예제 #1
0
def atomizationEnergyH2O(dbname, xc):
    database = db.connect(dbname)
    system = database.get_atoms(
        selection=20)  # Use atom with reference 20 as structure

    calc = gp.GPAW(xc=xc)
    system.set_calculator(calc)
    eH2O = system.get_potential_energy()

    calc = gp.GPAW(xc=xc, hund=True)
    Hsyst = Atoms("H", positions=[[3.5, 3.5 + 0.001, 3.5 + 0.0002]])
    Hsyst.set_cell([7, 7, 7])
    Hsyst.center()
    Hsyst.set_calculator(calc)
    eH = Hsyst.get_potential_energy()

    Osyst = Atoms("O", positions=[[3.5, 3.5 + 0.001, 3.5 + 0.0002]])
    Osyst.set_cell([7, 7, 7])
    Osyst.center()
    Osyst.set_calculator(calc)
    eO = Osyst.get_potential_energy()

    print("Hydrogen energy: %.2E" % (eH))
    print("Oxygen energy: %.2E" % (eO))
    print("Atomization energy: %.2E" % (eH2O - 2 * eH - eO))
예제 #2
0
def main(argv):
    atoms = bulk("Al")
    atoms = atoms * (4, 4, 4)
    mode = "fd"

    e_cut = 500
    if (mode == "fd"):
        h = 0.2
        calc = gp.GPAW(mode="fd", h=h, xc="PBE", kpts=(6, 6, 6), nbands=-10)
    else:
        calc = gp.GPAW(mode=gp.PW(e_cut), xc="PBE", kpts=(6, 6, 6), nbands=-10)
    atoms.set_calculator(calc)

    energy = atoms.get_potential_energy()
    print("Energy: %.2E" % (energy))
예제 #3
0
def main(argv):
    fname = argv[0]
    if (int(argv[1]) == 1):
        variable_cell = True
    else:
        variable_cell = False
    atoms = read(fname)
    #atoms = bulk("Al")

    calc = gp.GPAW(mode=gp.PW(500), kpts=(12, 12, 12), xc="PBE", nbands=-20)
    atoms.set_calculator(calc)
    prc = Exp(mu=1.0, mu_c=1.0)
    outfname = fname.split("/")[-1]
    outfname = outfname.split(".")[0]
    logfile = outfname + ".log"
    traj_file = outfname + ".traj"
    relaxer = PreconLBFGS(atoms,
                          logfile=logfile,
                          precon=prc,
                          use_armijo=True,
                          variable_cell=variable_cell)
    trajObj = Trajectory(traj_file, 'w', atoms)
    relaxer.attach(trajObj)
    if (variable_cell):
        relaxer.run(fmax=0.025, smax=0.003)
    else:
        relaxer.run(fmax=0.025)
    outfname = fname.split("/")[-1]
    outfname = outfname.split(".")[0]
    outfname += "_relaxed.xyz"
    print("Energy: {}".format(atoms.get_potential_energy()))
    write(outfname, atoms)
예제 #4
0
def main():
    atoms = bulk("Al", cubic=True)
    atoms = atoms * (3, 3, 3)
    for i in range(int(len(atoms) / 5)):
        atoms[i].symbol = "Mg"

    atoms.rattle(stdev=0.005)

    calc = gp.GPAW(mode=gp.PW(500), xc="PBE", kpts=(4, 4, 4), nbands="120%")
    atoms.set_calculator(calc)

    logfile = "relax250.log"
    traj = "relax250.traj"
    trajObj = Trajectory(traj, 'w', atoms)

    precon = Exp(mu=1)
    relaxer = PreconLBFGS(atoms,
                          logfile=logfile,
                          use_armijo=True,
                          precon=precon,
                          memory=50)
    #relaxer = PreconFIRE( atoms, logfile=logfile, use_armijo=True, precon=precon )
    relaxer.attach(trajObj)
    try:
        relaxer.run(fmax=0.05)
    except Exception as exc:
        print(exc)
예제 #5
0
def relax(runID):
    db = connect(db_name)
    atoms = db.get_atoms(id=runID)

    con = sq.connect(db_name)
    cur = con.cursor()
    cur.execute("SELECT value FROM text_key_values WHERE id=? AND key='name'",
                (runID, ))
    name = cur.fetchone()[0]
    con.close()

    calc = gp.GPAW(mode=gp.PW(600),
                   xc="PBE",
                   kpts=(4, 4, 4),
                   nbands="120%",
                   symmetry="off")
    atoms.set_calculator(calc)
    precon = Exp(mu=1.0, mu_c=1.0)
    save_to_db = SaveToDB(db_name, runID, name)
    logfile = "logfile%d.log" % (runID)
    traj = "trajectory%d.traj" % (runID)
    uf = UnitCellFilter(atoms, hydrostatic_strain=True)
    relaxer = PreconLBFGS(uf, logfile=logfile, use_armijo=True, precon=precon)
    relaxer.attach(save_to_db, interval=1, atoms=atoms)
    trajObj = Trajectory(traj, "w", atoms)
    relaxer.attach(trajObj)
    relaxer.run(fmax=0.05, smax=0.003)
예제 #6
0
def main(argv):
    n_mg = int(argv[0])
    atoms = bulk("Al")
    atoms = atoms * (4, 4, 4)
    for i in range(n_mg):
        atoms[i].symbol = "Mg"

    atoms.rattle(stdev=0.005)

    calc = gp.GPAW(mode=gp.PW(500), xc="PBE", kpts=(4, 4, 4), nbands="120%")
    atoms.set_calculator(calc)

    logfile = "preconTest%d.log" % (n_mg)
    traj = "preconTest%d.traj" % (n_mg)
    trajObj = Trajectory(traj, 'w', atoms)

    precon = Exp(mu=1)
    relaxer = PreconLBFGS(atoms,
                          logfile=logfile,
                          use_armijo=True,
                          precon=precon)
    relaxer.attach(trajObj)
    try:
        relaxer.run(fmax=0.05)
    except:
        pass
    print("Mu: %.2E" % (relaxer.precon.mu))
예제 #7
0
 def _wan(gpts=(8, 8, 8),
          atoms=None,
          calc=None,
          nwannier=2,
          fixedstates=None,
          initialwannier='bloch',
          kpts=(1, 1, 1),
          file=None,
          rng=rng,
          full_calc=False,
          std_calc=True):
     if std_calc and calc is None and atoms is None:
         calc = std_calculator
     else:
         if calc is None:
             gpaw = pytest.importorskip('gpaw')
             calc = gpaw.GPAW(gpts=gpts,
                              nbands=nwannier,
                              kpts=kpts,
                              symmetry='off',
                              txt=None)
         if atoms is None and not full_calc:
             pbc = (np.array(kpts) > 1).any()
             atoms = molecule('H2', pbc=pbc)
             atoms.center(vacuum=3.)
         if not full_calc:
             atoms.calc = calc
             atoms.get_potential_energy()
     return Wannier(nwannier=nwannier,
                    fixedstates=fixedstates,
                    calc=calc,
                    initialwannier=initialwannier,
                    file=None,
                    rng=rng)
예제 #8
0
def main():
    database = "aluminum.db"
    # Parse parameters from the database
    con = sqdb.connect(database)
    cur = con.cursor()
    cur.execute(
        "SELECT VIEW,CUTOFF,KPTS,LATTICEPARAM,_rowid_,STRUCTURE FROM PARAMS WHERE STATUS=?",
        ("RUN", ))
    jobs = cur.fetchall()
    con.close()
    print(jobs)

    for job in jobs:
        stamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
        structure = job[5]
        a = job[3]
        show = job[0]
        b = a / 2.0

        if (structure == "FCC"):
            bulk = Atoms("Al",
                         cell=[[0, b, b], [b, 0, b], [b, b, 0]],
                         pbc=True)
        elif (structure == "BCC"):
            bulk = Atoms("Al",
                         cell=[[b, b, b], [b, b, -b], [b, -b, b]],
                         pbc=True)
        else:
            print("Unknown lattice type")
            continue

        if (show == 1):
            view(bulk)

        calcfile = "data/alum" + structure + stamp + ".txt"
        cutoff = job[1]
        k = job[2]
        calc = gp.GPAW(mode=gp.PW(cutoff),
                       kpts=(k, k, k),
                       txt=calcfile,
                       xc="LDA")

        bulk.set_calculator(calc)
        energy = bulk.get_potential_energy()

        gpwfile = "data/alum" + structure + stamp + ".gpw"
        calc.write(gpwfile)

        # Update the database
        aseDB = db.connect(database)
        lastID = aseDB.write(bulk)

        con = sqdb.connect(database)
        cur = con.cursor()
        row = int(job[4])
        cur.execute(
            "UPDATE PARAMS SET GPWFILE=?,TXTFILE=?,STATUS=?,ID=? WHERE _rowid_=?",
            (gpwfile, calcfile, "FINISHED", lastID, row))
        con.commit()
        con.close()
예제 #9
0
def main(runID):
    db = connect(db_name)
    calc = gp.GPAW(mode=gp.PW(500), xc="PBE", kpts=(8, 8, 8), nbands=-50)
    atoms = db.get_atoms(id=runID)
    atoms.set_calculator(calc)
    energy = atoms.get_potential_energy()
    del db[runID]
    db.write(atoms)
예제 #10
0
def relax(fname):
    atoms = read(fname)
    calc = gp.GPAW(mode=gp.PW(600),kpts=(4,4,4),xc="PBE")
    atoms.set_calculator(calc)
    uf = UnitCellFilter(atoms,hydrostatic_strain=True)
    relaxer = PreconLBFGS( uf, logfile="logfile.log" )
    relaxer.run( fmax=0.025,smax=0.003 )
    write( fname, atoms )
예제 #11
0
def run_dft():
    kpt = 16
    atoms = bulk("Al",crystalstructure="fcc",a=4.05)
    calc = gp.GPAW( mode=gp.PW(600), xc="PBE", kpts=(kpt,kpt,kpt), nbands=-50 )
    atoms.set_calculator( calc )
    relaxer = BFGS( UnitCellFilter(atoms) )
    relaxer.run( fmax=0.025 )
    energy = atoms.get_potential_energy()
    print (energy)
예제 #12
0
def main():
    atoms = build.bulk("Al")
    atoms = atoms * (8, 4, 4)
    nMg = int(0.2 * len(atoms))
    for i in range(nMg):
        atoms[i].symbol = "Mg"

    calc = gp.GPAW(mode=gp.PW(400), xc="PBE", nbands=-10, kpts=(4, 4, 4))
    atoms.set_calculator(calc)
    energy = atoms.get_potential_energy() / len(atoms)
예제 #13
0
def test_get_centers(factory):
    # Rough test on the position of the Wannier functions' centers
    gpaw = pytest.importorskip('gpaw')
    calc = gpaw.GPAW(gpts=(32, 32, 32), nbands=4, txt=None)
    atoms = molecule('H2', calculator=calc)
    atoms.center(vacuum=3.)
    atoms.get_potential_energy()
    wanf = Wannier(nwannier=2, calc=calc, initialwannier='bloch')
    centers = wanf.get_centers()
    com = atoms.get_center_of_mass()
    assert np.abs(centers - [com, com]).max() < 1e-4
예제 #14
0
def originalCalculation():
    atoms = bulk("Al", cubic=True)

    calc = gp.GPAW(mode=gp.PW(350), nbands=-50, xc="PBE", kpts={"density": 1.37, "even": True})
    atoms.set_calculator(calc)
    energy = atoms.get_potential_energy()
    calc.write( "al.gpw", mode="all" )
    n = calc.get_all_electron_density(gridrefinement=4)
    np.save("density_al.npy", n)
    view(atoms, viewer="avogadro", data=n)
    ase.io.write("al_density.cube", atoms, data=n)
예제 #15
0
def run(h, symb):
    atoms = bulk("Al")
    atoms[0].symbol = symb

    kpts = {"density": 5.4, "even": True}
    calc = gp.GPAW(h=h, kpts=kpts, nbands=-100)
    atoms.set_calculator(calc)
    atoms.get_potential_energy()

    db = connect(DB_NAME)
    db.write(atoms, grid_spacing=h)
예제 #16
0
def main( argv ):
    atoms = bulk("Al")
    kpt = int(argv[0])
    n_atoms = int(argv[1])
    h = float(argv[2])
    atoms = atoms*(n_atoms,n_atoms,n_atoms)
    mode = "fd"

    calc = gp.GPAW(mode="fd", h=h, xc="PBE", kpts=(kpt,kpt,kpt), nbands="120%" )
    atoms.set_calculator( calc )

    energy = atoms.get_potential_energy()
    print ("Energy: %.2E"%(energy))
예제 #17
0
def originalCalculation():
    d = 1.1
    a = 5.0
    c = a / 2.0

    atoms = ase.Atoms("CO",
                      positions=([c - d / 2.0, c, c], [c + d / 2.0, c, c]),
                      cell=(a, a, a))

    calc = gp.GPAW(nbands=5, h=0.2, txt=None)
    atoms.set_calculator(calc)
    energy = atoms.get_potential_energy()
    calc.write("CO.gpw", mode="all")
예제 #18
0
def main(runID):
    db = ase.db.connect(db_name())
    atoms = db.get_atoms(id=runID)
    row = db.get(id=runID)
    n_kpt = row.n_kpt
    cutoff = row.cutoff

    calc = gp.GPAW(mode=gp.PW(cutoff),
                   xc="PBE",
                   kpts=(n_kpt, n_kpt, n_kpt),
                   nbands="120%")
    atoms.set_calculator(calc)
    energy = atoms.get_potential_energy()
    db.update(runID, trial_energy=energy)
예제 #19
0
def main():
    a = 4.05
    atoms = alfact.Al7068(symbol=("Al", "Zn", "Mg", "Cu"),
                          latticeconstant=a,
                          pbc=True)
    #write( "al7068.pov", atoms, rotation="-10z,-70x" )

    atoms.set_cell([6 * a, 6 * a, 6 * a])
    atoms.center()
    k = 4
    #calc = gp.GPAW( xc="PBE", mode=gp.PW(300), kpts=(k,k,k) )
    calc = gp.GPAW(xc="PBE", h=0.2)
    atoms.set_calculator(calc)
    energy = atoms.get_potential_energy()
    print("Energy: %.2E eV/atom" % (energy))
예제 #20
0
def _std_calculator_gpwfile(tmp_path_factory, factories):
    factories.require('gpaw')
    import gpaw
    atoms = molecule('H2', pbc=True)
    atoms.center(vacuum=3.)
    gpw_path = tmp_path_factory.mktemp('sub') / 'dumpfile.gpw'
    calc = gpaw.GPAW(gpts=(8, 8, 8),
                     nbands=4,
                     kpts=(2, 2, 2),
                     symmetry='off',
                     txt=None)
    atoms.calc = calc
    atoms.get_potential_energy()
    calc.write(gpw_path, mode='all')
    return gpw_path
예제 #21
0
def test_get_pdos(wan):
    nwannier = 4
    gpaw = pytest.importorskip('gpaw')
    calc = gpaw.GPAW(gpts=(16, 16, 16), nbands=nwannier, txt=None)
    atoms = molecule('H2')
    atoms.center(vacuum=3.)
    atoms.calc = calc
    atoms.get_potential_energy()
    wanf = wan(atoms=atoms,
               calc=calc,
               nwannier=nwannier,
               initialwannier='bloch')
    eig_n = calc.get_eigenvalues()
    for i in range(nwannier):
        pdos_n = wanf.get_pdos(w=i, energies=eig_n, width=0.001)
        assert pdos_n[i] != pytest.approx(0)
예제 #22
0
def optimizeH2O(dbname):
    database = db.connect(dbname)
    sqdb = sq.connect(dbname)
    cur = sqdb.cursor()
    cur.execute(
        "SELECT _rowid_,CellSize,XC,JobType,AtomID FROM InputParams WHERE STATUS=?",
        ("RUN", ))
    jobs = cur.fetchall()
    sqdb.close()

    for job in jobs:
        jobtype = job[3]
        atomID = int(job[4])
        if (atomID >= 0):
            print("Using Atoms object with ID %d" % (atomID))
            system = database.get_atoms(selection=atomID)
        else:
            system = Atoms(["H", "H", "O"],
                           positions=[[3.0, 3.8, 2.4], [3, 2.23, 2.4],
                                      [3, 3, 3]])

        size = job[1]
        system.set_cell([size, size, size])
        system.center()

        xc = job[2]
        calc = gp.GPAW(xc=xc)

        system.set_calculator(calc)

        if (jobtype == "Optimize"):
            opt = QuasiNewton(system, trajectory="H2O.gpw.traj")
            opt.run(fmax=0.05)
        elif (jobtype == "GS"):
            e1 = system.get_potential_energy()
        lastID = database.write(system)
        row = int(job[0])

        # Update ID
        print("Updating entry in database")
        sqdb = sq.connect(dbname)
        cur = sqdb.cursor()
        cur.execute("UPDATE InputParams SET ID=?, STATUS=? WHERE _rowid_=?",
                    (lastID, "FINISHED", row))
        sqdb.commit()
        sqdb.close()
        print("Database updated")
def main(runID):
    db = connect(db_name)
    atoms = db.get_atoms(id=runID)
    N = 14
    calc = gp.GPAW(mode=gp.PW(500),
                   xc="PBE",
                   kpts=(N, N, N),
                   nbands=-50,
                   symmetry={'do_not_symmetrize_the_density': True})
    atoms.set_calculator(calc)
    precon = Exp(mu=1.0, mu_c=1.0)
    uf = UnitCellFilter(atoms, hydrostatic_strain=True)
    logfile = "al3mg2{}.log".format(runID)
    relaxer = PreconLBFGS(uf, logfile=logfile, use_armijo=True, precon=precon)
    relaxer.run(fmax=0.025, smax=0.003)
    energy = atoms.get_potential_energy()
    del db[db.get(id=runID)]
    db.write(atoms)
예제 #24
0
def compute_bulk(fname):
    atoms = read(fname)
    calc = gp.GPAW(mode=gp.PW(600),kpts=(4,4,4),xc="PBE")

    energies = []
    base_fname = fname.split(".")[0]
    lat_params = np.loadtxt( base_fname+"_latparam.csv", delimiter="," )
    V0 = atoms.get_volume()
    a0 = (V0)**(1.0/3.0)
    for a in lat_params:
        sim_atoms = atoms.copy()
        cell = sim_atoms.get_cell()
        cell *= (a/a0)
        sim_atoms.set_cell(cell,scale_atoms=True)
        sim_atoms.set_calculator(calc)
        energy = sim_atoms.get_potential_energy()
        energies.append(energy/len(sim_atoms))

    out = np.vstack((lat_params,energies)).T
    np.savetxt( base_fname+"_bulk.csv",out,delimiter=",",header="Lattice parameter,energy per atom")
예제 #25
0
def main(argv):
    n_mg = int(argv[0])
    atoms = bulk("Al")
    atoms = atoms * (4, 4, 4)
    for i in range(n_mg):
        atoms[i].symbol = "Mg"

    atoms.rattle(stdev=0.005)

    calc = gp.GPAW(mode=gp.PW(500), xc="PBE", kpts=(4, 4, 4), nbands="120%")
    atoms.set_calculator(calc)

    logfile = "bfgsTest%d.log" % (n_mg)
    traj = "bfgsTest%d.traj" % (n_mg)
    trajObj = Trajectory(traj, 'w', atoms)

    relaxer = BFGS(atoms, logfile=logfile)
    relaxer.attach(trajObj)
    try:
        relaxer.run(fmax=0.05)
    except:
        pass
예제 #26
0
def main():
    unitcellSize = 10.0 # Size of unit cell in Angstrohm
    center = unitcellSize/2.0

    # Create Hydrogen atom located at the center of the unitcell
    atom = ase.Atoms( "H", positions=[(center,center,center)], magmoms=[0],
        cell=(center,center+0.001, center+0.002))

    # Initialize the GPAW calculator
    calc = gp.GPAW( mode=gp.PW(), xc="PBE", hund=True, eigensolver="rmm-diis",
    occupations=gp.FermiDirac(0.0, fixmagmom=True), txt="hydrogen.out")
    atom.set_calculator( calc )

    print ("Solving single atom...")
    e1 = atom.get_potential_energy()
    calc.write("H.gpw")

    # Simulate hydrogen molecule
    d = 0.74 # Bond length
    molecule = ase.Atoms( "H2", positions=([center-d/2.0,center,center],[center+d/2.0,center,center]),
        cell=(center,center,center))

    calc.set(txt="H.out")
    calc.set(hund=False)
    molecule.set_calculator( calc )
    print ("Solving hydrogen molecule...")
    e2 = molecule.get_potential_energy()

    # Test if it recalculates everytime
    for i in range(10):
        e2 = molecule.get_potential_energy()
        print (e2)
    calc.write("H2.gpw")

    print ( "Hydrogen atom energy: %.2f eV"%(e1) )
    print ( "Hydrogen molecule energy: %.2f eV"%(e2) )
    print ( "Atomization energy: %.2f eV"%(2*e1-e2) )
예제 #27
0
import gpaw as gp
from ase.build import bulk
from ase.visualize import view
from ase.optimize.precon import PreconLBFGS
from ase.io import write
from ase.calculators.emt import EMT

atoms = bulk("Mg", crystalstructure="fcc", a=4.1)
atoms = atoms * (2, 2, 2)
si_indx = [1, 2, 4, 7]
for indx in si_indx:
    atoms[indx].symbol = "Si"

calc = gp.GPAW(mode=gp.PW(600), xc="PBE", kpts=(2, 2, 2), nbands=-100)
atoms.set_calculator(calc)

opt = PreconLBFGS(atoms, variable_cell=True)
opt.run(fmax=0.025, smax=0.003)
write("data/relaxed_mgsi.xyz", atoms)
예제 #28
0
def std_calculator(_std_calculator_gpwfile):
    import gpaw
    return gpaw.GPAW(_std_calculator_gpwfile, txt=None)
예제 #29
0
def main(argv):
    uid = int(argv[0])

    attempt_restart = 1
    kpts_density = 1.37
    lattice_param = 4.05
    relax_atoms = 0
    final_structure = 0
    optimizer = "lbfgs"
    init_from_traj = 0
    for arg in argv:
        if arg.find("--restart=") != -1:
            attempt_restart = int(arg.split("--restart")[1])
        elif "--kpt=" in arg:
            kpts_density = float(arg.split("--kpt=")[1])
        elif "--a=" in arg:
            lattice_param = float(arg.split("--a=")[1])
        elif "--relax=" in arg:
            relax_atoms = int(arg.split("--relax=")[1])
        elif "--final=" in arg:
            final_structure = int(arg.split("--final=")[1])
        elif "--opt=" in arg:
            optimizer = arg.split("--opt=")[1]
        elif "--traj=" in arg:
            init_from_traj = int(arg.split("--traj=")[1])

    db = connect(db_name)
    atoms = db.get(id=uid).toatoms()
    atoms = delete_vacancies(atoms)
    name = db.get(id=uid).name

    kpt = {"density": kpts_density, "even": True}
    # calc = gp.GPAW(h=0.32, kpts=kpt, xc="PBE", nbands="120%")
    calc = gp.GPAW(mode=gp.PW(600), kpts=kpt, xc="PBE", nbands="120%")
    atoms.set_calculator(calc)
    restart_file = db.get(id=uid).get("restart_file", "")

    if relax_atoms == 0 and final_structure == 0:
        atoms.get_potential_energy()

        # Store the energy of the atoms object with the correct name
        # and lattice parameter
        db.write(atoms,
                 name=name,
                 lattice_param=lattice_param,
                 run_type="lattice_param_estimation")
    elif relax_atoms == 1:
        if os.path.exists(restart_file) and attempt_restart == 1:
            atoms, calc = gp.restart(restart_file)
        elif init_from_traj:
            trajfile = "trajectory{}.traj".format(name)
            traj = Trajectory(trajfile, 'r')
            atoms = traj[-1]
            atoms.set_calculator(calc)
        else:
            db.update(uid, restart_file=SaveRestartFiles.restart_name(name))
        restart_saver = SaveRestartFiles(calc, name)
        trajObj = Trajectory("trajectory{}.traj".format(name), 'a', atoms)
        ucf = UnitCellFilter(atoms, hydrostatic_strain=True)
        logfile = "log_{}.txt".format(name)
        if optimizer == "cg":
            relaxer = SciPyFminCG(ucf, logfile=logfile)
        elif optimizer == "fire":
            relaxer = PreconFIRE(ucf, logfile=logfile)
        else:
            relaxer = PreconLBFGS(ucf, logfile=logfile)

        relaxer.attach(trajObj)
        relaxer.attach(restart_saver, interval=1)
        relaxer.run(fmax=0.025)
        db.write(atoms,
                 name=name,
                 lattice_param=lattice_param,
                 run_type="geometry_opt",
                 restart_file=SaveRestartFiles.restart_name(name))
    elif final_structure:
        atoms.get_potential_energy()
        uid = db.write(atoms,
                       name=name,
                       struct_type="final",
                       kpts_density=kpts_density)
        init_id = db.get(name=name, struct_type='initial').id
        db.update(init_id, final_struct_id=uid, converged=1)
예제 #30
0
def main(argv):
    relax_mode = "both"  # both, cell, positions
    system = "AlMg"
    runID = int(argv[0])
    nkpt = int(argv[1])

    single_point = False
    if (len(argv) >= 3):
        single_point = (int(argv[2]) == 1)
    print("Running job: %d" % (runID))
    db_paths = [
        "/home/ntnu/davidkl/GPAWTutorial/CE/almg_fcc_vac.db",
        "almg_fcc_vac.db", "/home/davidkl/GPAWTutorial/CE/almg_fcc_vac.db"
    ]
    for path in db_paths:
        if (os.path.isfile(path)):
            db_name = path
            break
    #db_name = "almgsi_test_db.db"
    db = ase.db.connect(db_name)
    name = db.get(id=runID).key_value_pairs["name"]
    new_run = not db.get(id=runID).key_value_pairs["started"]

    # Update the databse
    db.update(runID, started=True, converged=False)
    db.update(runID, nkpt=nkpt)

    atoms = db.get_atoms(id=runID)
    atoms = delete_vacancies(atoms)

    if (len(atoms) == 1):
        nbands = -10
    else:
        nbands = "120%"
    kpts = (nkpt, nkpt, nkpt)
    try:
        restart_name = SaveRestartFiles.restart_name(name)
        atoms, calc = gp.restart(restart_name)
    except:
        calc = gp.GPAW(mode=gp.PW(500), xc="PBE", kpts=kpts, nbands=nbands)
        atoms.set_calculator(calc)

    if (single_point):
        calc = gp.GPAW(mode=gp.PW(500), xc="PBE", kpts=kpts, nbands=nbands)
        atoms.set_calculator(calc)

    logfile = "almg_fcc_vac{}.log".format(name)
    traj = "almg_bcc{}.traj".format(name)
    db.update(runID, trajfile=traj)
    trajObj = Trajectory(traj, 'w', atoms)

    #storeBest = SaveToDB(db_name,runID,name,mode=relax_mode)
    save_calc = SaveRestartFiles(calc, name)
    update_db_info = UpdateDBInfo(db_name, runID, atoms)
    volume = atoms.get_volume()

    try:
        precon = Exp(mu=1.0, mu_c=1.0)
        fmax = 0.025
        smax = 0.003
        if (relax_mode == "both"):
            relaxer = PreconLBFGS(atoms,
                                  logfile=logfile,
                                  use_armijo=True,
                                  variable_cell=True)
        elif (relax_mode == "positions"):
            #relaxer = SciPyFminCG( atoms, logfile=logfile )
            relaxer = BFGS(atoms, logfile=logfile)
        elif (relax_mode == "cell"):
            str_f = StrainFilter(atoms, mask=[1, 1, 1, 0, 0, 0])
            relaxer = BFGS(str_f, logfile=logfile)
            fmax = smax * volume

        relaxer.attach(trajObj)
        #relaxer.attach( storeBest, interval=1, atoms=atoms )
        relaxer.attach(save_calc, interval=1)
        relaxer.attach(update_db_info, interval=1)
        if (not single_point):
            if (relax_mode == "both"):
                relaxer.run(fmax=fmax, smax=smax)
            else:
                relaxer.run(fmax=fmax)
        energy = atoms.get_potential_energy()

        orig_atoms = db.get_atoms(runID)
        single_p_calc = SinglePointCalculator(orig_atoms, energy=energy)
        orig_atoms.set_calculator(single_p_calc)
        kvp = db.get(name=name).key_value_pairs
        del db[runID]
        newID = db.write(orig_atoms, key_value_pairs=kvp)

        if (relax_mode == "positions"):
            db.update(newID, converged_force=True)
        elif (relax_mode == "cell"):
            db.update(newID, converged_stress=True)
        else:
            db.update(newID, converged_stress=True, converged_force=True)

        db.update(newID, single_point=single_point)
        db.update(newID, restart_file=SaveRestartFiles.restart_name(name))
        row = db.get(id=newID)
        conv_force = row.get("converged_force", default=0)
        conv_stress = row.get("converged_stress", default=0)
        if ((conv_force == 1) and (conv_stress == 1) and (nkpt == 4)):
            db.update(newID, converged=True)
    except Exception as exc:
        print(exc)