예제 #1
0
    def set_log(self, log=None):
        """Set output log."""

        if log is None:
            self.timer = nulltimer
        elif log == '-':
            self.timer = StepTimer(name='elph')
        else:
            self.timer = StepTimer(name='elph', out=open(log, 'w'))
예제 #2
0
    def get_M(self, modes, log=None, q=0):
        """Calculate el-ph coupling matrix for given modes(s).

        XXX:
        kwarg "q=0" is an ugly hack for k-points.
        There shuold be loops over q!

        Note that modes must be given as a dictionary with mode
        frequencies in eV and corresponding mode vectors in units
        of 1/sqrt(amu), where amu = 1.6605402e-27 Kg is an atomic mass unit.
        In short frequencies and mode vectors must be given in ase units.

        ::

                  d                   d  ~
            < w | -- v | w' > = < w | -- v | w'>
                  dP                  dP

                               _
                              \        ~a     d   .       ~a
                            +  ) < w | p  >   -- /_\H   < p | w' >
                              /_        i     dP     ij    j
                              a,ij

                               _
                              \        d  ~a     .        ~a
                            +  ) < w | -- p  >  /_\H    < p | w' >
                              /_       dP  i        ij     j
                              a,ij

                               _
                              \        ~a     .        d  ~a
                            +  ) < w | p  >  /_\H    < -- p  | w' >
                              /_        i        ij    dP  j
                              a,ij

        """
        if log is None:
            timer = nulltimer
        elif log == '-':
            timer = StepTimer(name='EPCM')
        else:
            timer = StepTimer(name='EPCM', out=open(log, 'w'))

        modes1 = modes.copy()
        #convert to atomic units
        amu = 1.6605402e-27  # atomic unit mass [Kg]
        me = 9.1093897e-31  # electron mass    [Kg]
        modes = {}
        for k in modes1.keys():
            modes[k / Hartree] = modes1[k] / np.sqrt(amu / me)

        dvt_Gx, ddH_aspx = self.get_gradient()

        from gpaw import restart
        atoms, calc = restart('eq.gpw', txt=None)
        if calc.wfs.S_qMM is None:
            calc.initialize(atoms)
            calc.initialize_positions(atoms)

        wfs = calc.wfs
        nao = wfs.setups.nao
        bfs = wfs.basis_functions
        dtype = wfs.dtype
        spin = 0  # XXX

        M_lii = {}
        timer.write_now('Starting gradient of pseudo part')
        for f, mode in modes.items():
            mo = []
            M_ii = np.zeros((nao, nao), dtype)
            for a in self.indices:
                mo.append(mode[a])
            mode = np.asarray(mo).flatten()
            dvtdP_G = np.dot(dvt_Gx, mode)
            bfs.calculate_potential_matrix(dvtdP_G, M_ii, q=q)
            tri2full(M_ii, 'L')
            M_lii[f] = M_ii
        timer.write_now('Finished gradient of pseudo part')

        P_aqMi = calc.wfs.P_aqMi
        # Add the term
        #  _
        # \        ~a     d   .       ~a
        #  ) < w | p  >   -- /_\H   < p | w' >
        # /_        i     dP     ij    j
        # a,ij

        Ma_lii = {}
        for f, mode in modes.items():
            Ma_lii[f] = np.zeros_like(M_lii.values()[0])

        timer.write_now('Starting gradient of dH^a part')
        for f, mode in modes.items():
            mo = []
            for a in self.indices:
                mo.append(mode[a])
            mode = np.asarray(mo).flatten()

            for a, ddH_spx in ddH_aspx.items():
                ddHdP_sp = np.dot(ddH_spx, mode)
                ddHdP_ii = unpack2(ddHdP_sp[spin])
                Ma_lii[f] += dots(P_aqMi[a][q], ddHdP_ii, P_aqMi[a][q].T)
        timer.write_now('Finished gradient of dH^a part')

        timer.write_now('Starting gradient of projectors part')
        dP_aMix = self.get_dP_aMix(calc.spos_ac, wfs, q, timer)
        timer.write_now('Finished gradient of projectors part')

        dH_asp = pickle.load(open('v.eq.pckl', 'rb'))[1]

        Mb_lii = {}
        for f, mode in modes.items():
            Mb_lii[f] = np.zeros_like(M_lii.values()[0])

        for f, mode in modes.items():
            for a, dP_Mix in dP_aMix.items():
                dPdP_Mi = np.dot(dP_Mix, mode[a])
                dH_ii = unpack2(dH_asp[a][spin])
                dPdP_MM = dots(dPdP_Mi, dH_ii, P_aqMi[a][q].T)
                Mb_lii[f] -= dPdP_MM + dPdP_MM.T
                # XXX The minus sign here is quite subtle.
                # It is related to how the derivative of projector
                # functions in GPAW is calculated.
                # More thorough explanations, anyone...?

        # Units of M_lii are Hartree/(Bohr * sqrt(m_e))
        for mode in M_lii.keys():
            M_lii[mode] += Ma_lii[mode] + Mb_lii[mode]

        # conversion to eV. The prefactor 1 / sqrt(hb^2 / 2 * hb * f)
        # has units Bohr * sqrt(me)
        M_lii_1 = M_lii.copy()
        M_lii = {}

        for f in M_lii_1.keys():
            M_lii[f * Hartree] = M_lii_1[f] * Hartree / np.sqrt(2 * f)

        return M_lii