def load_pretrained_model(model_name, config, cache_dir, custom_model_class, if_tf_model=False): model_class_name = modelclass_dispatcher(model_name, custom_model_class) if model_class_name == "GPT2ModelNoPastState": return GPT2ModelNoPastState.from_pretrained(model_name, config=config, cache_dir=cache_dir) if model_class_name == "GPT2ModelNoPastState": if is_tf_model: raise NotImplementedError( "TFGPT2ModelNoPastState is currently not supported.") else: return GPT2ModelNoPastState.from_pretrained(model_name, config=config, cache_dir=cache_dir) if if_tf_model: model_class_name = 'TF' + model_class_name transformers_module = __import__("transformers", fromlist=[model_class_name]) model_class = getattr(transformers_module, model_class_name) return model_class.from_pretrained(model_name, config=config, cache_dir=cache_dir)
def load_pretrained_model(model_name, config, cache_dir, custom_model_class, is_tf_model=False): model_class_name = modelclass_dispatcher(model_name, custom_model_class) if model_class_name == "GPT2ModelNoPastState": if is_tf_model: return TFGPT2ModelNoPastState.from_pretrained(model_name, config=config, cache_dir=cache_dir) else: return GPT2ModelNoPastState.from_pretrained(model_name, config=config, cache_dir=cache_dir) if is_tf_model: model_class_name = 'TF' + model_class_name transformers_module = __import__("transformers", fromlist=[model_class_name]) logger.info(f"Model class name: {model_class_name}") model_class = getattr(transformers_module, model_class_name) return model_class.from_pretrained(model_name, config=config, cache_dir=cache_dir)
def load_pretrained_model(model_name, config, cache_dir): if model_name in ["gpt2", "distilgpt2", "gpt2-large"]: return GPT2ModelNoPastState.from_pretrained(model_name, config=config, cache_dir=cache_dir) return AutoModel.from_pretrained(model_name, config=config, cache_dir=cache_dir)
def load_pretrained_model(model_name, config, cache_dir): if model_name in PRETRAINED_GPT2_MODELS: return GPT2ModelNoPastState.from_pretrained(model_name, config=config, cache_dir=cache_dir) return AutoModel.from_pretrained(model_name, config=config, cache_dir=cache_dir)