2_G = Gpk2_G.copy()
            Gpk2_G[0] = 1.0 / self.gamma

        N = N_c.prod()
        vol = self.gd.dv * N
        nspins = self.nspins

        same = (kpt1.k == kpt2.k)
        
        for n1, psit1_R in enumerate(kpt1.psit_nG):
            f1 = kpt1.f_n[n1]
            for n2, psit2_R in enumerate(kpt2.psit_nG):
                if same and n2 > n1:
                    continue
                
                f2 = kpt2.f_n[n2]

                nt_R = self.calculate_pair_density(n1, n2, kpt1, kpt2, q0,
                                                   invert)
                                                   
                nt_G = self.pwd.fft(nt_R * eikr_R) / N
                vt_G = nt_G.copy()
                vt_G *= -pi * vol / Gpk2_G
                e = np.vdot(nt_G, vt_G).real * nspins * self.hybrid
                if same and n1 == n2:
                    e /= 2
                    
                self.exx += e * f1 * f2
                self.ekin -= 2 * e * f1 * f2
                self.exx_skn[kpt1.s, kpt1.k, n1] += f2 * e
                self.exx_skn[kpt2.s, kpt2.k, n2] += f1 * e

                calculate_potential = not True
                if calculate_potential:
                    vt_R = self.pwd.ifft(vt_G).conj() * eikr_R * N / vol
                    if kpt1 is kpt2 and not invert and n1 == n2:
                        kpt1.vt_nG[n1] = 0.5 * f1 * vt_R

                    if invert:
                        kpt1.Htpsit_nG[n1] += \
                                           f2 * nspins * psit2_R.conj() * vt_R
                    else:
                        kpt1.Htpsit_nG[n1] += f2 * nspins * psit2_R * vt_R

                    if kpt1 is not kpt2:
                        if invert:
                            kpt2.Htpsit_nG[n2] += (f1 * nspins *
                                                   psit1_R.conj() * vt_R)
                        else:
                            kpt2.Htpsit_nG[n2] += (f1 * nspins *
                                                   psit1_R * vt_R.conj())

    def calculate_paw_correction(self):
        exx = 0
        deg = 2 // self.nspins  # spin degeneracy
        for a, D_sp in self.density.D_asp.items():
            setup = self.setups[a]
            for D_p in D_sp:
                D_ii = unpack2(D_p)
                ni = len(D_ii)

                for i1 in range(ni):
                    for i2 in range(ni):
                        A = 0.0
                        for i3 in range(ni):
                            p13 = packed_index(i1, i3, ni)
                            for i4 in range(ni):
                                p24 = packed_index(i2, i4, ni)
                                A += setup.M_pp[p13, p24] * D_ii[i3, i4]
                        p12 = packed_index(i1, i2, ni)
                        exx -= self.hybrid / deg * D_ii[i1, i2] * A

                if setup.X_p is not None:
                    exx -= self.hybrid * np.dot(D_p, setup.X_p)
            exx += self.hybrid * setup.ExxC
        return exx
    
    def calculate_pair_density(self, n1, n2, kpt1, kpt2, q, invert):
        if invert:
            nt_G = kpt1.psit_nG[n1].conj() * kpt2.psit_nG[n2].conj()
        else:
            nt_G = kpt1.psit_nG[n1].conj() * kpt2.psit_nG[n2]

        Q_aL = {}
        for a, P1_ni in kpt1.P_ani.items():
            P1_i = P1_ni[n1]
            P2_i = kpt2.P_ani[a][n2]
            if invert:
                D_ii = np.outer(P1_i.conj(), P2_i.conj())
            else:
                D_ii = np.outer(P1_i.conj(), P2_i)
            D_p = pack(D_ii)
            Q_aL[a] = np.dot(D_p, self.setups[a].Delta_pL)

        self.ghat.add(nt_G, Q_aL, q)
        return nt_G
예제 #15
0
class PhononCalculator:
    """This class defines the interface for phonon calculations."""
    
    def __init__(self, calc, gamma=True, symmetry=False, e_ph=False,
                 communicator=serial_comm):
        """Inititialize class with a list of atoms.

        The atoms object must contain a converged ground-state calculation.

        The set of q-vectors in which the dynamical matrix will be calculated
        is determined from the ``symmetry`` kwarg. For now, only time-reversal
        symmetry is used to generate the irrecducible BZ.

        Add a little note on parallelization strategy here.

        Parameters
        ----------
        calc: str or Calculator
            Calculator containing a ground-state calculation.
        gamma: bool
            Gamma-point calculation with respect to the q-vector of the
            dynamical matrix. When ``False``, the Monkhorst-Pack grid from the
            ground-state calculation is used.
        symmetry: bool
            Use symmetries to reduce the q-vectors of the dynamcial matrix
            (None, False or True). The different options are equivalent to the
            options in a ground-state calculation.
        e_ph: bool
            Save the derivative of the effective potential.
        communicator: Communicator
            Communicator for parallelization over k-points and real-space
            domain.
            
        """

        # XXX
        assert symmetry in [None, False], "Spatial symmetries not allowed yet"

        self.symmetry = symmetry

        if isinstance(calc, str):
            self.calc = GPAW(calc, communicator=serial_comm, txt=None)
        else:
            self.calc = calc

        # Make sure localized functions are initialized
        self.calc.set_positions()
        # Note that this under some circumstances (e.g. when called twice)
        # allocates a new array for the P_ani coefficients !!

        # Store useful objects
        self.atoms = self.calc.get_atoms()
        # Get rid of ``calc`` attribute
        self.atoms.calc = None
 
        # Boundary conditions
        pbc_c = self.calc.atoms.get_pbc()

        if np.all(pbc_c == False):
            self.gamma = True
            self.dtype = float
            kpts = None
            # Multigrid Poisson solver
            poisson_solver = PoissonSolver()
        else:
            if gamma:
                self.gamma = True
                self.dtype = float
                kpts = None
            else:
                self.gamma = False
                self.dtype = complex
                # Get k-points from ground-state calculation
                kpts = self.calc.input_parameters.kpts
                
            # FFT Poisson solver
            poisson_solver = FFTPoissonSolver(dtype=self.dtype)

        # K-point descriptor for the q-vectors of the dynamical matrix
        # Note, no explicit parallelization here.
        self.kd = KPointDescriptor(kpts, 1)
        self.kd.set_symmetry(self.atoms, self.calc.wfs.setups,
                             usesymm=symmetry)
        self.kd.set_communicator(serial_comm)

        # Number of occupied bands
        nvalence = self.calc.wfs.nvalence
        nbands = nvalence / 2 + nvalence % 2
        assert nbands <= self.calc.wfs.bd.nbands

        # Extract other useful objects
        # Ground-state k-point descriptor - used for the k-points in the
        # ResponseCalculator
        # XXX replace communicators when ready to parallelize
        kd_gs = self.calc.wfs.kd
        gd = self.calc.density.gd
        kpt_u = self.calc.wfs.kpt_u
        setups = self.calc.wfs.setups
        dtype_gs = self.calc.wfs.dtype
        
        # WaveFunctions
        wfs = WaveFunctions(nbands, kpt_u, setups, kd_gs, gd, dtype=dtype_gs)

        # Linear response calculator
        self.response_calc = ResponseCalculator(self.calc, wfs,
                                                dtype=self.dtype)
        
        # Phonon perturbation
        self.perturbation = PhononPerturbation(self.calc, self.kd,
                                               poisson_solver,
                                               dtype=self.dtype)

        # Dynamical matrix
        self.dyn = DynamicalMatrix(self.atoms, self.kd, dtype=self.dtype)

        # Electron-phonon couplings
        if e_ph:
            self.e_ph = ElectronPhononCoupling(self.atoms, gd, self.kd,
                                               dtype=self.dtype)
        else:
            self.e_ph = None
                                               
        # Initialization flag
        self.initialized = False

        # Parallel communicator for parallelization over kpts and domain
        self.comm = communicator

    def initialize(self):
        """Initialize response calculator and perturbation."""

        # Get scaled atomic positions
        spos_ac = self.atoms.get_scaled_positions()

        self.perturbation.initialize(spos_ac)
        self.response_calc.initialize(spos_ac)

        self.initialized = True
        
    def __getstate__(self): 
        """Method used when pickling.

        Bound method attributes cannot be pickled and must therefore be deleted
        before an instance is dumped to file.

        """

        # Get state of object and take care of troublesome attributes
        state = dict(self.__dict__)
        state['kd'].__dict__['comm'] = serial_comm
        state.pop('calc')
        state.pop('perturbation')
        state.pop('response_calc')
        
        return state

    def run(self, qpts_q=None, clean=False, name=None, path=None):
        """Run calculation for atomic displacements and update matrix.

        Parameters
        ----------
        qpts: List
            List of q-points indices for which the dynamical matrix will be
            calculated (only temporary).

        """

        if not self.initialized:
            self.initialize()

        if self.gamma:
            qpts_q = [0]
        elif qpts_q is None:
            qpts_q = range(self.kd.nibzkpts)
        else:
            assert isinstance(qpts_q, list)

        # Update name and path attributes
        self.set_name_and_path(name=name, path=path)
        # Get string template for filenames
        filename_str = self.get_filename_string()

        # Delay the ranks belonging to the same k-point/domain decomposition
        # equally
        time.sleep(rank // self.comm.size)

        # XXX Make a single ground_state_contributions member function
        # Ground-state contributions to the force constants
        self.dyn.density_ground_state(self.calc)
        # self.dyn.wfs_ground_state(self.calc, self.response_calc)
        
        # Calculate linear response wrt q-vectors and displacements of atoms
        for q in qpts_q:
            
            if not self.gamma:
                self.perturbation.set_q(q)

            # First-order contributions to the force constants
            for a in self.dyn.indices:
                for v in [0, 1, 2]:

                    # Check if the calculation has already been done
                    filename = filename_str % (q, a, v)
                    # Wait for all sub-ranks to enter
                    self.comm.barrier()
                    
                    if os.path.isfile(os.path.join(self.path, filename)):
                        continue

                    if self.comm.rank == 0:
                        fd = open(os.path.join(self.path, filename), 'w')

                    # Wait for all sub-ranks here
                    self.comm.barrier()
                    
                    components = ['x', 'y', 'z']
                    symbols = self.atoms.get_chemical_symbols()
                    print "q-vector index: %i" % q
                    print "Atom index: %i" % a
                    print "Atomic symbol: %s" % symbols[a]
                    print "Component: %s" % components[v]

                    # Set atom and cartesian component of perturbation
                    self.perturbation.set_av(a, v)
                    # Calculate linear response
                    self.response_calc(self.perturbation)

                    # Calculate row of the matrix of force constants
                    self.dyn.calculate_row(self.perturbation,
                                           self.response_calc)

                    # Write force constants to file
                    if self.comm.rank == 0:
                        self.dyn.write(fd, q, a, v)
                        fd.close()
                        
                    # Store effective potential derivative
                    if self.e_ph is not None:
                        v1_eff_G = self.perturbation.v1_G + \
                                   self.response_calc.vHXC1_G
                        self.e_ph.v1_eff_qavG.append(v1_eff_G)

                    # Wait for the file-writing rank here
                    self.comm.barrier()

        # XXX
        # Check that all files are valid and collect in a single file
        # Remove the files
        if clean:
            self.clean()
            
    def get_atoms(self):
        """Return atoms."""

        return self.atoms
    
    def get_dynamical_matrix(self):
        """Return reference to ``dyn`` attribute."""
        
        return self.dyn

    def get_filename_string(self):
        """Return string template for force constant filenames."""

        name_str = (self.name + '.' + 'q_%%0%ii_' % len(str(self.kd.nibzkpts)) +
                    'a_%%0%ii_' % len(str(len(self.atoms))) + 'v_%i' + '.pckl')

        return name_str
    
    def set_atoms(self, atoms):
        """Set atoms to be included in the calculation.

        Parameters
        ----------
        atoms: list
            Can be either a list of strings, ints or ...
            
        """
        
        assert isinstance(atoms, list)
        
        if isinstance(atoms[0], str):
            assert np.all([isinstance(atom, str) for atom in atoms])
            sym_a = self.atoms.get_chemical_symbols()
            # List for atomic indices
            indices = []
            for type in atoms:
                indices.extend([a for a, atom in enumerate(sym_a)
                                if atom == type])
        else:
            assert np.all([isinstance(atom, int) for atom in atoms])
            indices = atoms
            
        self.dyn.set_indices(indices)

    def set_name_and_path(self, name=None, path=None):
        """Set name and path of the force constant files.

        name: str
            Base name for the files which the elements of the matrix of force
            constants will be written to.
        path: str
            Path specifying the directory where the files will be dumped.
            
        """

        if name is None:
            self.name = 'phonon.' + self.atoms.get_chemical_formula()
        else:
            self.name = name
        # self.name += '.nibzkpts_%i' % self.kd.nibzkpts
        
        if path is None:
            self.path = '.'
        else:
            self.path = path

        # Set corresponding attributes in the ``dyn`` attribute
        filename_str = self.get_filename_string()
        self.dyn.set_name_and_path(filename_str, self.path)
            
    def clean(self):
        """Delete generated files."""

        filename_str = self.get_filename_string()
        
        for q in range(self.kd.nibzkpts):
            for a in range(len(self.atoms)):
                for v in [0, 1, 2]:
                    filename = filename_str % (q, a, v)
                    if os.path.isfile(os.path.join(self.path, filename)):
                        os.remove(filename)
                        
    def band_structure(self, path_kc, modes=False, acoustic=True):
        """Calculate phonon dispersion along a path in the Brillouin zone.

        The dynamical matrix at arbitrary q-vectors is obtained by Fourier
        transforming the real-space matrix. In case of negative eigenvalues
        (squared frequency), the corresponding negative frequency is returned.

        Parameters
        ----------
        path_kc: ndarray
            List of k-point coordinates (in units of the reciprocal lattice
            vectors) specifying the path in the Brillouin zone for which the
            dynamical matrix will be calculated.
        modes: bool
            Returns both frequencies and modes (mass scaled) when True.
        acoustic: bool
            Restore the acoustic sum-rule in the calculated force constants.
            
        """

        for k_c in path_kc:
            assert np.all(np.asarray(k_c) <= 1.0), \
                   "Scaled coordinates must be given"

        # Assemble the dynanical matrix from calculated force constants
        self.dyn.assemble(acoustic=acoustic)
        # Get the dynamical matrix in real-space
        DR_lmn, R_clmn = self.dyn.real_space()

        # Reshape for the evaluation of the fourier sums
        shape = DR_lmn.shape
        DR_m = DR_lmn.reshape((-1,) + shape[-2:])
        R_cm = R_clmn.reshape((3, -1))

        # Lists for frequencies and modes along path
        omega_kn = []
        u_kn =  []
        # Number of atoms included
        N = len(self.dyn.get_indices())
        
        # Mass prefactor for the normal modes
        m_inv_av = self.dyn.get_mass_array()
        
        for q_c in path_kc:

            # Evaluate fourier transform 
            phase_m = np.exp(-2.j * pi * np.dot(q_c, R_cm))
            # Dynamical matrix in unit of Ha / Bohr**2 / amu
            D_q = np.sum(phase_m[:, np.newaxis, np.newaxis] * DR_m, axis=0)

            if modes:
                omega2_n, u_avn = la.eigh(D_q, UPLO='L')
                # Sort eigenmodes according to eigenvalues (see below) and
                # multiply with mass prefactor
                u_nav = u_avn[:, omega2_n.argsort()].T.copy() * m_inv_av
                # Multiply with mass prefactor
                u_kn.append(u_nav.reshape((3*N, -1, 3)))
            else:
                omega2_n = la.eigvalsh(D_q, UPLO='L')

            # Sort eigenvalues in increasing order
            omega2_n.sort()
            # Use dtype=complex to handle negative eigenvalues
            omega_n = np.sqrt(omega2_n.astype(complex))

            # Take care of imaginary frequencies
            if not np.all(omega2_n >= 0.):
                indices = np.where(omega2_n < 0)[0]
                print ("WARNING, %i imaginary frequencies at "
                       "q = (% 5.2f, % 5.2f, % 5.2f) ; (omega_q =% 5.3e*i)"
                       % (len(indices), q_c[0], q_c[1], q_c[2],
                          omega_n[indices][0].imag))
                
                omega_n[indices] = -1 * np.sqrt(np.abs(omega2_n[indices].real))

            omega_kn.append(omega_n.real)

        # Conversion factor from sqrt(Ha / Bohr**2 / amu) -> eV
        s = units.Hartree**0.5 * units._hbar * 1.e10 / \
            (units._e * units._amu)**(0.5) / units.Bohr
        # Convert to eV and Ang
        omega_kn = s * np.asarray(omega_kn)
        if modes:
            u_kn = np.asarray(u_kn) * units.Bohr
            return omega_kn, u_kn
        
        return omega_kn

    def write_modes(self, q_c, branches=0, kT=units.kB*300, repeat=(1, 1, 1),
                    nimages=30, acoustic=True):
        """Write mode to trajectory file.

        The classical equipartioning theorem states that each normal mode has
        an average energy::
        
            <E> = 1/2 * k_B * T = 1/2 * omega^2 * Q^2

                =>

              Q = sqrt(k_B*T) / omega

        at temperature T. Here, Q denotes the normal coordinate of the mode.
        
        Parameters
        ----------
        q_c: ndarray
            q-vector of the modes.
        branches: int or list
            Branch index of calculated modes.
        kT: float
            Temperature in units of eV. Determines the amplitude of the atomic
            displacements in the modes.
        repeat: tuple
            Repeat atoms (l, m, n) times in the directions of the lattice
            vectors. Displacements of atoms in repeated cells carry a Bloch
            phase factor given by the q-vector and the cell lattice vector R_m.
        nimages: int
            Number of images in an oscillation.
            
        """

        if isinstance(branches, int):
            branch_n = [branches]
        else:
            branch_n = list(branches)

        # Calculate modes
        omega_n, u_n = self.band_structure([q_c], modes=True, acoustic=acoustic)
        
        # Repeat atoms
        atoms = self.atoms * repeat
        pos_mav = atoms.positions.copy()
        # Total number of unit cells
        M = np.prod(repeat)
            
        # Corresponding lattice vectors R_m
        R_cm = np.indices(repeat[::-1]).reshape(3, -1)[::-1]
        # Bloch phase
        phase_m = np.exp(2.j * pi * np.dot(q_c, R_cm))
        phase_ma = phase_m.repeat(len(self.atoms))

     
        for n in branch_n:

            omega = omega_n[0, n]
            u_av = u_n[0, n] # .reshape((-1, 3))
            # Mean displacement at high T ?
            u_av *= sqrt(kT / abs(omega))
            
            mode_av = np.zeros((len(self.atoms), 3), dtype=self.dtype)
            indices = self.dyn.get_indices()
            mode_av[indices] = u_av
            mode_mav = (np.vstack([mode_av]*M) * phase_ma[:, np.newaxis]).real

            traj = PickleTrajectory('%s.mode.%d.traj' % (self.name, n), 'w')

            for x in np.linspace(0, 2*pi, nimages, endpoint=False):
                # XXX Is it correct to take out the sine component here ?
                atoms.set_positions(pos_mav + sin(x) * mode_mav)
                traj.write(atoms)
                
            traj.close()
예제 #16
0
class UTDomainParallelSetup(TestCase):
    """
    Setup a simple domain parallel calculation."""

    # Number of bands
    nbands = 12

    # Spin-polarized
    nspins = 1

    # Mean spacing and number of grid points per axis (G x G x G)
    h = 0.25 / Bohr
    G = 48

    # Type of boundary conditions employed (determines nibzkpts and dtype)
    boundaries = None
    nibzkpts = None
    dtype = None

    timer = nulltimer

    def setUp(self):
        for virtvar in ['boundaries']:
            assert getattr(self,
                           virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Basic unit cell information:
        res, N_c = shapeopt(100, self.G**3, 3, 0.2)
        #N_c = 4*np.round(np.array(N_c)/4) # makes domain decomposition easier
        cell_cv = self.h * np.diag(N_c)
        pbc_c = {'zero'    : (False,False,False), \
                 'periodic': (True,True,True), \
                 'mixed'   : (True, False, True)}[self.boundaries]

        # Create randomized gas-like atomic configuration on interim grid
        tmpgd = GridDescriptor(N_c, cell_cv, pbc_c)
        self.atoms = create_random_atoms(tmpgd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        assert 1 == self.nspins
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Decide how many kpoints to sample from the 1st Brillouin Zone
        kpts_c = np.ceil(
            (10 / Bohr) / np.sum(cell_cv**2, axis=1)**0.5).astype(int)
        kpts_c = tuple(kpts_c * pbc_c + 1 - pbc_c)
        self.bzk_kc = kpts2ndarray(kpts_c)

        # Set up k-point descriptor
        self.kd = KPointDescriptor(self.bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, p.usesymm)

        # Set the dtype
        if self.kd.gamma:
            self.dtype = float
        else:
            self.dtype = complex

        # Create communicators
        parsize, parsize_bands = self.get_parsizes()
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(
            parsize, parsize_bands, self.nspins, self.kd.nibzkpts)

        self.kd.set_communicator(kpt_comm)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm)

        # Set up grid descriptor:
        self.gd = GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize)

        # Set up kpoint/spin descriptor (to be removed):
        self.kd_old = KPointDescriptorOld(self.nspins, self.kd.nibzkpts,
                                          kpt_comm, self.kd.gamma, self.dtype)

    def tearDown(self):
        del self.atoms, self.bd, self.gd, self.kd, self.kd_old

    def get_parsizes(self):
        # Careful, overwriting imported GPAW params may cause amnesia in Python.
        from gpaw import parsize, parsize_bands

        # D: number of domains
        # B: number of band groups
        if parsize is None:
            D = min(world.size, 2)
        else:
            D = parsize
        assert world.size % D == 0
        if parsize_bands is None:
            B = world.size // D
        else:
            B = parsize_bands
        return D, B

    # =================================

    def verify_comm_sizes(self):
        if world.size == 1:
            return
        comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
                                                   self.gd.comm, self.kd_old.comm]])
        self._parinfo = '%d world, %d band, %d domain, %d kpt' % comm_sizes
        self.assertEqual(self.nbands % self.bd.comm.size, 0)
        self.assertEqual(
            (self.nspins * self.kd.nibzkpts) % self.kd_old.comm.size, 0)
예제 #17
0
파일: fd.py 프로젝트: thonmaker/gpaw
    def ibz2bz(self, atoms):
        """Transform wave functions in IBZ to the full BZ."""

        assert self.kd.comm.size == 1

        # New k-point descriptor for full BZ:
        kd = KPointDescriptor(self.kd.bzk_kc, nspins=self.nspins)
        kd.set_communicator(serial_comm)

        self.pt = LFC(self.gd, [setup.pt_j for setup in self.setups],
                      kd,
                      dtype=self.dtype)
        self.pt.set_positions(atoms.get_scaled_positions())

        self.initialize_wave_functions_from_restart_file()

        weight = 2.0 / kd.nspins / kd.nbzkpts

        # Build new list of k-points:
        kpt_u = []
        for s in range(self.nspins):
            for k in range(kd.nbzkpts):
                # Index of symmetry related point in the IBZ
                ik = self.kd.bz2ibz_k[k]
                r, u = self.kd.get_rank_and_index(s, ik)
                assert r == 0
                kpt = self.mykpts[u]

                phase_cd = np.exp(2j * np.pi * self.gd.sdisp_cd *
                                  kd.bzk_kc[k, :, np.newaxis])

                # New k-point:
                kpt2 = KPoint(weight, s, k, k, phase_cd)
                kpt2.f_n = kpt.f_n / kpt.weight / kd.nbzkpts * 2 / self.nspins
                kpt2.eps_n = kpt.eps_n.copy()

                # Transform wave functions using symmetry operation:
                Psit_nG = self.gd.collect(kpt.psit_nG)
                if Psit_nG is not None:
                    Psit_nG = Psit_nG.copy()
                    for Psit_G in Psit_nG:
                        Psit_G[:] = self.kd.transform_wave_function(Psit_G, k)
                kpt2.psit = UniformGridWaveFunctions(self.bd.nbands,
                                                     self.gd,
                                                     self.dtype,
                                                     kpt=k,
                                                     dist=(self.bd.comm,
                                                           self.bd.comm.size),
                                                     spin=kpt.s,
                                                     collinear=True)
                self.gd.distribute(Psit_nG, kpt2.psit_nG)
                # Calculate PAW projections:
                nproj_a = [setup.ni for setup in self.setups]
                kpt2.projections = Projections(self.bd.nbands,
                                               nproj_a,
                                               kpt.projections.atom_partition,
                                               self.bd.comm,
                                               collinear=True,
                                               spin=s,
                                               dtype=self.dtype)

                kpt2.psit.matrix_elements(self.pt, out=kpt2.projections)
                kpt_u.append(kpt2)

        self.kd = kd
        self.mykpts = kpt_u