예제 #1
0
    def test_matmul_mat_with_two_matrices(self):
        mat1 = make_random_mat(20, 5)
        mat2 = make_random_mat(20, 5)
        vec = torch.randn(20, 7, requires_grad=True)

        mat1_copy = mat1.clone().detach().requires_grad_(True)
        mat2_copy = mat2.clone().detach().requires_grad_(True)
        vec_copy = vec.clone().detach().requires_grad_(True)

        # Forward
        res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2)).matmul(vec)
        actual = prod(
            [mat1_copy.matmul(mat1_copy.transpose(-1, -2)), mat2_copy.matmul(mat2_copy.transpose(-1, -2))]
        ).matmul(vec_copy)
        assert torch.max(((res - actual) / actual).abs()) < 0.01

        # Backward
        res.sum().backward()
        actual.sum().backward()
        self.assertLess(torch.max(((mat1.grad - mat1_copy.grad) / mat1_copy.grad).abs()), 0.01)
        self.assertLess(torch.max(((mat2.grad - mat2_copy.grad) / mat2_copy.grad).abs()), 0.01)
        self.assertLess(torch.max(((vec.grad - vec_copy.grad) / vec_copy.grad).abs()), 0.01)
예제 #2
0
    def test_batch_matmul_mat_with_five_matrices(self):
        mat1 = make_random_mat(20, rank=4, batch_size=5)
        mat2 = make_random_mat(20, rank=4, batch_size=5)
        mat3 = make_random_mat(20, rank=4, batch_size=5)
        mat4 = make_random_mat(20, rank=4, batch_size=5)
        mat5 = make_random_mat(20, rank=4, batch_size=5)
        vec = torch.randn(5, 20, 7, requires_grad=True)

        mat1_copy = mat1.clone().detach().requires_grad_(True)
        mat2_copy = mat2.clone().detach().requires_grad_(True)
        mat3_copy = mat3.clone().detach().requires_grad_(True)
        mat4_copy = mat4.clone().detach().requires_grad_(True)
        mat5_copy = mat5.clone().detach().requires_grad_(True)
        vec_copy = vec.clone().detach().requires_grad_(True)

        # Forward
        res = MulLazyTensor(
            RootLazyTensor(mat1), RootLazyTensor(mat2), RootLazyTensor(mat3), RootLazyTensor(mat4), RootLazyTensor(mat5)
        ).matmul(vec)
        actual = prod(
            [
                mat1_copy.matmul(mat1_copy.transpose(-1, -2)),
                mat2_copy.matmul(mat2_copy.transpose(-1, -2)),
                mat3_copy.matmul(mat3_copy.transpose(-1, -2)),
                mat4_copy.matmul(mat4_copy.transpose(-1, -2)),
                mat5_copy.matmul(mat5_copy.transpose(-1, -2)),
            ]
        ).matmul(vec_copy)
        self.assertLess(torch.max(((res - actual) / actual).abs()), 0.01)

        # Backward
        res.sum().backward()
        actual.sum().backward()
        self.assertLess(torch.max(((mat1.grad - mat1_copy.grad) / mat1_copy.grad).abs()), 0.01)
        self.assertLess(torch.max(((mat2.grad - mat2_copy.grad) / mat2_copy.grad).abs()), 0.01)
        self.assertLess(torch.max(((mat3.grad - mat3_copy.grad) / mat3_copy.grad).abs()), 0.01)
        self.assertLess(torch.max(((mat4.grad - mat4_copy.grad) / mat4_copy.grad).abs()), 0.01)
        self.assertLess(torch.max(((mat5.grad - mat5_copy.grad) / mat5_copy.grad).abs()), 0.01)
        self.assertLess(torch.max(((vec.grad - vec_copy.grad) / vec_copy.grad).abs()), 0.01)