def remove_seasonals_by_german_load(Data, lsdm_dir):
    station = Data.name;
    files = glob.glob(lsdm_dir + station + '*.txt');
    if not files:  # found an empty array
        print("Error! LSDM file not found for %s" % Data.name);
        print("Returning placeholder object.");
        wimpyObj = get_wimpy_object(Data);
        return wimpyObj, wimpyObj;
    else:
        filename = files[0];

    # Read the hydro model and pair it to the GPS
    [hydro_data] = gps_io_functions.read_lsdm_file(filename);

    # Clean up and pair data
    Data = gps_ts_functions.remove_nans(Data);
    hydro_data = gps_ts_functions.remove_nans(hydro_data);  # this may or may not be necessary.
    [gps_data, hydro_data] = gps_ts_functions.pair_gps_model(Data, hydro_data);  # matched in terms of dtarray.

    #  Subtract the model from the data.
    dE_filt, dN_filt, dU_filt = [], [], [];
    for i in range(len(gps_data.dtarray)):
        dE_filt.append(gps_data.dE[i] - hydro_data.dE[i]);
        dN_filt.append(gps_data.dN[i] - hydro_data.dN[i]);
        dU_filt.append(gps_data.dU[i] - hydro_data.dU[i]);

    # A Simple detrending
    decyear = gps_ts_functions.get_float_times(gps_data.dtarray);
    dE_detrended = np.zeros(np.shape(decyear));
    dN_detrended = np.zeros(np.shape(decyear));
    dU_detrended = np.zeros(np.shape(decyear));
    east_coef = np.polyfit(decyear, dE_filt, 1)[0];
    for i in range(len(dE_filt)):
        dE_detrended[i] = dE_filt[i] - east_coef * decyear[i] - (dE_filt[0] - east_coef * decyear[0]);
    north_coef = np.polyfit(decyear, dN_filt, 1)[0];
    for i in range(len(dN_filt)):
        dN_detrended[i] = (dN_filt[i] - north_coef * decyear[i]) - (dN_filt[0] - north_coef * decyear[0]);
    vert_coef = np.polyfit(decyear, dU_filt, 1)[0];
    for i in range(len(dU_filt)):
        dU_detrended[i] = (dU_filt[i] - vert_coef * decyear[i]) - (dU_filt[0] - vert_coef * decyear[0]);

    detrended = gps_io_functions.Timeseries(name=gps_data.name, coords=gps_data.coords, dtarray=gps_data.dtarray,
                                            dE=dE_detrended, dN=dN_detrended, dU=dU_detrended, Se=gps_data.Se,
                                            Sn=gps_data.Sn, Su=gps_data.Su, EQtimes=gps_data.EQtimes);
    trended = gps_io_functions.Timeseries(name=gps_data.name, coords=gps_data.coords, dtarray=gps_data.dtarray,
                                          dE=dE_filt, dN=dN_filt, dU=dU_filt, Se=gps_data.Se, Sn=gps_data.Sn,
                                          Su=gps_data.Su, EQtimes=gps_data.EQtimes);
    return detrended, trended;
def remove_seasonals_by_notch(Data):
    # Using Sang-Ho's notch filter script to remove power at frequencies corresponding to 1 year and 6 months.
    # We are also removing a linear trend in this step.

    Data = gps_ts_functions.remove_nans(Data);

    # Parameters
    # %   x       1-D signal array
    # %   fs      sampling frequency, Hz
    # %   fn      notch frequency, Hz
    # %   Bn      notch bandwidth, Hz
    dt_interval = 1.0;  # one day
    fs = 1 / dt_interval;
    fn1 = 1.0 / 365.24;  # fn = notch frequency, annual
    Bn1 = 0.1 * fn1;
    fn2 = 2.0 / 365.24;  # fn = notch frequency, semiannual
    Bn2 = 0.1 * fn2;  # a choice: 10% seems to work well.

    decyear = gps_ts_functions.get_float_times(Data.dtarray);
    dE_detrended = np.zeros(np.shape(Data.dE));
    dN_detrended = np.zeros(np.shape(Data.dN));
    dU_detrended = np.zeros(np.shape(Data.dU));
    dE_trended = np.zeros(np.shape(Data.dE));
    dN_trended = np.zeros(np.shape(Data.dN));
    dU_trended = np.zeros(np.shape(Data.dU));

    # East
    x = Data.dE;
    dE_filt = notch_filter.notchfilt(x, fs, fn1, Bn1, filtfiltopt=True);
    dE_filt = notch_filter.notchfilt(dE_filt, fs, fn2, Bn2, filtfiltopt=True);
    east_coef = np.polyfit(decyear, dE_filt, 1)[0];
    for i in range(len(dE_filt)):
        dE_detrended[i] = dE_filt[i] - east_coef * decyear[i] - (dE_filt[0] - east_coef * decyear[0]);
        dE_trended[i] = dE_filt[i];

    # North
    x = Data.dN;
    dN_filt = notch_filter.notchfilt(x, fs, fn1, Bn1, filtfiltopt=True);
    dN_filt = notch_filter.notchfilt(dN_filt, fs, fn2, Bn2, filtfiltopt=True);
    north_coef = np.polyfit(decyear, dN_filt, 1)[0];
    for i in range(len(dN_filt)):
        dN_detrended[i] = dN_filt[i] - north_coef * decyear[i] - (dN_filt[0] - north_coef * decyear[0]);
        dN_trended[i] = dN_filt[i];

    # Up
    x = Data.dU;
    dU_filt = notch_filter.notchfilt(x, fs, fn1, Bn1, filtfiltopt=True);
    dU_filt = notch_filter.notchfilt(dU_filt, fs, fn2, Bn2, filtfiltopt=True);
    vert_coef = np.polyfit(decyear, dU_filt, 1)[0];
    for i in range(len(dU_filt)):
        dU_detrended[i] = dU_filt[i] - vert_coef * decyear[i] - (dU_filt[0] - vert_coef * decyear[0]);
        dU_trended[i] = dU_filt[i];

    detrended = gps_io_functions.Timeseries(name=Data.name, coords=Data.coords, dtarray=Data.dtarray, dN=dN_detrended,
                                            dE=dE_detrended, dU=dU_detrended, Sn=Data.Sn, Se=Data.Se, Su=Data.Su,
                                            EQtimes=Data.EQtimes);
    trended = gps_io_functions.Timeseries(name=Data.name, coords=Data.coords, dtarray=Data.dtarray, dN=dN_trended,
                                          dE=dE_trended, dU=dU_trended, Sn=Data.Sn, Se=Data.Se, Su=Data.Su,
                                          EQtimes=Data.EQtimes);
    return detrended, trended;
def remove_seasonals_by_GRACE(Data, grace_dir):
    # Here we use pre-computed GRACE load model time series to correct the GPS time series.
    # We recognize that the horizontals will be bad, and that the resolution of GRACE is coarse.
    # For these reasons, this is not an important part of the analysis.
    # Read and interpolate GRACE loading model
    # Subtract the GRACE model
    # Remove a trend from the GPS data
    # Return the object.

    filename = grace_dir + "scaled_" + Data.name + "_PREM_model_ts.txt";
    if not os.path.isfile(filename):
        print("Error! GRACE not found for %s" % Data.name);
        print("Returning placeholder object.");
        wimpyObj = get_wimpy_object(Data)
        return wimpyObj, wimpyObj;

    # If the station has been pre-computed with GRACE:
    Data = gps_ts_functions.remove_nans(Data);
    [grace_model] = gps_io_functions.read_grace(filename);
    my_paired_ts = grace_ts_functions.pair_GPSGRACE(Data, grace_model);
    decyear = gps_ts_functions.get_float_times(my_paired_ts.dtarray);

    # Subtract the GRACE object
    dE_filt, dN_filt, dU_filt = [], [], [];
    for i in range(len(my_paired_ts.dtarray)):
        dE_filt.append(my_paired_ts.east[i] - my_paired_ts.u[i]);
        dN_filt.append(my_paired_ts.north[i] - my_paired_ts.v[i]);
        dU_filt.append(my_paired_ts.vert[i] - my_paired_ts.w[i]);

    # A Simple detrending
    dE_detrended = np.zeros(np.shape(decyear));
    dN_detrended = np.zeros(np.shape(decyear));
    dU_detrended = np.zeros(np.shape(decyear));
    east_coef = np.polyfit(decyear, dE_filt, 1)[0];
    for i in range(len(dE_filt)):
        dE_detrended[i] = dE_filt[i] - east_coef * decyear[i] - (dE_filt[0] - east_coef * decyear[0]);
    north_coef = np.polyfit(decyear, dN_filt, 1)[0];
    for i in range(len(dN_filt)):
        dN_detrended[i] = (dN_filt[i] - north_coef * decyear[i]) - (dN_filt[0] - north_coef * decyear[0]);
    vert_coef = np.polyfit(decyear, dU_filt, 1)[0];
    for i in range(len(dU_filt)):
        dU_detrended[i] = (dU_filt[i] - vert_coef * decyear[i]) - (dU_filt[0] - vert_coef * decyear[0]);

    detrended = gps_io_functions.Timeseries(name=Data.name, coords=Data.coords, dtarray=my_paired_ts.dtarray,
                                            dN=dN_detrended, dE=dE_detrended, dU=dU_detrended, Sn=my_paired_ts.N_err,
                                            Se=my_paired_ts.E_err, Su=my_paired_ts.V_err, EQtimes=Data.EQtimes);
    trended = gps_io_functions.Timeseries(name=Data.name, coords=Data.coords, dtarray=my_paired_ts.dtarray, dN=dN_filt,
                                          dE=dE_filt, dU=dU_filt, Sn=my_paired_ts.N_err, Se=my_paired_ts.E_err,
                                          Su=my_paired_ts.V_err, EQtimes=Data.EQtimes);
    return detrended, trended;  # 0 = successful completion
def remove_seasonals_by_hydro(Data, hydro_dir, scaling=False):
    station = Data.name;
    files = glob.glob(hydro_dir + station.lower() + '*.hyd');
    if not files:  # found an empty array
        print("Error! Hydro file not found for %s" % Data.name);
        print("Returning placeholder object.");
        wimpyObj = get_wimpy_object(Data);
        return wimpyObj, wimpyObj;
    else:
        filename = files[0];

    # Read the hydro model and pair it to the GPS
    [hydro_data] = gps_io_functions.read_pbo_hydro_file(filename);

    # Clean up and pair data
    Data = gps_ts_functions.remove_nans(Data);
    # hydro_data=gps_ts_functions.remove_nans(hydro_data);  # this may or may not be necessary.
    [gps_data, hydro_data] = gps_ts_functions.pair_gps_model(Data, hydro_data);  # matched in terms of dtarray.

    if scaling is True:
        [_, _, vert_gps] = gps_ts_functions.get_linear_annual_semiannual(gps_data);
        [_, _, vert_hydro] = gps_ts_functions.get_linear_annual_semiannual(hydro_data);
        gps_amp = np.sqrt(vert_gps[1] * vert_gps[1] + vert_gps[2] * vert_gps[2]);
        hydro_amp = np.sqrt(vert_hydro[1] * vert_hydro[1] + vert_hydro[2] * vert_hydro[2]);
        if hydro_amp == 0.0:
            print("ERROR! NLDAS amplitude is exactly 0!!  You should probably fix this. ");
            wimpyObj = get_wimpy_object(Data);
            print("Returning placeholder object.");
            return wimpyObj, wimpyObj;
        scale_factor = gps_amp / hydro_amp;
        # print("GPS Amplitude is %.2f mm" % gps_amp);
        # print("NLDAS Amplitude is %.2f mm" % hydro_amp);
        print("NLDAS scaling factor is %.2f" % scale_factor);
    else:
        scale_factor = 1;

    #  Subtract the model from the data.
    dE_filt, dN_filt, dU_filt = [], [], [];
    for i in range(len(gps_data.dtarray)):
        dE_filt.append(gps_data.dE[i] - scale_factor * hydro_data.dE[i]);
        dN_filt.append(gps_data.dN[i] - scale_factor * hydro_data.dN[i]);
        dU_filt.append(gps_data.dU[i] - scale_factor * hydro_data.dU[i]);

    # A Simple detrending
    decyear = gps_ts_functions.get_float_times(gps_data.dtarray);
    dE_detrended = np.zeros(np.shape(decyear));
    dN_detrended = np.zeros(np.shape(decyear));
    dU_detrended = np.zeros(np.shape(decyear));
    east_coef = np.polyfit(decyear, dE_filt, 1)[0];
    for i in range(len(dE_filt)):
        dE_detrended[i] = dE_filt[i] - east_coef * decyear[i] - (dE_filt[0] - east_coef * decyear[0]);
    north_coef = np.polyfit(decyear, dN_filt, 1)[0];
    for i in range(len(dN_filt)):
        dN_detrended[i] = (dN_filt[i] - north_coef * decyear[i]) - (dN_filt[0] - north_coef * decyear[0]);
    vert_coef = np.polyfit(decyear, dU_filt, 1)[0];
    for i in range(len(dU_filt)):
        dU_detrended[i] = (dU_filt[i] - vert_coef * decyear[i]) - (dU_filt[0] - vert_coef * decyear[0]);

    corrected_object = gps_io_functions.Timeseries(name=gps_data.name, coords=gps_data.coords, dtarray=gps_data.dtarray,
                                                   dE=dE_detrended, dN=dN_detrended, dU=dU_detrended, Se=gps_data.Se,
                                                   Sn=gps_data.Sn, Su=gps_data.Su, EQtimes=gps_data.EQtimes);
    trended = gps_io_functions.Timeseries(name=gps_data.name, coords=gps_data.coords, dtarray=gps_data.dtarray,
                                          dE=dE_filt, dN=dN_filt, dU=dU_filt, Se=gps_data.Se, Sn=gps_data.Sn,
                                          Su=gps_data.Su, EQtimes=gps_data.EQtimes);
    return corrected_object, trended;
def remove_seasonals_by_STL(Data, STL_dir):
    # Has an issue: Not sure if it returns trended data.
    # Right now only returns detrended data.
    filename = STL_dir + Data.name + "_STL_30.txt";

    if os.path.isfile(filename):
        # If a precomputed file exists...
        [dtstrings, dE, dN, dU, Se, Sn, Su] = np.loadtxt(filename, unpack=True, usecols=(0, 1, 2, 3, 4, 5, 6),
                                                         dtype={'names': ('dt', 'dE', 'dN', 'dU', 'Se', 'Sn', 'Su'),
                                                                'formats': ('U8', np.float, np.float, np.float,
                                                                            np.float, np.float, np.float)});
        final_dtarray = [dt.datetime.strptime(x, "%Y%m%d") for x in dtstrings];
        Data = gps_io_functions.Timeseries(name=Data.name, coords=Data.coords, dtarray=final_dtarray, dN=dN,
                                           dE=dE, dU=dU, Sn=Sn, Se=Se, Su=Su, EQtimes=Data.EQtimes);

    else:  # ELSE: WE NEED TO RECOMPUTE
        print("Warning! STL not found for %s" % Data.name);
        print("We did not find a pre-computed array, so we are re-computing STL. ");

        # Preprocess data: remove nans, fill in gaps.
        Data = gps_ts_functions.remove_nans(Data);
        [_, dE, Se] = preprocess_stl(Data.dtarray, Data.dE, Data.Se);
        [_, dN, Sn] = preprocess_stl(Data.dtarray, Data.dN, Data.Sn);
        [new_dtarray, dU, Su] = preprocess_stl(Data.dtarray, Data.dU, Data.Su);

        # Write E, N, U
        ofile = open('raw_ts_data.txt', 'w');
        for i in range(len(dE)):
            mystring = dt.datetime.strftime(new_dtarray[i], "%Y%m%d");
            ofile.write('%s %f %f %f\n' % (mystring, dE[i], dN[i], dU[i]));
        ofile.close();

        # Call driver in matlab (read, STL, write)
        subprocess.call(['matlab', '-nodisplay', '-nosplash', '-r', 'stl_driver'], shell=False);

        # Read / Detrended data
        [dE, dN, dU] = np.loadtxt('filtered_ts_data.txt', unpack=True, usecols=(1, 2, 3));

        # East, North, Up Detrending
        decyear = gps_ts_functions.get_float_times(new_dtarray);

        dE_detrended = np.zeros(np.shape(dE));
        dN_detrended = np.zeros(np.shape(dN));
        dU_detrended = np.zeros(np.shape(dU));
        east_coef = np.polyfit(decyear, dE, 1)[0];
        for i in range(len(dE)):
            dE_detrended[i] = dE[i] - east_coef * decyear[i] - (dE[0] - east_coef * decyear[0]);
        north_coef = np.polyfit(decyear, dN, 1)[0];
        for i in range(len(dN)):
            dN_detrended[i] = (dN[i] - north_coef * decyear[i]) - (dN[0] - north_coef * decyear[0]);
        vert_coef = np.polyfit(decyear, dU, 1)[0];
        for i in range(len(dU)):
            dU_detrended[i] = (dU[i] - vert_coef * decyear[i]) - (dU[0] - vert_coef * decyear[0]);

        # Put the gaps back in:
        final_dtarray, final_dE, final_dN, final_dU = [], [], [], [];
        final_Se, final_Sn, final_Su = [], [], [];
        for i in range(len(new_dtarray)):
            if new_dtarray[i] in Data.dtarray:
                final_dtarray.append(new_dtarray[i]);
                final_dE.append(dE_detrended[i]);
                final_dN.append(dN_detrended[i]);
                final_dU.append(dU_detrended[i]);
                final_Se.append(Se[i]);
                final_Sn.append(Sn[i]);
                final_Su.append(Su[i]);
        final_dE = np.array(final_dE);
        final_dN = np.array(final_dN);
        final_dU = np.array(final_dU);
        final_Se = np.array(final_Se);
        final_Sn = np.array(final_Sn);
        final_Su = np.array(final_Su);

        # Return data
        Data = gps_io_functions.Timeseries(name=Data.name, coords=Data.coords, dtarray=final_dtarray, dN=final_dN,
                                           dE=final_dE, dU=final_dU, Sn=final_Sn, Se=final_Se, Su=final_Su,
                                           EQtimes=Data.EQtimes);

        # Write the file so that we don't recompute it next time.
        output_stl(Data, STL_dir);

    return Data, Data;
예제 #6
0
def remove_seasonals_by_GRACE(Data, grace_dir):
    # Here we use pre-computed GRACE load model time series to correct the GPS time series.
    # We recognize that the horizontals will be bad, and that the resolution of GRACE is coarse.
    # For these reasons, this is not an important part of the analysis.
    # Read and interpolate GRACE loading model
    # Subtract the GRACE model
    # Remove a trend from the GPS data
    # Return the object.

    filename = grace_dir + "scaled_" + Data.name + "_PREM_model_ts.txt"
    try:
        ifile = open(filename)
    except FileNotFoundError:
        print("Error! GRACE not found for %s" % Data.name)
        placeholder = np.full_like(Data.dtarray, np.nan, dtype=np.double)
        wimpyObj = Timeseries(name=Data.name,
                              coords=Data.coords,
                              dtarray=Data.dtarray,
                              dN=[1.0000],
                              dE=placeholder,
                              dU=placeholder,
                              Sn=Data.Sn,
                              Se=Data.Se,
                              Su=Data.Su,
                              EQtimes=Data.EQtimes)
        print("returning placeholder object")
        return wimpyObj
        # 1 = error code.

    # If the station has been pre-computed with GRACE:
    Data = gps_ts_functions.remove_nans(Data)
    grace_model = grace_ts_functions.input_GRACE_individual_station(
        grace_dir + "scaled_" + Data.name + "_PREM_model_ts.txt")
    my_paired_ts = grace_ts_functions.pair_GPSGRACE(Data, grace_model)
    decyear = gps_ts_functions.get_float_times(my_paired_ts.dtarray)

    # Subtract the GRACE object
    dE_filt = []
    dN_filt = []
    dU_filt = []
    for i in range(len(my_paired_ts.dtarray)):
        dE_filt.append(my_paired_ts.east[i] - my_paired_ts.u[i])
        dN_filt.append(my_paired_ts.north[i] - my_paired_ts.v[i])
        dU_filt.append(my_paired_ts.vert[i] - my_paired_ts.w[i])

    # A Simple detrending
    dE_detrended = np.zeros(np.shape(decyear))
    dN_detrended = np.zeros(np.shape(decyear))
    dU_detrended = np.zeros(np.shape(decyear))
    east_coef = np.polyfit(decyear, dE_filt, 1)[0]
    for i in range(len(dE_filt)):
        dE_detrended[i] = dE_filt[i] - east_coef * decyear[i] - (
            dE_filt[0] - east_coef * decyear[0])
    north_coef = np.polyfit(decyear, dN_filt, 1)[0]
    for i in range(len(dN_filt)):
        dN_detrended[i] = (dN_filt[i] - north_coef * decyear[i]) - (
            dN_filt[0] - north_coef * decyear[0])
    vert_coef = np.polyfit(decyear, dU_filt, 1)[0]
    for i in range(len(dU_filt)):
        dU_detrended[i] = (dU_filt[i] - vert_coef * decyear[i]) - (
            dU_filt[0] - vert_coef * decyear[0])

    newData = Timeseries(name=Data.name,
                         coords=Data.coords,
                         dtarray=my_paired_ts.dtarray,
                         dN=dN_detrended,
                         dE=dE_detrended,
                         dU=dU_detrended,
                         Sn=my_paired_ts.N_err,
                         Se=my_paired_ts.E_err,
                         Su=my_paired_ts.V_err,
                         EQtimes=Data.EQtimes)
    return newData
예제 #7
0
def remove_seasonals_by_STL(Data, STL_dir):

    # First check if a pre-computed file exists

    filename = STL_dir + Data.name + "_STL_30.txt"
    recompute = 0
    try:
        ifile = open(filename)
    except FileNotFoundError:
        print("Warning! STL not found for %s" % Data.name)
        recompute = 1

    if recompute == 0:
        # If a precomputed file exists...
        [dE, dN, dU, Se, Sn, Su] = np.loadtxt(filename,
                                              unpack=True,
                                              usecols=(1, 2, 3, 4, 5, 6))
        final_dtarray = []
        for line in ifile:
            dtstring = line.split()[0]
            final_dtarray.append(dt.datetime.strptime(dtstring, "%Y%m%d"))
        Data = Timeseries(name=Data.name,
                          coords=Data.coords,
                          dtarray=final_dtarray,
                          dN=dN,
                          dE=dE,
                          dU=dU,
                          Sn=Sn,
                          Se=Se,
                          Su=Su,
                          EQtimes=Data.EQtimes)

    # ELSE: WE NEED TO RECOMPUTE
    else:
        print(
            "We did not find a pre-computed array, so we are re-computing STL. "
        )

        # Preprocess data: remove nans, fill in gaps.
        Data = gps_ts_functions.remove_nans(Data)
        [new_dtarray, dE, Se] = preprocess_stl(Data.dtarray, Data.dE, Data.Se)
        [new_dtarray, dN, Sn] = preprocess_stl(Data.dtarray, Data.dN, Data.Sn)
        [new_dtarray, dU, Su] = preprocess_stl(Data.dtarray, Data.dU, Data.Su)

        # Write E, N, U
        ofile = open('raw_ts_data.txt', 'w')
        for i in range(len(dE)):
            mystring = dt.datetime.strftime(new_dtarray[i], "%Y%m%d")
            ofile.write('%s %f %f %f\n' % (mystring, dE[i], dN[i], dU[i]))
        ofile.close()

        # Call driver in matlab (read, STL, write)
        subprocess.call(
            ['matlab', '-nodisplay', '-nosplash', '-r', 'stl_driver'],
            shell=False)

        # Read / Detrended data
        [dE, dN, dU] = np.loadtxt('filtered_ts_data.txt',
                                  unpack=True,
                                  usecols=(1, 2, 3))

        # East, North, Up Detrending
        decyear = gps_ts_functions.get_float_times(new_dtarray)

        dE_detrended = np.zeros(np.shape(dE))
        dN_detrended = np.zeros(np.shape(dN))
        dU_detrended = np.zeros(np.shape(dU))
        east_coef = np.polyfit(decyear, dE, 1)[0]
        for i in range(len(dE)):
            dE_detrended[i] = dE[i] - east_coef * decyear[i] - (
                dE[0] - east_coef * decyear[0])
        north_coef = np.polyfit(decyear, dN, 1)[0]
        for i in range(len(dN)):
            dN_detrended[i] = (dN[i] - north_coef * decyear[i]) - (
                dN[0] - north_coef * decyear[0])
        vert_coef = np.polyfit(decyear, dU, 1)[0]
        for i in range(len(dU)):
            dU_detrended[i] = (dU[i] - vert_coef * decyear[i]) - (
                dU[0] - vert_coef * decyear[0])

        # Put the gaps back in:
        final_dtarray = []
        final_dE = []
        final_dN = []
        final_dU = []
        final_Se = []
        final_Sn = []
        final_Su = []
        for i in range(len(new_dtarray)):
            if new_dtarray[i] in Data.dtarray:
                final_dtarray.append(new_dtarray[i])
                final_dE.append(dE_detrended[i])
                final_dN.append(dN_detrended[i])
                final_dU.append(dU_detrended[i])
                final_Se.append(Se[i])
                final_Sn.append(Sn[i])
                final_Su.append(Su[i])
        final_dE = np.array(final_dE)
        final_dN = np.array(final_dN)
        final_dU = np.array(final_dU)
        final_Se = np.array(final_Se)
        final_Sn = np.array(final_Sn)
        final_Su = np.array(final_Su)

        # Return data
        Data = Timeseries(name=Data.name,
                          coords=Data.coords,
                          dtarray=final_dtarray,
                          dN=final_dN,
                          dE=final_dE,
                          dU=final_dU,
                          Sn=final_Sn,
                          Se=final_Se,
                          Su=final_Su,
                          EQtimes=Data.EQtimes)

        # Write the file so that we don't recompute it next time.
        output_stl(Data, STL_dir)

    return Data