from gptt_embed.projectors import FeatureTransformer, LinearProjector, Identity from gptt_embed.gpc_runner import GPCRunner with tf.Graph().as_default(): data_dir = "data/" n_inputs = 10 mu_ranks = 10 D = 14 d = 10 projector = LinearProjector(D=D, d=d) #projector = Identity(D=D) C = 2 cov = SE_multidim(C, 0.7, 0.2, 0.1, projector) lr = 5e-3 decay = (10, 0.2) n_epoch = 20 batch_size = 200 data_type = 'numpy' log_dir = 'log' save_dir = None#'models/gpnn_100_100_4.ckpt' model_dir = None#save_dir load_model = False#True runner=GPCRunner(data_dir, n_inputs, mu_ranks, cov, lr=lr, decay=decay, n_epoch=n_epoch, batch_size=batch_size, data_type=data_type, log_dir=log_dir, save_dir=save_dir, model_dir=model_dir, load_model=load_model, batch_test=False) runner.run_experiment()
C = 10 lr = 5e-3 decay = (30, 0.2) n_epoch = 300 batch_size = 200 data_type = 'numpy' log_dir = 'log' save_dir = None #'models/gpnn_100_100_2.ckpt' model_dir = None #save_dir load_model = False #True projector = NN(H1=64, H2=128, H3=512, H4=128, d=8) cov = SE_multidim(C, 0.7, 0.2, 0.1, projector) runner = GPCRunner(data_dir, n_inputs, mu_ranks, cov, lr=lr, decay=decay, n_epoch=n_epoch, batch_size=batch_size, preprocess_op=tr_preprocess_op, te_preprocess_op=te_preprocess_op, data_type=data_type, log_dir=log_dir, save_dir=save_dir, model_dir=model_dir, load_model=load_model) runner.run_experiment()