예제 #1
0
파일: boptim.py 프로젝트: saimani5/GPim
    def evaluate_function(self, indices):
        """
        Evaluates target function in the new point(s)
        """
        indices = [indices] if not self.batch_update else indices
        print('indices')
        print(indices)
        if self.simulate_measurement:
            for idx in indices:
                self.y_sparse[tuple(idx)] = self.y_true[tuple(idx)]
        else:
            if self.extent is not None:
                for idx in indices:
                    _idx = []
                    for i, e in zip(idx, self.extent):
                        _idx.append(i + e[0])
                    _idx = tuple(_idx)
                    self.y_sparse[tuple(idx)] = self.target_function(_idx)
            else:
                if not self.batch_update:
                    print('entered first loop')
                    value = self.target_function(indices)
                    self.y_sparse[tuple(indices)] = value

                else:
                    values = self.target_function(indices)
                    print('values')
                    print(values)
                    for i, idx in enumerate(indices):
                        self.y_sparse[tuple(idx)] = values[i]

        self.X_sparse = gprutils.get_sparse_grid(self.y_sparse, self.extent)
        self.target_func_vals.append(self.y_sparse.copy())
        return
예제 #2
0
def test_boptim(acqf, result):
    Z_sparse = initial_seed()
    X_full = gprutils.get_full_grid(Z_sparse)
    X_sparse = gprutils.get_sparse_grid(Z_sparse)
    expected_result = np.load(result)
    boptim = boptimizer(X_sparse,
                        Z_sparse,
                        X_full,
                        trial_func,
                        acquisition_function=acqf,
                        exploration_steps=20,
                        use_gpu=False,
                        verbose=1)
    boptim.run()
    assert_allclose(boptim.target_func_vals[-1], expected_result)
예제 #3
0
def test_skgpr_2d(kernel):  # sanity check only, due to comput cost
    R = get_dummy_data()
    X = gprutils.get_sparse_grid(R)
    X_true = gprutils.get_full_grid(R)
    mean, sd, _ = skgpr.skreconstructor(X,
                                        R,
                                        X_true,
                                        kernel=kernel,
                                        learning_rate=0.1,
                                        iterations=2,
                                        use_gpu=False,
                                        verbose=False).run()
    assert_(mean.shape == sd.shape == R.shape)
    assert_(not np.isnan(mean).any())
    assert_(not np.isnan(sd).any())
예제 #4
0
파일: test_gpr.py 프로젝트: MaggieX/GPim
def test_gpr_3d(kernel):  # sanity check only due to comput cost
    R = np.load(test_data3d)
    X = gprutils.get_sparse_grid(R)
    X_true = gprutils.get_full_grid(R)
    mean, sd, _ = gpr.reconstructor(X,
                                    R,
                                    X_true,
                                    kernel=kernel,
                                    lengthscale=None,
                                    indpoints=50,
                                    learning_rate=0.1,
                                    iterations=2,
                                    use_gpu=False,
                                    verbose=True).run()
    assert_(mean.shape == sd.shape == R.flatten().shape)
    assert_(not np.isnan(mean).any())
    assert_(not np.isnan(sd).any())
예제 #5
0
파일: test_gpr.py 프로젝트: MaggieX/GPim
def test_gpr_2d(kernel):
    R = np.load(test_data2d)
    R_ = np.load(test2d_expected_result)
    X = gprutils.get_sparse_grid(R)
    X_true = gprutils.get_full_grid(R)
    mean, _, _ = gpr.reconstructor(X,
                                   R,
                                   X_true,
                                   kernel=kernel,
                                   lengthscale=[[1., 1.], [4., 4.]],
                                   indpoints=250,
                                   learning_rate=0.1,
                                   iterations=200,
                                   use_gpu=False,
                                   verbose=False).run()
    assert_(ssim(mean, R_) > 0.95)
    assert_(np.linalg.norm(mean - R_) < 3)
예제 #6
0
def test_skgpr_3d(kernel):  # sanity check only, due to comput cost
    R = np.load(test_data3d)
    X = gprutils.get_sparse_grid(R)
    X_true = gprutils.get_full_grid(R)
    (mean, sd), _ = skgpr.skreconstructor(X,
                                          R,
                                          X_true,
                                          kernel=kernel,
                                          lengthscale=None,
                                          grid_points_ratio=.25,
                                          learning_rate=0.1,
                                          iterations=2,
                                          num_batches=100,
                                          calculate_sd=True,
                                          use_gpu=False,
                                          verbose=True).run()
    assert_(mean.shape == sd.shape == R.flatten().shape)
    assert_(not np.isnan(mean).any())
    assert_(not np.isnan(sd).any())
예제 #7
0
def test_skgpr_2d(kernel):
    R = np.load(test_data)
    R_ = np.load(test_expected_result)
    X = gprutils.get_sparse_grid(R)
    X_true = gprutils.get_full_grid(R)
    mean, _ = skgpr.skreconstructor(X,
                                    R,
                                    X_true,
                                    kernel=kernel,
                                    lengthscale=[[1., 1.], [4., 4.]],
                                    grid_points_ratio=1.,
                                    learning_rate=0.1,
                                    iterations=20,
                                    calculate_sd=False,
                                    num_batches=1,
                                    use_gpu=False,
                                    verbose=False).run()
    assert_(ssim(mean, R_) > 0.98)
    assert_(np.linalg.norm(mean - R_) < 1)
예제 #8
0
파일: boptim.py 프로젝트: ziatdinovmax/GPim
 def evaluate_function(self, indices, y_measured=None):
     """
     Evaluates target function in the new point(s)
     """
     indices = [indices] if not self.batch_update else indices
     if self.simulate_measurement:
         for idx in indices:
             self.y_sparse[tuple(idx)] = self.y_true[tuple(idx)]
     elif y_measured is not None:
         for idx in indices:
             self.y_sparse[tuple(idx)] = y_measured[tuple(idx)]
     else:
         for idx in indices:
             if self.extent is not None:
                 _idx = []
                 for i, e in zip(idx, self.extent):
                     _idx.append(i + e[0])
                 _idx = tuple(_idx)
             else:
                 _idx = tuple(idx)
             self.y_sparse[tuple(idx)] = self.target_function(_idx)
     self.X_sparse = gprutils.get_sparse_grid(self.y_sparse, self.extent)
     self.target_func_vals.append(self.y_sparse.copy())
     return
예제 #9
0
                    type=str,
                    help="Directory to save outputs")
args = parser.parse_args()

# Load "ground truth" data (N x M x L spectroscopic grid)
# (in real experiment we will just get an empty array)
R_true = np.load(args.FILEPATH)
if args.NORMALIZE and np.isnan(R_true).any() is False:
    R_true = (R_true - np.amin(R_true)) / np.ptp(R_true)
# Make initial set of measurements for exploration analysis.
# Let's start with "opening" several points along each edge
R = R_true * 0
R[R == 0] = np.nan
R = gprutils.open_edge_points(R, R_true)
# Get sparse and full grid indices
X = gprutils.get_sparse_grid(R)
X_true = gprutils.get_full_grid(R)
dist_edge = [0, 0]  # set to non-zero vals when edge points are not "opened"
# Construct lengthscale constraints for all 3 dimensions
LENGTH_CONSTR = [[float(args.LENGTH_CONSTR_MIN) for i in range(3)],
                 [float(args.LENGTH_CONSTR_MAX) for i in range(3)]]
# Run exploratory analysis
uncert_idx_all, uncert_val_all, mean_all, sd_all, R_all = [], [], [], [], []
if not os.path.exists(args.SAVEDIR): os.makedirs(args.SAVEDIR)
indpts_r = args.INDUCING_POINTS_RATIO
for i in range(args.ESTEPS):
    print('Exploration step {}/{}'.format(i, args.ESTEPS))
    # Make the number of inducing points dependent on the number of datapoints
    indpoints = len(gprutils.prepare_training_data(X, R)[0]) // indpts_r
    # clip to make sure it fits into GPU memory
    indpoints = 2000 if indpoints > 2000 else indpoints