def register_point_cloud(self): registration_result_array = [] depth_im_seg, camera_intr = self.get_object_point_cloud_from_sensor( ) #self.database_objects[1]# source_point_cloud, source_normal_cloud = self.get_point_normal_cloud( depth_im_seg, camera_intr) source_sample_size = int(source_point_cloud.shape[1]) if self.debug: print source_sample_size vis.figure() vis.subplot(1, 1, 1) vis.imshow(depth_im_seg) vis.show() source_sample_size = 1000 p2pis = PointToPlaneICPSolver(sample_size=source_sample_size) p2pfm = PointToPlaneFeatureMatcher() for objectFileName in self.obj_filenames: self.load_object_point_clouds([objectFileName]) for (target_depth_im, target_camera_intr) in self.database_objects: if self.debug: vis.figure() vis.subplot(1, 1, 1) vis.imshow(target_depth_im) vis.show() target_point_cloud, target_normal_cloud = self.get_point_normal_cloud( target_depth_im, target_camera_intr) registration_result = p2pis.register(source_point_cloud, target_point_cloud, source_normal_cloud, target_normal_cloud, p2pfm, num_iterations=10) registration_result_array.append(registration_result) return registration_result_array
def get_current_point_cloud(debug=False, start_node=True, env='simulator'): giob = GetInitialObjectBelief(None, debug, start_node, env) (depth_im_seg, _) = giob.get_object_point_cloud_from_sensor() if debug: vis.figure() vis.subplot(1, 1, 1) vis.imshow(depth_im_seg) vis.show()
def save_point_cloud(self, filename_prefix, depth_im_seg, camera_intr): if self.debug: vis.figure() vis.subplot(1, 1, 1) vis.imshow(depth_im_seg) vis.show() depth_im_seg.save(filename_prefix + '.npy') camera_intr.save(filename_prefix + '.intr')
def get_current_rgb_image(debug=False, start_node=True, env='simulator'): giob = GetInitialObjectBelief(None, debug, start_node, env) (color_im_seg, camera_intr) = giob.get_world_color_image() (depth_im_seg, camera_intr) = giob.get_object_point_cloud_from_sensor(None, False) if debug: vis.figure() vis.subplot(1, 2, 1) vis.imshow(depth_im_seg) vis.subplot(1, 2, 2) vis.imshow(color_im_seg) vis.show() return (depth_im_seg, color_im_seg, camera_intr)
def load_object_point_clouds(self, obj_filenames=None): if obj_filenames is None: obj_filenames = self.obj_filenames ans = [] for filename in obj_filenames: print "Loading " + filename depth_im, camera_intr = self.load_saved_point_cloud(filename) ans.append((depth_im, camera_intr)) if self.debug: vis.figure() vis.subplot(1, 1, 1) vis.imshow(depth_im) vis.show() self.database_objects = ans return ans
def get_current_point_cloud_for_movement(min_x, debug=False, start_node=True, env='simulator', min_z=None): giob = GetInitialObjectBelief(None, debug, start_node, env) (camera_intr, point_cloud_world, T_camera_world) = giob.get_world_point_cloud() cfg = copy.deepcopy(giob.detector_cfg) cfg['min_pt'][2] = cfg['min_z_for_movement'] if min_z is not None: cfg['min_pt'][2] = min_z if min_x > cfg['min_pt'][0]: cfg['min_pt'][0] = min_x seg_point_cloud_world = giob.get_segmented_point_cloud_world( cfg, point_cloud_world) """ import sensor_msgs.point_cloud2 as pcl2 from sensor_msgs.msg import Image, PointCloud2, PointField print point_cloud_world.data.shape pc2 = PointCloud2() pc2.header.frame_id = giob.WORLD_FRAME segmented_pc = pcl2.create_cloud_xyz32(pc2.header, np.transpose(seg_point_cloud_world.data)) pcl_pub = rospy.Publisher('mico_node/pointcloud', PointCloud2, queue_size=10) i = 0 while not rospy.is_shutdown(): #hello_str = "hello world %s" % rospy.get_time() #rospy.loginfo(hello_str) pcl_pub.publish(segmented_pc) #depth_im_pub.publish(depth_im) rospy.sleep(5) i = i+1 if i > 5: break #return copy.deepcopy(point_cloud_world) """ if debug: seg_point_cloud_cam = T_camera_world.inverse() * seg_point_cloud_world depth_im_seg = camera_intr.project_to_image(seg_point_cloud_cam) vis.figure() vis.subplot(1, 1, 1) vis.imshow(depth_im_seg) vis.show() return seg_point_cloud_world
def main(): delete_files = False directory_name = None out_directory_name = './' num_days = 5 opts, args = getopt.getopt(sys.argv[1:], "d:o:", ["dir=", "out="]) for opt, arg in opts: if opt in ("-d", "--dir"): directory_name = arg if opt in ("-o", "--out"): out_directory_name = arg if directory_name is None: print "Please specify directory name" return num_saved = 0 for root, dir, files in os.walk(directory_name): #print "Root " + root for file in files: filename = os.path.join(root, file) #print filename if filename.endswith('.npz') and "depth" not in filename: rgb_image = perception.ColorImage.open(filename) vis.figure() vis.subplot(1, 1, 1) vis.imshow(rgb_image) vis.show(block=False) save_ans = raw_input("Shall I save[y|n]?") if save_ans == 'y': png_file_name = os.path.basename(filename).replace( '.npz', '.png') new_file_name = os.path.join(out_directory_name, png_file_name) rgb_image.save(new_file_name) num_saved = num_saved + 1 print num_saved plt.close()
def get_depth_image_thumbmail(depth_im, size_x=16, size_y=8, debug=False): depth_im_centered, _ = depth_im.center_nonzero() #if crop_point is None: # crop_point = depth_im_centered.center #check depth_im_focus = depth_im_centered.focus(size_x, size_y) depth_im_focus_zero_pixels = depth_im_focus.zero_pixels() depth_im_centered_zero_pixels = depth_im_centered.zero_pixels() clipped = False try: assert np.array_equal(depth_im_focus_zero_pixels, depth_im_centered_zero_pixels) except: clipped = True #debug = True """ print depth_im_focus_zero_pixels[0] print depth_im_centered_zero_pixels[0] a = np.append(depth_im_focus_zero_pixels,depth_im_centered_zero_pixels, axis=0) b,counts = np.unique(["{}-{}".format(i, j) for i, j in a], return_counts=True) #c = np.where(counts==1) print len(b) print len(counts) c = np.array([map(int,x.split('-')) for x in b[np.where(counts==1)]]) print c print depth_im_focus.center print depth_im_centered[c[:,0],c[:,1]] """ depth_im_crop = depth_im_centered.crop(size_x, size_y) depth_im_crop_thumbnail = depth_im_crop.resize(0.25) if debug: vis.figure() vis.subplot(1, 4, 1) vis.imshow(depth_im_crop) vis.subplot(1, 4, 2) vis.imshow(depth_im_centered) vis.subplot(1, 4, 3) vis.imshow(depth_im) vis.subplot(1, 4, 4) vis.imshow(depth_im_crop_thumbnail) vis.show() return depth_im_crop_thumbnail, clipped
def action(self, state): """ Plans the grasp with the highest probability of success on the given RGB-D image. Attributes ---------- state : :obj:`RgbdImageState` image to plan grasps on Returns ------- :obj:`ParallelJawGrasp` grasp to execute """ # check valid input if not isinstance(state, RgbdImageState): raise ValueError('Must provide an RGB-D image state.') # parse state rgbd_im = state.rgbd_im camera_intr = state.camera_intr segmask = state.segmask # sample grasps grasps = self._grasp_sampler.sample( rgbd_im, camera_intr, self._num_grasp_samples, segmask=segmask, visualize=self.config['vis']['grasp_sampling'], seed=None) num_grasps = len(grasps) # form tensors image_tensor, pose_tensor = self.grasps_to_tensors(grasps, state) if self.config['vis']['tf_images']: # read vis params k = self.config['vis']['k'] d = utils.sqrt_ceil(k) # display grasp transformed images vis.figure(size=(FIGSIZE, FIGSIZE)) for i, image_tf in enumerate(image_tensor[:k, ...]): depth = pose_tensor[i][0] vis.subplot(d, d, i + 1) vis.imshow(DepthImage(image_tf)) vis.title('Image %d: d=%.3f' % (i, depth)) vis.show() # predict grasps predict_start = time() output_arr = self.gqcnn.predict(image_tensor, pose_tensor) q_values = output_arr[:, -1] logging.debug('Prediction took %.3f sec' % (time() - predict_start)) if self.config['vis']['grasp_candidates']: # display each grasp on the original image, colored by predicted success vis.figure(size=(FIGSIZE, FIGSIZE)) vis.imshow(rgbd_im.depth) for grasp, q in zip(grasps, q_values): vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True, color=plt.cm.RdYlBu(q)) vis.title('Sampled grasps') vis.show() if self.config['vis']['grasp_ranking']: # read vis params k = self.config['vis']['k'] d = utils.sqrt_ceil(k) # form camera intr for the thumbnail (to compute gripper width) scale_factor = float(self.gqcnn.im_width) / float(self._crop_width) scaled_camera_intr = camera_intr.resize(scale_factor) # sort grasps q_values_and_indices = zip(q_values, np.arange(num_grasps)) q_values_and_indices.sort(key=lambda x: x[0], reverse=True) vis.figure(size=(FIGSIZE, FIGSIZE)) for i, p in enumerate(q_values_and_indices[:k]): # read stats for grasp q_value = p[0] ind = p[1] depth = pose_tensor[ind][0] image = DepthImage(image_tensor[ind, ...]) grasp = Grasp2D(Point(image.center), 0.0, depth, width=self._gripper_width, camera_intr=scaled_camera_intr) # plot vis.subplot(d, d, i + 1) vis.imshow(image) vis.grasp(grasp, scale=1.5) vis.title('K=%d: d=%.3f, q=%.3f' % (i, depth, q_value)) vis.show() # select grasp index = self.select(grasps, q_values) grasp = grasps[index] q_value = q_values[index] image = DepthImage(image_tensor[index, ...]) pose = pose_tensor[index, ...] depth = pose[0] if self.config['vis']['grasp_plan']: scale_factor = float(self.gqcnn.im_width) / float(self._crop_width) scaled_camera_intr = camera_intr.resize(scale_factor) grasp = Grasp2D(Point(image.center), 0.0, pose[0], width=self._gripper_width, camera_intr=scaled_camera_intr) vis.figure() vis.imshow(image) vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True) vis.title('Best Grasp: d=%.3f, q=%.3f' % (depth, q_value)) vis.show() # return action return ParallelJawGrasp(grasp, q_value, image)
# setup sensor sensor = RgbdSensorFactory.sensor(sensor_type, config['sensor']) sensor.start() camera_intr = sensor.ir_intrinsics # read images color_im, depth_im, _ = sensor.frames() color_im = color_im.inpaint(rescale_factor=inpaint_rescale_factor) depth_im = depth_im.inpaint(rescale_factor=inpaint_rescale_factor) rgbd_im = RgbdImage.from_color_and_depth(color_im, depth_im) state = RgbdImageState(rgbd_im, camera_intr) # init policy policy = CrossEntropyAntipodalGraspingPolicy(policy_config) policy_start = time.time() action = policy(state) logging.info('Planning took %.3f sec' % (time.time() - policy_start)) # vis final grasp if policy_config['vis']['final_grasp']: vis.figure(size=(10, 10)) vis.subplot(1, 2, 1) vis.imshow(rgbd_im.color) vis.grasp(action.grasp, scale=1.5, show_center=False, show_axis=True) vis.title('Planned grasp on color (Q=%.3f)' % (action.q_value)) vis.subplot(1, 2, 2) vis.imshow(rgbd_im.depth) vis.grasp(action.grasp, scale=1.5, show_center=False, show_axis=True) vis.title('Planned grasp on depth (Q=%.3f)' % (action.q_value)) vis.show()
def generate_gqcnn_dataset(dataset_path, database, target_object_keys, env_rv_params, gripper_name, config): """ Generates a GQ-CNN TensorDataset for training models with new grippers, quality metrics, objects, and cameras. Parameters ---------- dataset_path : str path to save the dataset to database : :obj:`Hdf5Database` Dex-Net database containing the 3D meshes, grasps, and grasp metrics target_object_keys : :obj:`OrderedDict` dictionary mapping dataset names to target objects (either 'all' or a list of specific object keys) env_rv_params : :obj:`OrderedDict` parameters of the camera and object random variables used in sampling (see meshpy_berkeley.UniformPlanarWorksurfaceImageRandomVariable for more info) gripper_name : str name of the gripper to use config : :obj:`autolab_core.YamlConfig` other parameters for dataset generation Notes ----- Required parameters of config are specified in Other Parameters Other Parameters ---------------- images_per_stable_pose : int number of object and camera poses to sample for each stable pose stable_pose_min_p : float minimum probability of occurrence for a stable pose to be used in data generation (used to prune bad stable poses gqcnn/crop_width : int width, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN) gqcnn/crop_height : int height, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN) gqcnn/final_width : int width, in pixels, of final transformed grasp image for input to the GQ-CNN (defaults to 32) gqcnn/final_height : int height, in pixels, of final transformed grasp image for input to the GQ-CNN (defaults to 32) table_alignment/max_approach_table_angle : float max angle between the grasp axis and the table normal when the grasp approach is maximally aligned with the table normal table_alignment/max_approach_offset : float max deviation from perpendicular approach direction to use in grasp collision checking table_alignment/num_approach_offset_samples : int number of approach samples to use in collision checking collision_checking/table_offset : float max allowable interpenetration between the gripper and table to be considered collision free collision_checking/table_mesh_filename : str path to a table mesh for collision checking (default data/meshes/table.obj) collision_checking/approach_dist : float distance, in meters, between the approach pose and final grasp pose along the grasp axis collision_checking/delta_approach : float amount, in meters, to discretize the straight-line path from the gripper approach pose to the final grasp pose tensors/datapoints_per_file : int number of datapoints to store in each unique tensor file on disk tensors/fields : :obj:`dict` dictionary mapping field names to dictionaries specifying the data type, height, width, and number of channels for each tensor debug : bool True (or 1) if the random seed should be set to enforce deterministic behavior, False (0) otherwise vis/candidate_grasps : bool True (or 1) if the collision free candidate grasps should be displayed in 3D (for debugging) vis/rendered_images : bool True (or 1) if the rendered images for each stable pose should be displayed (for debugging) vis/grasp_images : bool True (or 1) if the transformed grasp images should be displayed (for debugging) """ # read data gen params output_dir = dataset_path gripper = RobotGripper.load(gripper_name) image_samples_per_stable_pose = config['images_per_stable_pose'] stable_pose_min_p = config['stable_pose_min_p'] # read gqcnn params gqcnn_params = config['gqcnn'] im_crop_height = gqcnn_params['crop_height'] im_crop_width = gqcnn_params['crop_width'] im_final_height = gqcnn_params['final_height'] im_final_width = gqcnn_params['final_width'] cx_crop = float(im_crop_width) / 2 cy_crop = float(im_crop_height) / 2 # open database dataset_names = target_object_keys.keys() datasets = [database.dataset(dn) for dn in dataset_names] # set target objects for dataset in datasets: if target_object_keys[dataset.name] == 'all': target_object_keys[dataset.name] = dataset.object_keys # setup grasp params table_alignment_params = config['table_alignment'] min_grasp_approach_offset = -np.deg2rad( table_alignment_params['max_approach_offset']) max_grasp_approach_offset = np.deg2rad( table_alignment_params['max_approach_offset']) max_grasp_approach_table_angle = np.deg2rad( table_alignment_params['max_approach_table_angle']) num_grasp_approach_samples = table_alignment_params[ 'num_approach_offset_samples'] phi_offsets = [] if max_grasp_approach_offset == min_grasp_approach_offset: phi_inc = 1 elif num_grasp_approach_samples == 1: phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1 else: phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / ( num_grasp_approach_samples - 1) phi = min_grasp_approach_offset while phi <= max_grasp_approach_offset: phi_offsets.append(phi) phi += phi_inc # setup collision checking coll_check_params = config['collision_checking'] approach_dist = coll_check_params['approach_dist'] delta_approach = coll_check_params['delta_approach'] table_offset = coll_check_params['table_offset'] table_mesh_filename = coll_check_params['table_mesh_filename'] if not os.path.isabs(table_mesh_filename): table_mesh_filename = os.path.join( os.path.dirname(os.path.realpath(__file__)), '..', table_mesh_filename) table_mesh = ObjFile(table_mesh_filename).read() # set tensor dataset config tensor_config = config['tensors'] tensor_config['fields']['depth_ims_tf_table']['height'] = im_final_height tensor_config['fields']['depth_ims_tf_table']['width'] = im_final_width tensor_config['fields']['obj_masks']['height'] = im_final_height tensor_config['fields']['obj_masks']['width'] = im_final_width # add available metrics (assuming same are computed for all objects) metric_names = [] dataset = datasets[0] obj_keys = dataset.object_keys if len(obj_keys) == 0: raise ValueError('No valid objects in dataset %s' % (dataset.name)) obj = dataset[obj_keys[0]] grasps = dataset.grasps(obj.key, gripper=gripper.name) grasp_metrics = dataset.grasp_metrics(obj.key, grasps, gripper=gripper.name) metric_names = grasp_metrics[grasp_metrics.keys()[0]].keys() for metric_name in metric_names: tensor_config['fields'][metric_name] = {} tensor_config['fields'][metric_name]['dtype'] = 'float32' # init tensor dataset tensor_dataset = TensorDataset(output_dir, tensor_config) tensor_datapoint = tensor_dataset.datapoint_template # setup log file experiment_log_filename = os.path.join(output_dir, 'dataset_generation.log') formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s') hdlr = logging.FileHandler(experiment_log_filename) hdlr.setFormatter(formatter) logging.getLogger().addHandler(hdlr) root_logger = logging.getLogger() # copy config out_config_filename = os.path.join(output_dir, 'dataset_generation.json') ordered_dict_config = collections.OrderedDict() for key in config.keys(): ordered_dict_config[key] = config[key] with open(out_config_filename, 'w') as outfile: json.dump(ordered_dict_config, outfile) # 1. Precompute the set of valid grasps for each stable pose: # i) Perpendicular to the table # ii) Collision-free along the approach direction # load grasps if they already exist grasp_cache_filename = os.path.join(output_dir, CACHE_FILENAME) if os.path.exists(grasp_cache_filename): logging.info('Loading grasp candidates from file') candidate_grasps_dict = pkl.load(open(grasp_cache_filename, 'rb')) # otherwise re-compute by reading from the database and enforcing constraints else: # create grasps dict candidate_grasps_dict = {} # loop through datasets and objects for dataset in datasets: logging.info('Reading dataset %s' % (dataset.name)) for obj in dataset: if obj.key not in target_object_keys[dataset.name]: continue # init candidate grasp storage candidate_grasps_dict[obj.key] = {} # setup collision checker collision_checker = GraspCollisionChecker(gripper) collision_checker.set_graspable_object(obj) # read in the stable poses of the mesh stable_poses = dataset.stable_poses(obj.key) for i, stable_pose in enumerate(stable_poses): # render images if stable pose is valid if stable_pose.p > stable_pose_min_p: candidate_grasps_dict[obj.key][stable_pose.id] = [] # setup table in collision checker T_obj_stp = stable_pose.T_obj_table.as_frames( 'obj', 'stp') T_obj_table = obj.mesh.get_T_surface_obj( T_obj_stp, delta=table_offset).as_frames('obj', 'table') T_table_obj = T_obj_table.inverse() collision_checker.set_table(table_mesh_filename, T_table_obj) # read grasp and metrics grasps = dataset.grasps(obj.key, gripper=gripper.name) logging.info( 'Aligning %d grasps for object %s in stable %s' % (len(grasps), obj.key, stable_pose.id)) # align grasps with the table aligned_grasps = [ grasp.perpendicular_table(stable_pose) for grasp in grasps ] # check grasp validity logging.info( 'Checking collisions for %d grasps for object %s in stable %s' % (len(grasps), obj.key, stable_pose.id)) for aligned_grasp in aligned_grasps: # check angle with table plane and skip unaligned grasps _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z( stable_pose) perpendicular_table = ( np.abs(grasp_approach_table_angle) < max_grasp_approach_table_angle) if not perpendicular_table: continue # check whether any valid approach directions are collision free collision_free = False for phi_offset in phi_offsets: rotated_grasp = aligned_grasp.grasp_y_axis_offset( phi_offset) collides = collision_checker.collides_along_approach( rotated_grasp, approach_dist, delta_approach) if not collides: collision_free = True break # store if aligned to table candidate_grasps_dict[obj.key][ stable_pose.id].append( GraspInfo(aligned_grasp, collision_free)) # visualize if specified if collision_free and config['vis'][ 'candidate_grasps']: logging.info('Grasp %d' % (aligned_grasp.id)) vis.figure() vis.gripper_on_object(gripper, aligned_grasp, obj, stable_pose.T_obj_world) vis.show() # save to file logging.info('Saving to file') pkl.dump(candidate_grasps_dict, open(grasp_cache_filename, 'wb')) # 2. Render a dataset of images and associate the gripper pose with image coordinates for each grasp in the Dex-Net database # setup variables obj_category_map = {} pose_category_map = {} cur_pose_label = 0 cur_obj_label = 0 cur_image_label = 0 # render images for each stable pose of each object in the dataset render_modes = [RenderMode.SEGMASK, RenderMode.DEPTH_SCENE] for dataset in datasets: logging.info('Generating data for dataset %s' % (dataset.name)) # iterate through all object keys object_keys = dataset.object_keys for obj_key in object_keys: obj = dataset[obj_key] if obj.key not in target_object_keys[dataset.name]: continue # read in the stable poses of the mesh stable_poses = dataset.stable_poses(obj.key) for i, stable_pose in enumerate(stable_poses): # render images if stable pose is valid if stable_pose.p > stable_pose_min_p: # log progress logging.info('Rendering images for object %s in %s' % (obj.key, stable_pose.id)) # add to category maps if obj.key not in obj_category_map.keys(): obj_category_map[obj.key] = cur_obj_label pose_category_map['%s_%s' % (obj.key, stable_pose.id)] = cur_pose_label # read in candidate grasps and metrics candidate_grasp_info = candidate_grasps_dict[obj.key][ stable_pose.id] candidate_grasps = [g.grasp for g in candidate_grasp_info] grasp_metrics = dataset.grasp_metrics(obj.key, candidate_grasps, gripper=gripper.name) # compute object pose relative to the table T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp') T_obj_stp = obj.mesh.get_T_surface_obj(T_obj_stp) # sample images from random variable T_table_obj = RigidTransform(from_frame='table', to_frame='obj') scene_objs = { 'table': SceneObject(table_mesh, T_table_obj) } urv = UniformPlanarWorksurfaceImageRandomVariable( obj.mesh, render_modes, 'camera', env_rv_params, stable_pose=stable_pose, scene_objs=scene_objs) render_start = time.time() render_samples = urv.rvs( size=image_samples_per_stable_pose) render_stop = time.time() logging.info('Rendering images took %.3f sec' % (render_stop - render_start)) # visualize if config['vis']['rendered_images']: d = int(np.ceil( np.sqrt(image_samples_per_stable_pose))) # binary vis2d.figure() for j, render_sample in enumerate(render_samples): vis2d.subplot(d, d, j + 1) vis2d.imshow(render_sample.renders[ RenderMode.SEGMASK].image) # depth table vis2d.figure() for j, render_sample in enumerate(render_samples): vis2d.subplot(d, d, j + 1) vis2d.imshow(render_sample.renders[ RenderMode.DEPTH_SCENE].image) vis2d.show() # tally total amount of data num_grasps = len(candidate_grasps) num_images = image_samples_per_stable_pose num_save = num_images * num_grasps logging.info('Saving %d datapoints' % (num_save)) # for each candidate grasp on the object compute the projection # of the grasp into image space for render_sample in render_samples: # read images binary_im = render_sample.renders[ RenderMode.SEGMASK].image depth_im_table = render_sample.renders[ RenderMode.DEPTH_SCENE].image # read camera params T_stp_camera = render_sample.camera.object_to_camera_pose shifted_camera_intr = render_sample.camera.camera_intr # read pixel offsets cx = depth_im_table.center[1] cy = depth_im_table.center[0] # compute intrinsics for virtual camera of the final # cropped and rescaled images camera_intr_scale = float(im_final_height) / float( im_crop_height) cropped_camera_intr = shifted_camera_intr.crop( im_crop_height, im_crop_width, cy, cx) final_camera_intr = cropped_camera_intr.resize( camera_intr_scale) # create a thumbnail for each grasp for grasp_info in candidate_grasp_info: # read info grasp = grasp_info.grasp collision_free = grasp_info.collision_free # get the gripper pose T_obj_camera = T_stp_camera * T_obj_stp.as_frames( 'obj', T_stp_camera.from_frame) grasp_2d = grasp.project_camera( T_obj_camera, shifted_camera_intr) # center images on the grasp, rotate to image x axis dx = cx - grasp_2d.center.x dy = cy - grasp_2d.center.y translation = np.array([dy, dx]) binary_im_tf = binary_im.transform( translation, grasp_2d.angle) depth_im_tf_table = depth_im_table.transform( translation, grasp_2d.angle) # crop to image size binary_im_tf = binary_im_tf.crop( im_crop_height, im_crop_width) depth_im_tf_table = depth_im_tf_table.crop( im_crop_height, im_crop_width) # resize to image size binary_im_tf = binary_im_tf.resize( (im_final_height, im_final_width), interp='nearest') depth_im_tf_table = depth_im_tf_table.resize( (im_final_height, im_final_width)) # visualize the transformed images if config['vis']['grasp_images']: grasp_center = Point( depth_im_tf_table.center, frame=final_camera_intr.frame) tf_grasp_2d = Grasp2D( grasp_center, 0, grasp_2d.depth, width=gripper.max_width, camera_intr=final_camera_intr) # plot 2D grasp image vis2d.figure() vis2d.subplot(2, 2, 1) vis2d.imshow(binary_im) vis2d.grasp(grasp_2d) vis2d.subplot(2, 2, 2) vis2d.imshow(depth_im_table) vis2d.grasp(grasp_2d) vis2d.subplot(2, 2, 3) vis2d.imshow(binary_im_tf) vis2d.grasp(tf_grasp_2d) vis2d.subplot(2, 2, 4) vis2d.imshow(depth_im_tf_table) vis2d.grasp(tf_grasp_2d) vis2d.title('Coll Free? %d' % (grasp_info.collision_free)) vis2d.show() # plot 3D visualization vis.figure() T_obj_world = vis.mesh_stable_pose( obj.mesh, stable_pose.T_obj_world, style='surface', dim=0.5) vis.gripper(gripper, grasp, T_obj_world, color=(0.3, 0.3, 0.3)) vis.show() # form hand pose array hand_pose = np.r_[grasp_2d.center.y, grasp_2d.center.x, grasp_2d.depth, grasp_2d.angle, grasp_2d.center.y - shifted_camera_intr.cy, grasp_2d.center.x - shifted_camera_intr.cx, grasp_2d.width_px] # store to data buffers tensor_datapoint[ 'depth_ims_tf_table'] = depth_im_tf_table.raw_data tensor_datapoint[ 'obj_masks'] = binary_im_tf.raw_data tensor_datapoint['hand_poses'] = hand_pose tensor_datapoint['collision_free'] = collision_free tensor_datapoint['obj_labels'] = cur_obj_label tensor_datapoint['pose_labels'] = cur_pose_label tensor_datapoint['image_labels'] = cur_image_label for metric_name, metric_val in grasp_metrics[ grasp.id].iteritems(): coll_free_metric = ( 1 * collision_free) * metric_val tensor_datapoint[ metric_name] = coll_free_metric tensor_dataset.add(tensor_datapoint) # update image label cur_image_label += 1 # update pose label cur_pose_label += 1 # force clean up gc.collect() # update object label cur_obj_label += 1 # force clean up gc.collect() # save last file tensor_dataset.flush() # save category mappings obj_cat_filename = os.path.join(output_dir, 'object_category_map.json') json.dump(obj_category_map, open(obj_cat_filename, 'w')) pose_cat_filename = os.path.join(output_dir, 'pose_category_map.json') json.dump(pose_category_map, open(pose_cat_filename, 'w'))
def visualize_tensor_dataset(dataset, config): """ Visualizes a Tensor dataset. Parameters ---------- dataset : :obj:`TensorDataset` dataset to visualize config : :obj:`autolab_core.YamlConfig` parameters for visualization Notes ----- Required parameters of config are specified in Other Parameters Other Parameters ---------------- field_name : str name of the field in the TensorDataset to visualize (defaults to depth_ims_tf_table, which is a single view point cloud of the object on a table) field_type : str type of image that the field name correspondes to (defaults to depth, can also be `segmask` if using the field `object_masks`) print_fields : :obj:`list` of str names of additiona fields to print to the command line filter : :obj:`dict` mapping str to :obj:`dict` contraints that all displayed datapoints must satisfy (supports any univariate field name as a key and numeric thresholds) gripper_width_px : float width of the gripper to plot in pixels font_size : int size of font on the rendered images """ # shuffle the tensor indices indices = dataset.datapoint_indices np.random.shuffle(indices) # read config field_name = config['field_name'] field_type = config['field_type'] font_size = config['font_size'] print_fields = config['print_fields'] gripper_width_px = config['gripper_width_px'] num = 0 for i, ind in enumerate(indices): datapoint = dataset[ind] data = datapoint[field_name] if field_type == RenderMode.SEGMASK: image = BinaryImage(data) elif field_type == RenderMode.DEPTH: image = DepthImage(data) else: raise ValueError('Field type %s not supported!' % (field_type)) skip_datapoint = False for f, filter_cfg in config['filter'].iteritems(): data = datapoint[f] if 'greater_than' in filter_cfg.keys( ) and data < filter_cfg['greater_than']: skip_datapoint = True break elif 'less_than' in filter_cfg.keys( ) and data > filter_cfg['less_than']: skip_datapoint = True break if skip_datapoint: continue logging.info('DATAPOINT %d' % (num)) for f in print_fields: data = datapoint[f] logging.info('Field %s:' % (f)) print data grasp_2d = Grasp2D(Point(image.center), 0, datapoint['hand_poses'][2]) vis2d.figure() if field_type == RenderMode.RGBD: vis2d.subplot(1, 2, 1) vis2d.imshow(image.color) vis2d.grasp(grasp_2d, width=gripper_width_px) vis2d.subplot(1, 2, 2) vis2d.imshow(image.depth) vis2d.grasp(grasp_2d, width=gripper_width_px) elif field_type == RenderMode.GD: vis2d.subplot(1, 2, 1) vis2d.imshow(image.gray) vis2d.grasp(grasp_2d, width=gripper_width_px) vis2d.subplot(1, 2, 2) vis2d.imshow(image.depth) vis2d.grasp(grasp_2d, width=gripper_width_px) else: vis2d.imshow(image) vis2d.grasp(grasp_2d, width=gripper_width_px) vis2d.title('Datapoint %d: %s' % (ind, field_type)) vis2d.show() num += 1
def _sample_antipodal_grasps(self, rgbd_im, camera_intr, num_samples, segmask=None, visualize=False): """ Sample a set of 2D grasp candidates from a depth image by finding depth edges, then uniformly sampling point pairs and keeping only antipodal grasps with width less than the maximum allowable. Parameters ---------- rgbd_im : :obj:`perception.RgbdImage` RGB-D image to sample from camera_intr : :obj:`perception.CameraIntrinsics` intrinsics of the camera that captured the images num_samples : int number of grasps to sample segmask : :obj:`perception.BinaryImage` binary image segmenting out the object of interest visualize : bool whether or not to show intermediate samples (for debugging) Returns ------- :obj:`list` of :obj:`Grasp2D` list of 2D grasp candidates """ # compute edge pixels edge_start = time() depth_im = rgbd_im.depth depth_im = depth_im.apply(snf.gaussian_filter, sigma=self._depth_grad_gaussian_sigma) depth_im_downsampled = depth_im.resize(self._rescale_factor) depth_im_threshed = depth_im_downsampled.threshold_gradients( self._depth_grad_thresh) edge_pixels = self._downsample_rate * depth_im_threshed.zero_pixels() if segmask is not None: edge_pixels = np.array( [p for p in edge_pixels if np.any(segmask[p[0], p[1]] > 0)]) num_pixels = edge_pixels.shape[0] logging.debug('Depth edge detection took %.3f sec' % (time() - edge_start)) logging.debug('Found %d edge pixels' % (num_pixels)) # exit if no edge pixels if num_pixels == 0: return [] # compute_max_depth min_depth = np.min(depth_im.data) + self._min_depth_offset max_depth = np.max(depth_im.data) + self._max_depth_offset # compute surface normals normal_start = time() edge_normals = self._surface_normals(depth_im, edge_pixels) logging.debug('Normal computation took %.3f sec' % (time() - normal_start)) if visualize: vis.figure() vis.subplot(1, 2, 1) vis.imshow(depth_im) if num_pixels > 0: vis.scatter(edge_pixels[:, 1], edge_pixels[:, 0], s=10, c='b') X = [pix[1] for pix in edge_pixels] Y = [pix[0] for pix in edge_pixels] U = [10 * pix[1] for pix in edge_normals] V = [-10 * pix[0] for pix in edge_normals] plt.quiver(X, Y, U, V, units='x', scale=1, zorder=2, color='g') vis.title('Edge pixels and normals') vis.subplot(1, 2, 2) vis.imshow(depth_im_threshed) vis.title('Edge map') vis.show() # form set of valid candidate point pairs sample_start = time() max_grasp_width_px = Grasp2D(Point(np.zeros(2)), 0.0, min_depth, width=self._gripper_width, camera_intr=camera_intr).width_px normal_ip = edge_normals.dot(edge_normals.T) dists = ssd.squareform(ssd.pdist(edge_pixels)) valid_indices = np.where( (normal_ip < -np.cos(np.arctan(self._friction_coef))) & (dists < max_grasp_width_px) & (dists > 0.0)) valid_indices = np.c_[valid_indices[0], valid_indices[1]] num_pairs = valid_indices.shape[0] logging.debug('Normal pruning %.3f sec' % (time() - sample_start)) # raise exception if no antipodal pairs if num_pairs == 0: return [] # iteratively sample grasps k = 0 grasps = [] sample_size = min(self._max_rejection_samples, num_pairs) candidate_pair_indices = np.random.choice(num_pairs, size=sample_size, replace=False) while k < sample_size and len(grasps) < num_samples: # sample a random pair without replacement j = candidate_pair_indices[k] pair_ind = valid_indices[j, :] p1 = edge_pixels[pair_ind[0], :] p2 = edge_pixels[pair_ind[1], :] n1 = edge_normals[pair_ind[0], :] n2 = edge_normals[pair_ind[1], :] width = np.linalg.norm(p1 - p2) k += 1 # check force closure if force_closure(p1, p2, n1, n2, self._friction_coef): # compute grasp parameters grasp_center = (p1 + p2) / 2 grasp_axis = p2 - p1 grasp_axis = grasp_axis / np.linalg.norm(grasp_axis) grasp_theta = 0 if grasp_axis[1] != 0: grasp_theta = np.arctan(grasp_axis[0] / grasp_axis[1]) # compute distance from image center dist_from_center = np.linalg.norm(grasp_center - depth_im.center) dist_from_boundary = min( np.abs(depth_im.height - grasp_center[0]), np.abs(depth_im.width - grasp_center[1]), grasp_center[0], grasp_center[1]) if dist_from_center < self._max_dist_from_center and \ dist_from_boundary > self._min_dist_from_boundary: # form grasp object grasp_center_pt = Point( np.array([grasp_center[1], grasp_center[0]])) grasp = Grasp2D(grasp_center_pt, grasp_theta, 0.0) # check grasp dists grasp_dists = [ Grasp2D.image_dist(grasp, candidate, alpha=self._angle_dist_weight) for candidate in grasps ] if len(grasps) == 0 or np.min( grasp_dists) > self._min_grasp_dist: if visualize: vis.figure() vis.imshow(depth_im) vis.scatter(p1[1], p1[0]) vis.scatter(p2[1], p2[0]) vis.title('Grasp candidate %d' % (len(grasps))) vis.show() # sample depths for i in range(self._depth_samples_per_grasp): # get depth in the neighborhood of the center pixel depth_win = depth_im.data[grasp_center[0] - self._h:grasp_center[0] + self._h, grasp_center[1] - self._w:grasp_center[1] + self._w] center_depth = np.min(depth_win) if center_depth == 0 or np.isnan(center_depth): continue # sample depth between the min and max min_depth = np.min( center_depth) + self._min_depth_offset max_depth = np.max( center_depth) + self._max_depth_offset sample_depth = min_depth + ( max_depth - min_depth) * np.random.rand() candidate_grasp = Grasp2D( grasp_center_pt, grasp_theta, sample_depth, width=self._gripper_width, camera_intr=camera_intr) grasps.append(candidate_grasp) # return sampled grasps return grasps
def get_data_from_source(object_type, use_kmeans=False, kmeans_label='', for_test=False): object_labels = get_baseline_labels(use_kmeans=use_kmeans, kmeans_label=kmeans_label, object_type=object_type) if object_type == 'g3db_instances': object_name = 'g3db_instances_non_test_version7' if for_test: object_name = 'g3db_instances_version7' #object_name = '39_beerbottle_final-13-Nov-2015-09-07-13_instance0' #object_name = '1_Coffeecup_final-10-Dec-2015-06-58-01_instance0' #object_name = 'Cylinder_7' #object_name = '39_beerbottle_final-13-Nov-2015-09-07-13_instance0' object_file_dir = '../grasping_ros_mico/point_clouds_for_classification' if object_type == 'g3db_instances_for_classification': object_name = 'g3db_instances_for_classification' #object_name = '39_beerbottle_final-13-Nov-2015-09-07-13_instance0' object_file_dir = '../grasping_ros_mico/point_clouds_for_classification/additional_g3db_objects_for_classification' object_file_names = giob.get_object_filenames(object_name, object_file_dir) X = [] Y = [] object_names = [] clipped_objects = [] outfile_name = object_file_dir + "/clipped_object_list.txt" with open(outfile_name, 'r') as f: for line in f: clipped_objects.append(line.strip()) for object_file_name_ in object_file_names: object_instance_name = object_file_name_.replace('.yaml', '').split('/')[-1] for i in range(0, 81): if for_test: if object_instance_name in object_labels.keys(): Y.append(object_labels[object_instance_name]) else: Y.append(1000) else: Y.append(object_labels[object_instance_name]) object_names.append(object_instance_name + "/" + repr(i)) object_file_name = object_file_name_.replace('.yaml', '') + "/" + repr(i) thumbnail_object_file_name = object_file_name + "_thumbnail.npy" if os.path.exists(thumbnail_object_file_name): print "Loading " + thumbnail_object_file_name depth_im_cropped = perception.DepthImage.open( thumbnail_object_file_name) if False: vis.figure() vis.subplot(1, 1, 1) vis.imshow(depth_im_cropped) vis.show() else: print "Creating " + thumbnail_object_file_name object_list = giob.load_object_file([object_file_name]) (depth_im_cropped, clipped) = get_depth_image_thumbmail(object_list[0][0], 200, 160, False) depth_im_cropped.save(thumbnail_object_file_name) if clipped: clipped_objects.append(object_file_name) X.append(depth_im_cropped.data) #print clipped_objects outfile_name = object_file_dir + "/clipped_object_list.txt" with open(outfile_name, 'w') as f: f.write("\n".join(sorted(clipped_objects))) f.write("\n") assert len(X) == len(Y) return (X, Y, object_names)
def action(self, state): """ Plans the grasp with the highest probability of success on the given RGB-D image. Attributes ---------- state : :obj:`RgbdImageState` image to plan grasps on Returns ------- :obj:`ParallelJawGrasp` grasp to execute """ # check valid input if not isinstance(state, RgbdImageState): raise ValueError('Must provide an RGB-D image state.') # parse state rgbd_im = state.rgbd_im camera_intr = state.camera_intr segmask = state.segmask # sample grasps grasps = self._grasp_sampler.sample( rgbd_im, camera_intr, self._num_seed_samples, segmask=segmask, visualize=self.config['vis']['grasp_sampling'], seed=self._seed) num_grasps = len(grasps) if num_grasps == 0: logging.warning('No valid grasps could be found') return None # form tensors image_tensor, pose_tensor = self.grasps_to_tensors(grasps, state) if self.config['vis']['tf_images']: # read vis params k = self.config['vis']['k'] d = utils.sqrt_ceil(k) # display grasp transformed images vis.figure(size=(FIGSIZE, FIGSIZE)) for i, image_tf in enumerate(image_tensor[:k, ...]): depth = pose_tensor[i][0] vis.subplot(d, d, i + 1) vis.imshow(DepthImage(image_tf)) vis.title('Image %d: d=%.3f' % (i, depth)) # display grasp transformed images vis.figure(size=(FIGSIZE, FIGSIZE)) for i in range(d): image_tf = image_tensor[i, ...] depth = pose_tensor[i][0] grasp = grasps[i] vis.subplot(d, 2, 2 * i + 1) vis.imshow(rgbd_im.depth) vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True) vis.title('Grasp %d: d=%.3f' % (i, depth)) vis.subplot(d, 2, 2 * i + 2) vis.imshow(DepthImage(image_tf)) vis.title('TF image %d: d=%.3f' % (i, depth)) vis.show() # iteratively refit and sample for j in range(self._num_iters): logging.debug('CEM iter %d' % (j)) # predict grasps predict_start = time() output_arr = self.gqcnn.predict(image_tensor, pose_tensor) q_values = output_arr[:, -1] logging.debug('Prediction took %.3f sec' % (time() - predict_start)) # sort grasps q_values_and_indices = zip(q_values, np.arange(num_grasps)) q_values_and_indices.sort(key=lambda x: x[0], reverse=True) if self.config['vis']['grasp_candidates']: # display each grasp on the original image, colored by predicted success vis.figure(size=(FIGSIZE, FIGSIZE)) vis.imshow(rgbd_im.depth) for grasp, q in zip(grasps, q_values): vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True, color=plt.cm.RdYlBu(q)) vis.title('Sampled grasps iter %d' % (j)) vis.show() if self.config['vis']['grasp_ranking']: # read vis params k = self.config['vis']['k'] d = utils.sqrt_ceil(k) # form camera intr for the thumbnail (to compute gripper width) scale_factor = float(self.gqcnn.im_width) / float( self._crop_width) scaled_camera_intr = camera_intr.resize(scale_factor) vis.figure(size=(FIGSIZE, FIGSIZE)) for i, p in enumerate(q_values_and_indices[:k]): # read stats for grasp q_value = p[0] ind = p[1] depth = pose_tensor[ind][0] image = DepthImage(image_tensor[ind, ...]) grasp = Grasp2D(Point(image.center), 0.0, depth, width=self._gripper_width, camera_intr=scaled_camera_intr) # plot vis.subplot(d, d, i + 1) vis.imshow(image) vis.grasp(grasp, scale=1.5) vis.title('K=%d: d=%.3f, q=%.3f' % (i, depth, q_value)) vis.show() # fit elite set num_refit = max(int(np.ceil(self._gmm_refit_p * num_grasps)), 1) elite_q_values = [i[0] for i in q_values_and_indices[:num_refit]] elite_grasp_indices = [ i[1] for i in q_values_and_indices[:num_refit] ] elite_grasps = [grasps[i] for i in elite_grasp_indices] elite_grasp_arr = np.array([g.feature_vec for g in elite_grasps]) if self.config['vis']['elite_grasps']: # display each grasp on the original image, colored by predicted success vis.figure(size=(FIGSIZE, FIGSIZE)) vis.imshow(rgbd_im.depth) for grasp, q in zip(elite_grasps, elite_q_values): vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True, color=plt.cm.RdYlBu(q)) vis.title('Elite grasps iter %d' % (j)) vis.show() # normalize elite set elite_grasp_mean = np.mean(elite_grasp_arr, axis=0) elite_grasp_std = np.std(elite_grasp_arr, axis=0) elite_grasp_std[elite_grasp_std == 0] = 1.0 elite_grasp_arr = (elite_grasp_arr - elite_grasp_mean) / elite_grasp_std # fit a GMM to the top samples num_components = max( int(np.ceil(self._gmm_component_frac * num_refit)), 1) uniform_weights = (1.0 / num_components) * np.ones(num_components) gmm = GaussianMixture(n_components=num_components, weights_init=uniform_weights, reg_covar=self._gmm_reg_covar) train_start = time() gmm.fit(elite_grasp_arr) train_duration = time() - train_start logging.debug('GMM fitting with %d components took %.3f sec' % (num_components, train_duration)) # sample the next grasps sample_start = time() grasp_vecs, _ = gmm.sample(n_samples=self._num_gmm_samples) grasp_vecs = elite_grasp_std * grasp_vecs + elite_grasp_mean sample_duration = time() - sample_start logging.debug('GMM sampling took %.3f sec' % (sample_duration)) # convert features to grasps grasps = [] for grasp_vec in grasp_vecs: grasps.append( Grasp2D.from_feature_vec(grasp_vec, width=self._gripper_width, camera_intr=camera_intr)) num_grasps = len(grasps) if num_grasps == 0: logging.warning('No valid grasps could be found') return None # form tensors image_tensor, pose_tensor = self.grasps_to_tensors(grasps, state) if self.config['vis']['tf_images']: # read vis params k = self.config['vis']['k'] d = utils.sqrt_ceil(k) # display grasp transformed images vis.figure(size=(FIGSIZE, FIGSIZE)) for i, image_tf in enumerate(image_tensor[:k, ...]): depth = pose_tensor[i][0] vis.subplot(d, d, i + 1) vis.imshow(DepthImage(image_tf)) vis.title('Image %d: d=%.3f' % (i, depth)) vis.show() # predict final set of grasps predict_start = time() output_arr = self.gqcnn.predict(image_tensor, pose_tensor) q_values = output_arr[:, -1] logging.debug('Final prediction took %.3f sec' % (time() - predict_start)) if self.config['vis']['grasp_candidates']: # display each grasp on the original image, colored by predicted success vis.figure(size=(FIGSIZE, FIGSIZE)) vis.imshow(rgbd_im.depth) for grasp, q in zip(grasps, q_values): vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True, color=plt.cm.RdYlBu(q)) vis.title('Final sampled grasps') vis.show() # select grasp index = self.select(grasps, q_values) grasp = grasps[index] q_value = q_values[index] image = DepthImage(image_tensor[index, ...]) pose = pose_tensor[index, ...] depth = pose[0] if self.config['vis']['grasp_plan']: scale_factor = float(self.gqcnn.im_width) / float(self._crop_width) scaled_camera_intr = camera_intr.resize(scale_factor) grasp = Grasp2D(Point(image.center), 0.0, pose[0], width=self._gripper_width, camera_intr=scaled_camera_intr) vis.figure() vis.imshow(image) vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True) vis.title('Best Grasp: d=%.3f, q=%.3f' % (depth, q_value)) vis.show() # return action return ParallelJawGrasp(grasp, q_value, image)
def visualize(self): """ Visualize predictions """ logging.info('Visualizing ' + self.datapoint_type) # iterate through shuffled file indices for i in self.indices: im_filename = self.im_filenames[i] pose_filename = self.pose_filenames[i] label_filename = self.label_filenames[i] logging.info('Loading Image File: ' + im_filename + ' Pose File: ' + pose_filename + ' Label File: ' + label_filename) # load tensors from files metric_tensor = np.load(os.path.join(self.data_dir, label_filename))['arr_0'] label_tensor = 1 * (metric_tensor > self.metric_thresh) image_tensor = np.load(os.path.join(self.data_dir, im_filename))['arr_0'] hand_poses_tensor = np.load( os.path.join(self.data_dir, pose_filename))['arr_0'] pose_tensor = self._read_pose_data(hand_poses_tensor, self.input_data_mode) # score with neural network pred_p_success_tensor = self._gqcnn.predict( image_tensor, pose_tensor) # compute results classification_result = ClassificationResult( [pred_p_success_tensor], [label_tensor]) logging.info('Error rate on files: %.3f' % (classification_result.error_rate)) logging.info('Precision on files: %.3f' % (classification_result.precision)) logging.info('Recall on files: %.3f' % (classification_result.recall)) mispred_ind = classification_result.mispredicted_indices() correct_ind = classification_result.correct_indices() # IPython.embed() if self.datapoint_type == 'true_positive' or self.datapoint_type == 'true_negative': vis_ind = correct_ind else: vis_ind = mispred_ind num_visualized = 0 # visualize for ind in vis_ind: # limit the number of sampled datapoints displayed per object if num_visualized >= self.samples_per_object: break num_visualized += 1 # don't visualize the datapoints that we don't want if self.datapoint_type == 'true_positive': if classification_result.labels[ind] == 0: continue elif self.datapoint_type == 'true_negative': if classification_result.labels[ind] == 1: continue elif self.datapoint_type == 'false_positive': if classification_result.labels[ind] == 0: continue elif self.datapoint_type == 'false_negative': if classification_result.labels[ind] == 1: continue logging.info('Datapoint %d of files for %s' % (ind, im_filename)) logging.info('Depth: %.3f' % (hand_poses_tensor[ind, 2])) data = image_tensor[ind, ...] if self.display_image_type == RenderMode.SEGMASK: image = BinaryImage(data) elif self.display_image_type == RenderMode.GRAYSCALE: image = GrayscaleImage(data) elif self.display_image_type == RenderMode.COLOR: image = ColorImage(data) elif self.display_image_type == RenderMode.DEPTH: image = DepthImage(data) elif self.display_image_type == RenderMode.RGBD: image = RgbdImage(data) elif self.display_image_type == RenderMode.GD: image = GdImage(data) vis2d.figure() if self.display_image_type == RenderMode.RGBD: vis2d.subplot(1, 2, 1) vis2d.imshow(image.color) grasp = Grasp2D(Point(image.center, 'img'), 0, hand_poses_tensor[ind, 2], self.gripper_width_m) grasp.camera_intr = grasp.camera_intr.resize(1.0 / 3.0) vis2d.grasp(grasp) vis2d.subplot(1, 2, 2) vis2d.imshow(image.depth) vis2d.grasp(grasp) elif self.display_image_type == RenderMode.GD: vis2d.subplot(1, 2, 1) vis2d.imshow(image.gray) grasp = Grasp2D(Point(image.center, 'img'), 0, hand_poses_tensor[ind, 2], self.gripper_width_m) grasp.camera_intr = grasp.camera_intr.resize(1.0 / 3.0) vis2d.grasp(grasp) vis2d.subplot(1, 2, 2) vis2d.imshow(image.depth) vis2d.grasp(grasp) else: vis2d.imshow(image) grasp = Grasp2D(Point(image.center, 'img'), 0, hand_poses_tensor[ind, 2], self.gripper_width_m) grasp.camera_intr = grasp.camera_intr.resize(1.0 / 3.0) vis2d.grasp(grasp) vis2d.title('Datapoint %d: Pred: %.3f Label: %.3f' % (ind, classification_result.pred_probs[ind, 1], classification_result.labels[ind])) vis2d.show() # cleanup self._cleanup()
def run_experiment(): """ Run the experiment """ # get the images from the sensor previous_grasp = None while True: rospy.loginfo("Waiting for images") start_time = time.time() raw_color = rospy.wait_for_message("/camera/rgb/image_color", Image) raw_depth = rospy.wait_for_message("/camera/depth_registered/image", Image) image_load_time = time.time() - start_time rospy.loginfo('Images loaded in: ' + str(image_load_time) + ' secs.') ### Create wrapped Perception RGB and Depth Images by unpacking the ROS Images using CVBridge ### try: color_image = perception.ColorImage( cv_bridge.imgmsg_to_cv2(raw_color, "rgb8"), frame=T_camera_world.from_frame) depth_image = perception.DepthImage( cv_bridge.imgmsg_to_cv2(raw_depth, desired_encoding="passthrough"), frame=T_camera_world.from_frame) except CvBridgeError as cv_bridge_exception: rospy.logerr(cv_bridge_exception) # inpaint to remove holes inpainted_color_image = color_image.inpaint( rescale_factor=INPAINT_RESCALE_FACTOR) inpainted_depth_image = depth_image.inpaint( rescale_factor=INPAINT_RESCALE_FACTOR) if DETECT_OBJECTS: detector = RgbdDetectorFactory.detector('point_cloud_box') detections = detector.detect(inpainted_color_image, inpainted_depth_image, detector_cfg, camera_intrinsics, T_camera_world, vis_foreground=False, vis_segmentation=False) detected_obj = None if previous_grasp is not None: position = previous_grasp.pose.position position = np.array([position.x, position.y, position.z]) center_point = Point(position, camera_intrinsics.frame) center_pixel = camera_intrinsics.project(center_point, camera_intrinsics.frame) i, j = center_pixel.y, center_pixel.x if DETECT_OBJECTS: for detection in detections: binaryIm = detection.binary_im if binaryIm[i, j]: segmask = binaryIm detected_obj = detection break else: # Generate an ellipse inverse segmask centered on previous grasp y, x = np.ogrid[-i:IMAGE_HEIGHT - i, -j:IMAGE_WIDTH - j] circlemask = x * x + y * y <= CIRCLE_RAD * CIRCLE_RAD segmask_data = np.ones( (IMAGE_HEIGHT, IMAGE_WIDTH), dtype=np.uint8) * 255 segmask_data[circlemask] = 0 segmask = BinaryImage(segmask_data, camera_intrinsics.frame) else: segmask = BinaryImage( np.ones((IMAGE_HEIGHT, IMAGE_WIDTH), dtype=np.uint8) * 255, camera_intrinsics.frame) segmask._encoding = 'mono8' if VISUALIZE_DETECTOR_OUTPUT: vis.figure() vis.subplot(1, 2, 1) vis.imshow(detected_obj.color_thumbnail) vis.subplot(1, 2, 2) vis.imshow(detected_obj.depth_thumbnail) vis.show() try: rospy.loginfo('Planning Grasp') start_time = time.time() planned_grasp_data = plan_grasp(inpainted_color_image.rosmsg, inpainted_depth_image.rosmsg, segmask.rosmsg, raw_camera_info, boundingBox) grasp_plan_time = time.time() - start_time rospy.loginfo('Total grasp planning time: ' + str(grasp_plan_time) + ' secs.') rospy.loginfo('Queueing Grasp') previous_grasp = planned_grasp_data.grasp execute_grasp(previous_grasp) # raw_input("Press ENTER to resume") except rospy.ServiceException as e: rospy.logerr(e) previous_grasp = None raw_input("Press ENTER to resume")