def test_computes_cubic_kernel(self): a = torch.tensor([[4, 1], [2, 2], [8, 0]], dtype=torch.float) b = torch.tensor([[0, 0], [2, 1], [1, 0]], dtype=torch.float) kernel = PolynomialKernel(power=3) kernel.eval() actual = torch.zeros(3, 3) for i in range(3): for j in range(3): actual[i, j] = (a[i].matmul(b[j]) + kernel.offset).pow( kernel.power) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # diag res = kernel(a, b).diag() actual = actual.diag() self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims actual = torch.zeros(2, 3, 3) for l in range(2): actual[l] = kernel(a[:, l].unsqueeze(-1), b[:, l].unsqueeze(-1)).evaluate() res = kernel(a, b, last_dim_is_batch=True).evaluate() self.assertLess(torch.norm(res - actual), 1e-5) # batch_dims + diag res = kernel(a, b, last_dim_is_batch=True).diag() actual = torch.cat( [actual[i].diag().unsqueeze(0) for i in range(actual.size(0))]) self.assertLess(torch.norm(res - actual), 1e-5)
def test_quadratic_kernel_batch(self): a = torch.tensor([[4, 2, 8], [1, 2, 3]], dtype=torch.float).view(2, 3, 1) b = torch.tensor([[0, 2, 1], [-1, 2, 0]], dtype=torch.float).view(2, 3, 1) kernel = PolynomialKernel(power=2, batch_shape=torch.Size( [2])).initialize(offset=torch.rand(2, 1)) kernel.eval() actual = torch.zeros(2, 3, 3) for k in range(2): for i in range(3): for j in range(3): actual[k, i, j] = (a[k, i].matmul(b[k, j]) + kernel.offset[k]).pow(kernel.power) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5)
def __init__(self, mean_name='constant', kernel_name='RBF', grid_bounds=[(-1, 1), (-1, 1)], grid_size=100, num_samples=1000): self.mean = mean_name self.kernel = kernel_name self.num_samples = num_samples self.grid_bounds = grid_bounds self.grid_size = grid_size self.x_dim = 2 # x and y dim are fixed for this dataset. self.y_dim = 1 self.data = [] # create grid grid = torch.zeros(grid_size, len(grid_bounds)) for i in range(len(grid_bounds)): grid_diff = float(grid_bounds[i][1] - grid_bounds[i][0]) / (grid_size - 2) grid[:, i] = torch.linspace(grid_bounds[i][0] - grid_diff, grid_bounds[i][1] + grid_diff, grid_size) x = gpytorch.utils.grid.create_data_from_grid(grid) # initialize likelihood and model likelihood = gpytorch.likelihoods.GaussianLikelihood() mean_dict = {'constant': ConstantMean()} kernel_dict = { 'RBF': RBFKernel(), 'cosine': CosineKernel(), 'linear': LinearKernel(), 'periodic': PeriodicKernel(), 'LCM': LCMKernel(base_kernels=[CosineKernel()], num_tasks=1), 'polynomial': PolynomialKernel(power=3), 'matern': MaternKernel() } # evaluate GP on prior distribution with gpytorch.settings.prior_mode(True): model = ExactGPModel(x, None, likelihood, mean_module=mean_dict[self.mean], kernel_module=gpytorch.kernels.GridKernel( kernel_dict[self.kernel], grid=grid)) gp = model(x) for i in range(num_samples): y = gp.sample() self.data.append( (x, y.unsqueeze(1))) #+torch.randn(y.size())*0.2))
def __init__(self, train_x, train_y, num_mixtures=10): smk = SpectralMixtureKernel(num_mixtures) smk.initialize_from_data(train_x, train_y) kernel = AdditiveKernel( smk, PolynomialKernel(2), RBFKernel(), ) super(CompositeKernelGP, self).__init__(kernel, train_x, train_y) self.mean = gp.means.ConstantMean() self.smk = smk
def __init__(self, mean_list, kernel_list, num_points=100, num_samples=1000, amplitude_range=(-5., 5.)): self.mean_list = mean_list self.kernel_list = kernel_list self.num_config = len(mean_list) * len(kernel_list) self.num_samples = num_samples self.num_points = num_points self.x_dim = 1 # x and y dim are fixed for this dataset. self.y_dim = 1 self.amplitude_range = amplitude_range self.data = [] # initialize likelihood and model x = torch.linspace(self.amplitude_range[0], self.amplitude_range[1], num_points).unsqueeze(1) likelihood = gpytorch.likelihoods.GaussianLikelihood() mean_dict = {'constant': ConstantMean(), 'linear': LinearMean(1)} kernel_dict = { 'RBF': RBFKernel(), 'cosine': CosineKernel(), 'linear': LinearKernel(), 'periodic': PeriodicKernel(period_length=0.5), 'LCM': LCMKernel(base_kernels=[CosineKernel()], num_tasks=1), 'polynomial': PolynomialKernel(power=2), 'matern': MaternKernel() } # create a different GP from each possible configuration for mean in self.mean_list: for kernel in self.kernel_list: # evaluate GP on prior distribution with gpytorch.settings.prior_mode(True): model = ExactGPModel(x, None, likelihood, mean_module=mean_dict[mean], kernel_module=kernel_dict[kernel]) gp = model(x) # sample from current configuration for i in range(num_samples // self.num_config + 1): y = gp.sample() self.data.append( (x, y.unsqueeze(1))) #+torch.randn(y.shape)*0))
def create_kernel_no_ard(self, **kwargs): return PolynomialKernel(power=2, **kwargs)