def register_point_cloud(self):
        registration_result_array = []
        depth_im_seg, camera_intr = self.get_object_point_cloud_from_sensor(
        )  #self.database_objects[1]#
        source_point_cloud, source_normal_cloud = self.get_point_normal_cloud(
            depth_im_seg, camera_intr)
        source_sample_size = int(source_point_cloud.shape[1])
        if self.debug:
            print source_sample_size
            vis.figure()
            vis.subplot(1, 1, 1)
            vis.imshow(depth_im_seg)
            vis.show()
        source_sample_size = 1000
        p2pis = PointToPlaneICPSolver(sample_size=source_sample_size)
        p2pfm = PointToPlaneFeatureMatcher()
        for objectFileName in self.obj_filenames:
            self.load_object_point_clouds([objectFileName])
            for (target_depth_im, target_camera_intr) in self.database_objects:
                if self.debug:
                    vis.figure()
                    vis.subplot(1, 1, 1)
                    vis.imshow(target_depth_im)
                    vis.show()
                target_point_cloud, target_normal_cloud = self.get_point_normal_cloud(
                    target_depth_im, target_camera_intr)
                registration_result = p2pis.register(source_point_cloud,
                                                     target_point_cloud,
                                                     source_normal_cloud,
                                                     target_normal_cloud,
                                                     p2pfm,
                                                     num_iterations=10)
                registration_result_array.append(registration_result)

        return registration_result_array
def get_current_point_cloud(debug=False, start_node=True, env='simulator'):
    giob = GetInitialObjectBelief(None, debug, start_node, env)
    (depth_im_seg, _) = giob.get_object_point_cloud_from_sensor()
    if debug:
        vis.figure()
        vis.subplot(1, 1, 1)
        vis.imshow(depth_im_seg)
        vis.show()
 def save_point_cloud(self, filename_prefix, depth_im_seg, camera_intr):
     if self.debug:
         vis.figure()
         vis.subplot(1, 1, 1)
         vis.imshow(depth_im_seg)
         vis.show()
     depth_im_seg.save(filename_prefix + '.npy')
     camera_intr.save(filename_prefix + '.intr')
def get_current_rgb_image(debug=False, start_node=True, env='simulator'):
    giob = GetInitialObjectBelief(None, debug, start_node, env)
    (color_im_seg, camera_intr) = giob.get_world_color_image()
    (depth_im_seg,
     camera_intr) = giob.get_object_point_cloud_from_sensor(None, False)
    if debug:
        vis.figure()
        vis.subplot(1, 2, 1)
        vis.imshow(depth_im_seg)
        vis.subplot(1, 2, 2)
        vis.imshow(color_im_seg)
        vis.show()
    return (depth_im_seg, color_im_seg, camera_intr)
 def load_object_point_clouds(self, obj_filenames=None):
     if obj_filenames is None:
         obj_filenames = self.obj_filenames
     ans = []
     for filename in obj_filenames:
         print "Loading " + filename
         depth_im, camera_intr = self.load_saved_point_cloud(filename)
         ans.append((depth_im, camera_intr))
         if self.debug:
             vis.figure()
             vis.subplot(1, 1, 1)
             vis.imshow(depth_im)
             vis.show()
     self.database_objects = ans
     return ans
def get_current_point_cloud_for_movement(min_x,
                                         debug=False,
                                         start_node=True,
                                         env='simulator',
                                         min_z=None):

    giob = GetInitialObjectBelief(None, debug, start_node, env)
    (camera_intr, point_cloud_world,
     T_camera_world) = giob.get_world_point_cloud()
    cfg = copy.deepcopy(giob.detector_cfg)
    cfg['min_pt'][2] = cfg['min_z_for_movement']
    if min_z is not None:
        cfg['min_pt'][2] = min_z
    if min_x > cfg['min_pt'][0]:
        cfg['min_pt'][0] = min_x
    seg_point_cloud_world = giob.get_segmented_point_cloud_world(
        cfg, point_cloud_world)
    """
    import sensor_msgs.point_cloud2 as pcl2
    from sensor_msgs.msg import Image, PointCloud2, PointField
    print point_cloud_world.data.shape
    pc2 = PointCloud2()
    pc2.header.frame_id = giob.WORLD_FRAME
    segmented_pc = pcl2.create_cloud_xyz32(pc2.header, np.transpose(seg_point_cloud_world.data))
    pcl_pub = rospy.Publisher('mico_node/pointcloud', PointCloud2, queue_size=10)

    i = 0
    while not rospy.is_shutdown():
       #hello_str = "hello world %s" % rospy.get_time()
       #rospy.loginfo(hello_str)
       pcl_pub.publish(segmented_pc)
       #depth_im_pub.publish(depth_im)
       rospy.sleep(5)
       i = i+1
       if i > 5:
           break

    #return copy.deepcopy(point_cloud_world)
    """
    if debug:
        seg_point_cloud_cam = T_camera_world.inverse() * seg_point_cloud_world
        depth_im_seg = camera_intr.project_to_image(seg_point_cloud_cam)
        vis.figure()
        vis.subplot(1, 1, 1)
        vis.imshow(depth_im_seg)
        vis.show()
    return seg_point_cloud_world
예제 #7
0
def main():
    delete_files = False
    directory_name = None
    out_directory_name = './'
    num_days = 5
    opts, args = getopt.getopt(sys.argv[1:], "d:o:", ["dir=", "out="])
    for opt, arg in opts:
        if opt in ("-d", "--dir"):
            directory_name = arg
        if opt in ("-o", "--out"):
            out_directory_name = arg
    if directory_name is None:
        print "Please specify directory name"
        return

    num_saved = 0
    for root, dir, files in os.walk(directory_name):
        #print "Root " + root
        for file in files:
            filename = os.path.join(root, file)
            #print filename
            if filename.endswith('.npz') and "depth" not in filename:
                rgb_image = perception.ColorImage.open(filename)
                vis.figure()
                vis.subplot(1, 1, 1)
                vis.imshow(rgb_image)
                vis.show(block=False)
                save_ans = raw_input("Shall I save[y|n]?")
                if save_ans == 'y':
                    png_file_name = os.path.basename(filename).replace(
                        '.npz', '.png')
                    new_file_name = os.path.join(out_directory_name,
                                                 png_file_name)
                    rgb_image.save(new_file_name)
                    num_saved = num_saved + 1
                    print num_saved
                plt.close()
예제 #8
0
def get_depth_image_thumbmail(depth_im, size_x=16, size_y=8, debug=False):
    depth_im_centered, _ = depth_im.center_nonzero()
    #if crop_point is None:
    #    crop_point = depth_im_centered.center
    #check
    depth_im_focus = depth_im_centered.focus(size_x, size_y)
    depth_im_focus_zero_pixels = depth_im_focus.zero_pixels()
    depth_im_centered_zero_pixels = depth_im_centered.zero_pixels()
    clipped = False
    try:
        assert np.array_equal(depth_im_focus_zero_pixels,
                              depth_im_centered_zero_pixels)
    except:
        clipped = True
        #debug = True
        """
        print depth_im_focus_zero_pixels[0]
        print depth_im_centered_zero_pixels[0]
        a = np.append(depth_im_focus_zero_pixels,depth_im_centered_zero_pixels, axis=0)
        b,counts = np.unique(["{}-{}".format(i, j) for i, j in a], return_counts=True)
        #c = np.where(counts==1)
        print len(b)
        print len(counts)
        c = np.array([map(int,x.split('-')) for x in b[np.where(counts==1)]])
        print c
        print depth_im_focus.center
        print depth_im_centered[c[:,0],c[:,1]]
        """
    depth_im_crop = depth_im_centered.crop(size_x, size_y)
    depth_im_crop_thumbnail = depth_im_crop.resize(0.25)
    if debug:
        vis.figure()
        vis.subplot(1, 4, 1)
        vis.imshow(depth_im_crop)
        vis.subplot(1, 4, 2)
        vis.imshow(depth_im_centered)
        vis.subplot(1, 4, 3)
        vis.imshow(depth_im)
        vis.subplot(1, 4, 4)
        vis.imshow(depth_im_crop_thumbnail)
        vis.show()
    return depth_im_crop_thumbnail, clipped
예제 #9
0
    def action(self, state):
        """ Plans the grasp with the highest probability of success on
        the given RGB-D image.

        Attributes
        ----------
        state : :obj:`RgbdImageState`
            image to plan grasps on

        Returns
        -------
        :obj:`ParallelJawGrasp`
            grasp to execute
        """
        # check valid input
        if not isinstance(state, RgbdImageState):
            raise ValueError('Must provide an RGB-D image state.')

        # parse state
        rgbd_im = state.rgbd_im
        camera_intr = state.camera_intr
        segmask = state.segmask

        # sample grasps
        grasps = self._grasp_sampler.sample(
            rgbd_im,
            camera_intr,
            self._num_grasp_samples,
            segmask=segmask,
            visualize=self.config['vis']['grasp_sampling'],
            seed=None)
        num_grasps = len(grasps)

        # form tensors
        image_tensor, pose_tensor = self.grasps_to_tensors(grasps, state)
        if self.config['vis']['tf_images']:
            # read vis params
            k = self.config['vis']['k']
            d = utils.sqrt_ceil(k)

            # display grasp transformed images
            vis.figure(size=(FIGSIZE, FIGSIZE))
            for i, image_tf in enumerate(image_tensor[:k, ...]):
                depth = pose_tensor[i][0]
                vis.subplot(d, d, i + 1)
                vis.imshow(DepthImage(image_tf))
                vis.title('Image %d: d=%.3f' % (i, depth))
            vis.show()

        # predict grasps
        predict_start = time()
        output_arr = self.gqcnn.predict(image_tensor, pose_tensor)
        q_values = output_arr[:, -1]
        logging.debug('Prediction took %.3f sec' % (time() - predict_start))

        if self.config['vis']['grasp_candidates']:
            # display each grasp on the original image, colored by predicted success
            vis.figure(size=(FIGSIZE, FIGSIZE))
            vis.imshow(rgbd_im.depth)
            for grasp, q in zip(grasps, q_values):
                vis.grasp(grasp,
                          scale=1.5,
                          show_center=False,
                          show_axis=True,
                          color=plt.cm.RdYlBu(q))
            vis.title('Sampled grasps')
            vis.show()

        if self.config['vis']['grasp_ranking']:
            # read vis params
            k = self.config['vis']['k']
            d = utils.sqrt_ceil(k)

            # form camera intr for the thumbnail (to compute gripper width)
            scale_factor = float(self.gqcnn.im_width) / float(self._crop_width)
            scaled_camera_intr = camera_intr.resize(scale_factor)

            # sort grasps
            q_values_and_indices = zip(q_values, np.arange(num_grasps))
            q_values_and_indices.sort(key=lambda x: x[0], reverse=True)

            vis.figure(size=(FIGSIZE, FIGSIZE))
            for i, p in enumerate(q_values_and_indices[:k]):
                # read stats for grasp
                q_value = p[0]
                ind = p[1]
                depth = pose_tensor[ind][0]
                image = DepthImage(image_tensor[ind, ...])
                grasp = Grasp2D(Point(image.center),
                                0.0,
                                depth,
                                width=self._gripper_width,
                                camera_intr=scaled_camera_intr)

                # plot
                vis.subplot(d, d, i + 1)
                vis.imshow(image)
                vis.grasp(grasp, scale=1.5)
                vis.title('K=%d: d=%.3f, q=%.3f' % (i, depth, q_value))
            vis.show()

        # select grasp
        index = self.select(grasps, q_values)
        grasp = grasps[index]
        q_value = q_values[index]
        image = DepthImage(image_tensor[index, ...])
        pose = pose_tensor[index, ...]
        depth = pose[0]
        if self.config['vis']['grasp_plan']:
            scale_factor = float(self.gqcnn.im_width) / float(self._crop_width)
            scaled_camera_intr = camera_intr.resize(scale_factor)
            grasp = Grasp2D(Point(image.center),
                            0.0,
                            pose[0],
                            width=self._gripper_width,
                            camera_intr=scaled_camera_intr)
            vis.figure()
            vis.imshow(image)
            vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True)
            vis.title('Best Grasp: d=%.3f, q=%.3f' % (depth, q_value))
            vis.show()

        # return action
        return ParallelJawGrasp(grasp, q_value, image)
예제 #10
0
파일: policy.py 프로젝트: Amith1596/fcgqcnn
    # setup sensor
    sensor = RgbdSensorFactory.sensor(sensor_type, config['sensor'])
    sensor.start()
    camera_intr = sensor.ir_intrinsics

    # read images
    color_im, depth_im, _ = sensor.frames()
    color_im = color_im.inpaint(rescale_factor=inpaint_rescale_factor)
    depth_im = depth_im.inpaint(rescale_factor=inpaint_rescale_factor)
    rgbd_im = RgbdImage.from_color_and_depth(color_im, depth_im)
    state = RgbdImageState(rgbd_im, camera_intr)

    # init policy
    policy = CrossEntropyAntipodalGraspingPolicy(policy_config)
    policy_start = time.time()
    action = policy(state)
    logging.info('Planning took %.3f sec' % (time.time() - policy_start))

    # vis final grasp
    if policy_config['vis']['final_grasp']:
        vis.figure(size=(10, 10))
        vis.subplot(1, 2, 1)
        vis.imshow(rgbd_im.color)
        vis.grasp(action.grasp, scale=1.5, show_center=False, show_axis=True)
        vis.title('Planned grasp on color (Q=%.3f)' % (action.q_value))
        vis.subplot(1, 2, 2)
        vis.imshow(rgbd_im.depth)
        vis.grasp(action.grasp, scale=1.5, show_center=False, show_axis=True)
        vis.title('Planned grasp on depth (Q=%.3f)' % (action.q_value))
        vis.show()
예제 #11
0
def generate_gqcnn_dataset(dataset_path, database, target_object_keys,
                           env_rv_params, gripper_name, config):
    """
    Generates a GQ-CNN TensorDataset for training models with new grippers, quality metrics, objects, and cameras.

    Parameters
    ----------
    dataset_path : str
        path to save the dataset to
    database : :obj:`Hdf5Database`
        Dex-Net database containing the 3D meshes, grasps, and grasp metrics
    target_object_keys : :obj:`OrderedDict`
        dictionary mapping dataset names to target objects (either 'all' or a list of specific object keys)
    env_rv_params : :obj:`OrderedDict`
        parameters of the camera and object random variables used in sampling (see meshpy_berkeley.UniformPlanarWorksurfaceImageRandomVariable for more info)
    gripper_name : str
        name of the gripper to use
    config : :obj:`autolab_core.YamlConfig`
        other parameters for dataset generation

    Notes
    -----
    Required parameters of config are specified in Other Parameters

    Other Parameters
    ----------------    
    images_per_stable_pose : int
        number of object and camera poses to sample for each stable pose
    stable_pose_min_p : float
        minimum probability of occurrence for a stable pose to be used in data generation (used to prune bad stable poses
    
    gqcnn/crop_width : int
        width, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/crop_height : int
        height, in pixels,  of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/final_width : int
        width, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)
    gqcnn/final_height : int
        height, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)

    table_alignment/max_approach_table_angle : float
        max angle between the grasp axis and the table normal when the grasp approach is maximally aligned with the table normal
    table_alignment/max_approach_offset : float
        max deviation from perpendicular approach direction to use in grasp collision checking
    table_alignment/num_approach_offset_samples : int
        number of approach samples to use in collision checking

    collision_checking/table_offset : float
        max allowable interpenetration between the gripper and table to be considered collision free
    collision_checking/table_mesh_filename : str
        path to a table mesh for collision checking (default data/meshes/table.obj)
    collision_checking/approach_dist : float
        distance, in meters, between the approach pose and final grasp pose along the grasp axis
    collision_checking/delta_approach : float
        amount, in meters, to discretize the straight-line path from the gripper approach pose to the final grasp pose

    tensors/datapoints_per_file : int
        number of datapoints to store in each unique tensor file on disk
    tensors/fields : :obj:`dict`
        dictionary mapping field names to dictionaries specifying the data type, height, width, and number of channels for each tensor

    debug : bool
        True (or 1) if the random seed should be set to enforce deterministic behavior, False (0) otherwise
    vis/candidate_grasps : bool
        True (or 1) if the collision free candidate grasps should be displayed in 3D (for debugging)
    vis/rendered_images : bool
        True (or 1) if the rendered images for each stable pose should be displayed (for debugging)
    vis/grasp_images : bool
        True (or 1) if the transformed grasp images should be displayed (for debugging)
    """
    # read data gen params
    output_dir = dataset_path
    gripper = RobotGripper.load(gripper_name)
    image_samples_per_stable_pose = config['images_per_stable_pose']
    stable_pose_min_p = config['stable_pose_min_p']

    # read gqcnn params
    gqcnn_params = config['gqcnn']
    im_crop_height = gqcnn_params['crop_height']
    im_crop_width = gqcnn_params['crop_width']
    im_final_height = gqcnn_params['final_height']
    im_final_width = gqcnn_params['final_width']
    cx_crop = float(im_crop_width) / 2
    cy_crop = float(im_crop_height) / 2

    # open database
    dataset_names = target_object_keys.keys()
    datasets = [database.dataset(dn) for dn in dataset_names]

    # set target objects
    for dataset in datasets:
        if target_object_keys[dataset.name] == 'all':
            target_object_keys[dataset.name] = dataset.object_keys

    # setup grasp params
    table_alignment_params = config['table_alignment']
    min_grasp_approach_offset = -np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_offset = np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_table_angle = np.deg2rad(
        table_alignment_params['max_approach_table_angle'])
    num_grasp_approach_samples = table_alignment_params[
        'num_approach_offset_samples']

    phi_offsets = []
    if max_grasp_approach_offset == min_grasp_approach_offset:
        phi_inc = 1
    elif num_grasp_approach_samples == 1:
        phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1
    else:
        phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / (
            num_grasp_approach_samples - 1)

    phi = min_grasp_approach_offset
    while phi <= max_grasp_approach_offset:
        phi_offsets.append(phi)
        phi += phi_inc

    # setup collision checking
    coll_check_params = config['collision_checking']
    approach_dist = coll_check_params['approach_dist']
    delta_approach = coll_check_params['delta_approach']
    table_offset = coll_check_params['table_offset']

    table_mesh_filename = coll_check_params['table_mesh_filename']
    if not os.path.isabs(table_mesh_filename):
        table_mesh_filename = os.path.join(
            os.path.dirname(os.path.realpath(__file__)), '..',
            table_mesh_filename)
    table_mesh = ObjFile(table_mesh_filename).read()

    # set tensor dataset config
    tensor_config = config['tensors']
    tensor_config['fields']['depth_ims_tf_table']['height'] = im_final_height
    tensor_config['fields']['depth_ims_tf_table']['width'] = im_final_width
    tensor_config['fields']['obj_masks']['height'] = im_final_height
    tensor_config['fields']['obj_masks']['width'] = im_final_width

    # add available metrics (assuming same are computed for all objects)
    metric_names = []
    dataset = datasets[0]
    obj_keys = dataset.object_keys
    if len(obj_keys) == 0:
        raise ValueError('No valid objects in dataset %s' % (dataset.name))

    obj = dataset[obj_keys[0]]
    grasps = dataset.grasps(obj.key, gripper=gripper.name)
    grasp_metrics = dataset.grasp_metrics(obj.key,
                                          grasps,
                                          gripper=gripper.name)
    metric_names = grasp_metrics[grasp_metrics.keys()[0]].keys()
    for metric_name in metric_names:
        tensor_config['fields'][metric_name] = {}
        tensor_config['fields'][metric_name]['dtype'] = 'float32'

    # init tensor dataset
    tensor_dataset = TensorDataset(output_dir, tensor_config)
    tensor_datapoint = tensor_dataset.datapoint_template

    # setup log file
    experiment_log_filename = os.path.join(output_dir,
                                           'dataset_generation.log')
    formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
    hdlr = logging.FileHandler(experiment_log_filename)
    hdlr.setFormatter(formatter)
    logging.getLogger().addHandler(hdlr)
    root_logger = logging.getLogger()

    # copy config
    out_config_filename = os.path.join(output_dir, 'dataset_generation.json')
    ordered_dict_config = collections.OrderedDict()
    for key in config.keys():
        ordered_dict_config[key] = config[key]
    with open(out_config_filename, 'w') as outfile:
        json.dump(ordered_dict_config, outfile)

    # 1. Precompute the set of valid grasps for each stable pose:
    #    i) Perpendicular to the table
    #   ii) Collision-free along the approach direction

    # load grasps if they already exist
    grasp_cache_filename = os.path.join(output_dir, CACHE_FILENAME)
    if os.path.exists(grasp_cache_filename):
        logging.info('Loading grasp candidates from file')
        candidate_grasps_dict = pkl.load(open(grasp_cache_filename, 'rb'))
    # otherwise re-compute by reading from the database and enforcing constraints
    else:
        # create grasps dict
        candidate_grasps_dict = {}

        # loop through datasets and objects
        for dataset in datasets:
            logging.info('Reading dataset %s' % (dataset.name))
            for obj in dataset:
                if obj.key not in target_object_keys[dataset.name]:
                    continue

                # init candidate grasp storage
                candidate_grasps_dict[obj.key] = {}

                # setup collision checker
                collision_checker = GraspCollisionChecker(gripper)
                collision_checker.set_graspable_object(obj)

                # read in the stable poses of the mesh
                stable_poses = dataset.stable_poses(obj.key)
                for i, stable_pose in enumerate(stable_poses):
                    # render images if stable pose is valid
                    if stable_pose.p > stable_pose_min_p:
                        candidate_grasps_dict[obj.key][stable_pose.id] = []

                        # setup table in collision checker
                        T_obj_stp = stable_pose.T_obj_table.as_frames(
                            'obj', 'stp')
                        T_obj_table = obj.mesh.get_T_surface_obj(
                            T_obj_stp,
                            delta=table_offset).as_frames('obj', 'table')
                        T_table_obj = T_obj_table.inverse()
                        collision_checker.set_table(table_mesh_filename,
                                                    T_table_obj)

                        # read grasp and metrics
                        grasps = dataset.grasps(obj.key, gripper=gripper.name)
                        logging.info(
                            'Aligning %d grasps for object %s in stable %s' %
                            (len(grasps), obj.key, stable_pose.id))

                        # align grasps with the table
                        aligned_grasps = [
                            grasp.perpendicular_table(stable_pose)
                            for grasp in grasps
                        ]

                        # check grasp validity
                        logging.info(
                            'Checking collisions for %d grasps for object %s in stable %s'
                            % (len(grasps), obj.key, stable_pose.id))
                        for aligned_grasp in aligned_grasps:
                            # check angle with table plane and skip unaligned grasps
                            _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z(
                                stable_pose)
                            perpendicular_table = (
                                np.abs(grasp_approach_table_angle) <
                                max_grasp_approach_table_angle)
                            if not perpendicular_table:
                                continue

                            # check whether any valid approach directions are collision free
                            collision_free = False
                            for phi_offset in phi_offsets:
                                rotated_grasp = aligned_grasp.grasp_y_axis_offset(
                                    phi_offset)
                                collides = collision_checker.collides_along_approach(
                                    rotated_grasp, approach_dist,
                                    delta_approach)
                                if not collides:
                                    collision_free = True
                                    break

                            # store if aligned to table
                            candidate_grasps_dict[obj.key][
                                stable_pose.id].append(
                                    GraspInfo(aligned_grasp, collision_free))

                            # visualize if specified
                            if collision_free and config['vis'][
                                    'candidate_grasps']:
                                logging.info('Grasp %d' % (aligned_grasp.id))
                                vis.figure()
                                vis.gripper_on_object(gripper, aligned_grasp,
                                                      obj,
                                                      stable_pose.T_obj_world)
                                vis.show()

        # save to file
        logging.info('Saving to file')
        pkl.dump(candidate_grasps_dict, open(grasp_cache_filename, 'wb'))

    # 2. Render a dataset of images and associate the gripper pose with image coordinates for each grasp in the Dex-Net database

    # setup variables
    obj_category_map = {}
    pose_category_map = {}

    cur_pose_label = 0
    cur_obj_label = 0
    cur_image_label = 0

    # render images for each stable pose of each object in the dataset
    render_modes = [RenderMode.SEGMASK, RenderMode.DEPTH_SCENE]
    for dataset in datasets:
        logging.info('Generating data for dataset %s' % (dataset.name))

        # iterate through all object keys
        object_keys = dataset.object_keys
        for obj_key in object_keys:
            obj = dataset[obj_key]
            if obj.key not in target_object_keys[dataset.name]:
                continue

            # read in the stable poses of the mesh
            stable_poses = dataset.stable_poses(obj.key)
            for i, stable_pose in enumerate(stable_poses):

                # render images if stable pose is valid
                if stable_pose.p > stable_pose_min_p:
                    # log progress
                    logging.info('Rendering images for object %s in %s' %
                                 (obj.key, stable_pose.id))

                    # add to category maps
                    if obj.key not in obj_category_map.keys():
                        obj_category_map[obj.key] = cur_obj_label
                    pose_category_map['%s_%s' %
                                      (obj.key,
                                       stable_pose.id)] = cur_pose_label

                    # read in candidate grasps and metrics
                    candidate_grasp_info = candidate_grasps_dict[obj.key][
                        stable_pose.id]
                    candidate_grasps = [g.grasp for g in candidate_grasp_info]
                    grasp_metrics = dataset.grasp_metrics(obj.key,
                                                          candidate_grasps,
                                                          gripper=gripper.name)

                    # compute object pose relative to the table
                    T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                    T_obj_stp = obj.mesh.get_T_surface_obj(T_obj_stp)

                    # sample images from random variable
                    T_table_obj = RigidTransform(from_frame='table',
                                                 to_frame='obj')
                    scene_objs = {
                        'table': SceneObject(table_mesh, T_table_obj)
                    }
                    urv = UniformPlanarWorksurfaceImageRandomVariable(
                        obj.mesh,
                        render_modes,
                        'camera',
                        env_rv_params,
                        stable_pose=stable_pose,
                        scene_objs=scene_objs)

                    render_start = time.time()
                    render_samples = urv.rvs(
                        size=image_samples_per_stable_pose)
                    render_stop = time.time()
                    logging.info('Rendering images took %.3f sec' %
                                 (render_stop - render_start))

                    # visualize
                    if config['vis']['rendered_images']:
                        d = int(np.ceil(
                            np.sqrt(image_samples_per_stable_pose)))

                        # binary
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.SEGMASK].image)

                        # depth table
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.DEPTH_SCENE].image)
                        vis2d.show()

                    # tally total amount of data
                    num_grasps = len(candidate_grasps)
                    num_images = image_samples_per_stable_pose
                    num_save = num_images * num_grasps
                    logging.info('Saving %d datapoints' % (num_save))

                    # for each candidate grasp on the object compute the projection
                    # of the grasp into image space
                    for render_sample in render_samples:
                        # read images
                        binary_im = render_sample.renders[
                            RenderMode.SEGMASK].image
                        depth_im_table = render_sample.renders[
                            RenderMode.DEPTH_SCENE].image
                        # read camera params
                        T_stp_camera = render_sample.camera.object_to_camera_pose
                        shifted_camera_intr = render_sample.camera.camera_intr

                        # read pixel offsets
                        cx = depth_im_table.center[1]
                        cy = depth_im_table.center[0]

                        # compute intrinsics for virtual camera of the final
                        # cropped and rescaled images
                        camera_intr_scale = float(im_final_height) / float(
                            im_crop_height)
                        cropped_camera_intr = shifted_camera_intr.crop(
                            im_crop_height, im_crop_width, cy, cx)
                        final_camera_intr = cropped_camera_intr.resize(
                            camera_intr_scale)

                        # create a thumbnail for each grasp
                        for grasp_info in candidate_grasp_info:
                            # read info
                            grasp = grasp_info.grasp
                            collision_free = grasp_info.collision_free

                            # get the gripper pose
                            T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
                                'obj', T_stp_camera.from_frame)
                            grasp_2d = grasp.project_camera(
                                T_obj_camera, shifted_camera_intr)

                            # center images on the grasp, rotate to image x axis
                            dx = cx - grasp_2d.center.x
                            dy = cy - grasp_2d.center.y
                            translation = np.array([dy, dx])

                            binary_im_tf = binary_im.transform(
                                translation, grasp_2d.angle)
                            depth_im_tf_table = depth_im_table.transform(
                                translation, grasp_2d.angle)

                            # crop to image size
                            binary_im_tf = binary_im_tf.crop(
                                im_crop_height, im_crop_width)
                            depth_im_tf_table = depth_im_tf_table.crop(
                                im_crop_height, im_crop_width)

                            # resize to image size
                            binary_im_tf = binary_im_tf.resize(
                                (im_final_height, im_final_width),
                                interp='nearest')
                            depth_im_tf_table = depth_im_tf_table.resize(
                                (im_final_height, im_final_width))

                            # visualize the transformed images
                            if config['vis']['grasp_images']:
                                grasp_center = Point(
                                    depth_im_tf_table.center,
                                    frame=final_camera_intr.frame)
                                tf_grasp_2d = Grasp2D(
                                    grasp_center,
                                    0,
                                    grasp_2d.depth,
                                    width=gripper.max_width,
                                    camera_intr=final_camera_intr)

                                # plot 2D grasp image
                                vis2d.figure()
                                vis2d.subplot(2, 2, 1)
                                vis2d.imshow(binary_im)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 2)
                                vis2d.imshow(depth_im_table)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 3)
                                vis2d.imshow(binary_im_tf)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.subplot(2, 2, 4)
                                vis2d.imshow(depth_im_tf_table)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.title('Coll Free? %d' %
                                            (grasp_info.collision_free))
                                vis2d.show()

                                # plot 3D visualization
                                vis.figure()
                                T_obj_world = vis.mesh_stable_pose(
                                    obj.mesh,
                                    stable_pose.T_obj_world,
                                    style='surface',
                                    dim=0.5)
                                vis.gripper(gripper,
                                            grasp,
                                            T_obj_world,
                                            color=(0.3, 0.3, 0.3))
                                vis.show()

                            # form hand pose array
                            hand_pose = np.r_[grasp_2d.center.y,
                                              grasp_2d.center.x,
                                              grasp_2d.depth, grasp_2d.angle,
                                              grasp_2d.center.y -
                                              shifted_camera_intr.cy,
                                              grasp_2d.center.x -
                                              shifted_camera_intr.cx,
                                              grasp_2d.width_px]

                            # store to data buffers
                            tensor_datapoint[
                                'depth_ims_tf_table'] = depth_im_tf_table.raw_data
                            tensor_datapoint[
                                'obj_masks'] = binary_im_tf.raw_data
                            tensor_datapoint['hand_poses'] = hand_pose
                            tensor_datapoint['collision_free'] = collision_free
                            tensor_datapoint['obj_labels'] = cur_obj_label
                            tensor_datapoint['pose_labels'] = cur_pose_label
                            tensor_datapoint['image_labels'] = cur_image_label

                            for metric_name, metric_val in grasp_metrics[
                                    grasp.id].iteritems():
                                coll_free_metric = (
                                    1 * collision_free) * metric_val
                                tensor_datapoint[
                                    metric_name] = coll_free_metric
                            tensor_dataset.add(tensor_datapoint)

                        # update image label
                        cur_image_label += 1

                    # update pose label
                    cur_pose_label += 1

                    # force clean up
                    gc.collect()

            # update object label
            cur_obj_label += 1

            # force clean up
            gc.collect()

    # save last file
    tensor_dataset.flush()

    # save category mappings
    obj_cat_filename = os.path.join(output_dir, 'object_category_map.json')
    json.dump(obj_category_map, open(obj_cat_filename, 'w'))
    pose_cat_filename = os.path.join(output_dir, 'pose_category_map.json')
    json.dump(pose_category_map, open(pose_cat_filename, 'w'))
예제 #12
0
def visualize_tensor_dataset(dataset, config):
    """
    Visualizes a Tensor dataset.

    Parameters
    ----------
    dataset : :obj:`TensorDataset`
        dataset to visualize
    config : :obj:`autolab_core.YamlConfig`
        parameters for visualization

    Notes
    -----
    Required parameters of config are specified in Other Parameters

    Other Parameters
    ----------------
    field_name : str
        name of the field in the TensorDataset to visualize (defaults to depth_ims_tf_table, which is a single view point cloud of the object on a table)
    field_type : str
        type of image that the field name correspondes to (defaults to depth, can also be `segmask` if using the field `object_masks`)

    print_fields : :obj:`list` of str
        names of additiona fields to print to the command line
    filter : :obj:`dict` mapping str to :obj:`dict` 
        contraints that all displayed datapoints must satisfy (supports any univariate field name as a key and numeric thresholds)

    gripper_width_px : float
        width of the gripper to plot in pixels
    font_size : int
        size of font on the rendered images
    """
    # shuffle the tensor indices
    indices = dataset.datapoint_indices
    np.random.shuffle(indices)

    # read config
    field_name = config['field_name']
    field_type = config['field_type']
    font_size = config['font_size']
    print_fields = config['print_fields']
    gripper_width_px = config['gripper_width_px']

    num = 0
    for i, ind in enumerate(indices):
        datapoint = dataset[ind]
        data = datapoint[field_name]
        if field_type == RenderMode.SEGMASK:
            image = BinaryImage(data)
        elif field_type == RenderMode.DEPTH:
            image = DepthImage(data)
        else:
            raise ValueError('Field type %s not supported!' % (field_type))

        skip_datapoint = False
        for f, filter_cfg in config['filter'].iteritems():
            data = datapoint[f]
            if 'greater_than' in filter_cfg.keys(
            ) and data < filter_cfg['greater_than']:
                skip_datapoint = True
                break
            elif 'less_than' in filter_cfg.keys(
            ) and data > filter_cfg['less_than']:
                skip_datapoint = True
                break
        if skip_datapoint:
            continue

        logging.info('DATAPOINT %d' % (num))
        for f in print_fields:
            data = datapoint[f]
            logging.info('Field %s:' % (f))
            print data

        grasp_2d = Grasp2D(Point(image.center), 0, datapoint['hand_poses'][2])

        vis2d.figure()
        if field_type == RenderMode.RGBD:
            vis2d.subplot(1, 2, 1)
            vis2d.imshow(image.color)
            vis2d.grasp(grasp_2d, width=gripper_width_px)
            vis2d.subplot(1, 2, 2)
            vis2d.imshow(image.depth)
            vis2d.grasp(grasp_2d, width=gripper_width_px)
        elif field_type == RenderMode.GD:
            vis2d.subplot(1, 2, 1)
            vis2d.imshow(image.gray)
            vis2d.grasp(grasp_2d, width=gripper_width_px)
            vis2d.subplot(1, 2, 2)
            vis2d.imshow(image.depth)
            vis2d.grasp(grasp_2d, width=gripper_width_px)
        else:
            vis2d.imshow(image)
            vis2d.grasp(grasp_2d, width=gripper_width_px)
        vis2d.title('Datapoint %d: %s' % (ind, field_type))
        vis2d.show()

        num += 1
예제 #13
0
    def _sample_antipodal_grasps(self,
                                 rgbd_im,
                                 camera_intr,
                                 num_samples,
                                 segmask=None,
                                 visualize=False):
        """
        Sample a set of 2D grasp candidates from a depth image by finding depth
        edges, then uniformly sampling point pairs and keeping only antipodal
        grasps with width less than the maximum allowable.

        Parameters
        ----------
        rgbd_im : :obj:`perception.RgbdImage`
            RGB-D image to sample from
        camera_intr : :obj:`perception.CameraIntrinsics`
            intrinsics of the camera that captured the images
        num_samples : int
            number of grasps to sample
        segmask : :obj:`perception.BinaryImage`
            binary image segmenting out the object of interest
        visualize : bool
            whether or not to show intermediate samples (for debugging)
 
        Returns
        -------
        :obj:`list` of :obj:`Grasp2D`
            list of 2D grasp candidates
        """
        # compute edge pixels
        edge_start = time()
        depth_im = rgbd_im.depth
        depth_im = depth_im.apply(snf.gaussian_filter,
                                  sigma=self._depth_grad_gaussian_sigma)
        depth_im_downsampled = depth_im.resize(self._rescale_factor)
        depth_im_threshed = depth_im_downsampled.threshold_gradients(
            self._depth_grad_thresh)
        edge_pixels = self._downsample_rate * depth_im_threshed.zero_pixels()
        if segmask is not None:
            edge_pixels = np.array(
                [p for p in edge_pixels if np.any(segmask[p[0], p[1]] > 0)])
        num_pixels = edge_pixels.shape[0]
        logging.debug('Depth edge detection took %.3f sec' %
                      (time() - edge_start))
        logging.debug('Found %d edge pixels' % (num_pixels))

        # exit if no edge pixels
        if num_pixels == 0:
            return []

        # compute_max_depth
        min_depth = np.min(depth_im.data) + self._min_depth_offset
        max_depth = np.max(depth_im.data) + self._max_depth_offset

        # compute surface normals
        normal_start = time()
        edge_normals = self._surface_normals(depth_im, edge_pixels)
        logging.debug('Normal computation took %.3f sec' %
                      (time() - normal_start))

        if visualize:
            vis.figure()
            vis.subplot(1, 2, 1)
            vis.imshow(depth_im)
            if num_pixels > 0:
                vis.scatter(edge_pixels[:, 1], edge_pixels[:, 0], s=10, c='b')

            X = [pix[1] for pix in edge_pixels]
            Y = [pix[0] for pix in edge_pixels]
            U = [10 * pix[1] for pix in edge_normals]
            V = [-10 * pix[0] for pix in edge_normals]
            plt.quiver(X, Y, U, V, units='x', scale=1, zorder=2, color='g')
            vis.title('Edge pixels and normals')

            vis.subplot(1, 2, 2)
            vis.imshow(depth_im_threshed)
            vis.title('Edge map')
            vis.show()

        # form set of valid candidate point pairs
        sample_start = time()
        max_grasp_width_px = Grasp2D(Point(np.zeros(2)),
                                     0.0,
                                     min_depth,
                                     width=self._gripper_width,
                                     camera_intr=camera_intr).width_px
        normal_ip = edge_normals.dot(edge_normals.T)
        dists = ssd.squareform(ssd.pdist(edge_pixels))
        valid_indices = np.where(
            (normal_ip < -np.cos(np.arctan(self._friction_coef)))
            & (dists < max_grasp_width_px) & (dists > 0.0))
        valid_indices = np.c_[valid_indices[0], valid_indices[1]]
        num_pairs = valid_indices.shape[0]
        logging.debug('Normal pruning %.3f sec' % (time() - sample_start))

        # raise exception if no antipodal pairs
        if num_pairs == 0:
            return []

        # iteratively sample grasps
        k = 0
        grasps = []
        sample_size = min(self._max_rejection_samples, num_pairs)
        candidate_pair_indices = np.random.choice(num_pairs,
                                                  size=sample_size,
                                                  replace=False)
        while k < sample_size and len(grasps) < num_samples:
            # sample a random pair without replacement
            j = candidate_pair_indices[k]
            pair_ind = valid_indices[j, :]
            p1 = edge_pixels[pair_ind[0], :]
            p2 = edge_pixels[pair_ind[1], :]
            n1 = edge_normals[pair_ind[0], :]
            n2 = edge_normals[pair_ind[1], :]
            width = np.linalg.norm(p1 - p2)
            k += 1

            # check force closure
            if force_closure(p1, p2, n1, n2, self._friction_coef):
                # compute grasp parameters
                grasp_center = (p1 + p2) / 2
                grasp_axis = p2 - p1
                grasp_axis = grasp_axis / np.linalg.norm(grasp_axis)
                grasp_theta = 0
                if grasp_axis[1] != 0:
                    grasp_theta = np.arctan(grasp_axis[0] / grasp_axis[1])

                # compute distance from image center
                dist_from_center = np.linalg.norm(grasp_center -
                                                  depth_im.center)
                dist_from_boundary = min(
                    np.abs(depth_im.height - grasp_center[0]),
                    np.abs(depth_im.width - grasp_center[1]), grasp_center[0],
                    grasp_center[1])
                if dist_from_center < self._max_dist_from_center and \
                   dist_from_boundary > self._min_dist_from_boundary:
                    # form grasp object
                    grasp_center_pt = Point(
                        np.array([grasp_center[1], grasp_center[0]]))
                    grasp = Grasp2D(grasp_center_pt, grasp_theta, 0.0)

                    # check grasp dists
                    grasp_dists = [
                        Grasp2D.image_dist(grasp,
                                           candidate,
                                           alpha=self._angle_dist_weight)
                        for candidate in grasps
                    ]
                    if len(grasps) == 0 or np.min(
                            grasp_dists) > self._min_grasp_dist:

                        if visualize:
                            vis.figure()
                            vis.imshow(depth_im)
                            vis.scatter(p1[1], p1[0])
                            vis.scatter(p2[1], p2[0])
                            vis.title('Grasp candidate %d' % (len(grasps)))
                            vis.show()

                        # sample depths
                        for i in range(self._depth_samples_per_grasp):
                            # get depth in the neighborhood of the center pixel
                            depth_win = depth_im.data[grasp_center[0] -
                                                      self._h:grasp_center[0] +
                                                      self._h,
                                                      grasp_center[1] -
                                                      self._w:grasp_center[1] +
                                                      self._w]
                            center_depth = np.min(depth_win)
                            if center_depth == 0 or np.isnan(center_depth):
                                continue

                            # sample depth between the min and max
                            min_depth = np.min(
                                center_depth) + self._min_depth_offset
                            max_depth = np.max(
                                center_depth) + self._max_depth_offset
                            sample_depth = min_depth + (
                                max_depth - min_depth) * np.random.rand()
                            candidate_grasp = Grasp2D(
                                grasp_center_pt,
                                grasp_theta,
                                sample_depth,
                                width=self._gripper_width,
                                camera_intr=camera_intr)
                            grasps.append(candidate_grasp)

        # return sampled grasps
        return grasps
예제 #14
0
def get_data_from_source(object_type,
                         use_kmeans=False,
                         kmeans_label='',
                         for_test=False):
    object_labels = get_baseline_labels(use_kmeans=use_kmeans,
                                        kmeans_label=kmeans_label,
                                        object_type=object_type)

    if object_type == 'g3db_instances':
        object_name = 'g3db_instances_non_test_version7'
        if for_test:
            object_name = 'g3db_instances_version7'
        #object_name = '39_beerbottle_final-13-Nov-2015-09-07-13_instance0'
        #object_name = '1_Coffeecup_final-10-Dec-2015-06-58-01_instance0'
        #object_name = 'Cylinder_7'
        #object_name = '39_beerbottle_final-13-Nov-2015-09-07-13_instance0'
        object_file_dir = '../grasping_ros_mico/point_clouds_for_classification'
    if object_type == 'g3db_instances_for_classification':
        object_name = 'g3db_instances_for_classification'
        #object_name = '39_beerbottle_final-13-Nov-2015-09-07-13_instance0'
        object_file_dir = '../grasping_ros_mico/point_clouds_for_classification/additional_g3db_objects_for_classification'

    object_file_names = giob.get_object_filenames(object_name, object_file_dir)

    X = []
    Y = []
    object_names = []
    clipped_objects = []
    outfile_name = object_file_dir + "/clipped_object_list.txt"
    with open(outfile_name, 'r') as f:
        for line in f:
            clipped_objects.append(line.strip())

    for object_file_name_ in object_file_names:
        object_instance_name = object_file_name_.replace('.yaml',
                                                         '').split('/')[-1]

        for i in range(0, 81):
            if for_test:
                if object_instance_name in object_labels.keys():
                    Y.append(object_labels[object_instance_name])
                else:
                    Y.append(1000)
            else:
                Y.append(object_labels[object_instance_name])
            object_names.append(object_instance_name + "/" + repr(i))
            object_file_name = object_file_name_.replace('.yaml',
                                                         '') + "/" + repr(i)
            thumbnail_object_file_name = object_file_name + "_thumbnail.npy"
            if os.path.exists(thumbnail_object_file_name):
                print "Loading " + thumbnail_object_file_name
                depth_im_cropped = perception.DepthImage.open(
                    thumbnail_object_file_name)
                if False:
                    vis.figure()
                    vis.subplot(1, 1, 1)
                    vis.imshow(depth_im_cropped)
                    vis.show()
            else:
                print "Creating " + thumbnail_object_file_name
                object_list = giob.load_object_file([object_file_name])
                (depth_im_cropped,
                 clipped) = get_depth_image_thumbmail(object_list[0][0], 200,
                                                      160, False)
                depth_im_cropped.save(thumbnail_object_file_name)
                if clipped:
                    clipped_objects.append(object_file_name)
            X.append(depth_im_cropped.data)

    #print clipped_objects
    outfile_name = object_file_dir + "/clipped_object_list.txt"
    with open(outfile_name, 'w') as f:
        f.write("\n".join(sorted(clipped_objects)))
        f.write("\n")
    assert len(X) == len(Y)
    return (X, Y, object_names)
예제 #15
0
    def action(self, state):
        """ Plans the grasp with the highest probability of success on
        the given RGB-D image.

        Attributes
        ----------
        state : :obj:`RgbdImageState`
            image to plan grasps on

        Returns
        -------
        :obj:`ParallelJawGrasp`
            grasp to execute
        """
        # check valid input
        if not isinstance(state, RgbdImageState):
            raise ValueError('Must provide an RGB-D image state.')

        # parse state
        rgbd_im = state.rgbd_im
        camera_intr = state.camera_intr
        segmask = state.segmask

        # sample grasps
        grasps = self._grasp_sampler.sample(
            rgbd_im,
            camera_intr,
            self._num_seed_samples,
            segmask=segmask,
            visualize=self.config['vis']['grasp_sampling'],
            seed=self._seed)
        num_grasps = len(grasps)

        if num_grasps == 0:
            logging.warning('No valid grasps could be found')
            return None

        # form tensors
        image_tensor, pose_tensor = self.grasps_to_tensors(grasps, state)
        if self.config['vis']['tf_images']:
            # read vis params
            k = self.config['vis']['k']
            d = utils.sqrt_ceil(k)

            # display grasp transformed images
            vis.figure(size=(FIGSIZE, FIGSIZE))
            for i, image_tf in enumerate(image_tensor[:k, ...]):
                depth = pose_tensor[i][0]
                vis.subplot(d, d, i + 1)
                vis.imshow(DepthImage(image_tf))
                vis.title('Image %d: d=%.3f' % (i, depth))

            # display grasp transformed images
            vis.figure(size=(FIGSIZE, FIGSIZE))
            for i in range(d):
                image_tf = image_tensor[i, ...]
                depth = pose_tensor[i][0]
                grasp = grasps[i]

                vis.subplot(d, 2, 2 * i + 1)
                vis.imshow(rgbd_im.depth)
                vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True)
                vis.title('Grasp %d: d=%.3f' % (i, depth))

                vis.subplot(d, 2, 2 * i + 2)
                vis.imshow(DepthImage(image_tf))
                vis.title('TF image %d: d=%.3f' % (i, depth))
            vis.show()

        # iteratively refit and sample
        for j in range(self._num_iters):
            logging.debug('CEM iter %d' % (j))

            # predict grasps
            predict_start = time()
            output_arr = self.gqcnn.predict(image_tensor, pose_tensor)
            q_values = output_arr[:, -1]
            logging.debug('Prediction took %.3f sec' %
                          (time() - predict_start))

            # sort grasps
            q_values_and_indices = zip(q_values, np.arange(num_grasps))
            q_values_and_indices.sort(key=lambda x: x[0], reverse=True)

            if self.config['vis']['grasp_candidates']:
                # display each grasp on the original image, colored by predicted success
                vis.figure(size=(FIGSIZE, FIGSIZE))
                vis.imshow(rgbd_im.depth)
                for grasp, q in zip(grasps, q_values):
                    vis.grasp(grasp,
                              scale=1.5,
                              show_center=False,
                              show_axis=True,
                              color=plt.cm.RdYlBu(q))
                vis.title('Sampled grasps iter %d' % (j))
                vis.show()

            if self.config['vis']['grasp_ranking']:
                # read vis params
                k = self.config['vis']['k']
                d = utils.sqrt_ceil(k)

                # form camera intr for the thumbnail (to compute gripper width)
                scale_factor = float(self.gqcnn.im_width) / float(
                    self._crop_width)
                scaled_camera_intr = camera_intr.resize(scale_factor)

                vis.figure(size=(FIGSIZE, FIGSIZE))
                for i, p in enumerate(q_values_and_indices[:k]):
                    # read stats for grasp
                    q_value = p[0]
                    ind = p[1]
                    depth = pose_tensor[ind][0]
                    image = DepthImage(image_tensor[ind, ...])
                    grasp = Grasp2D(Point(image.center),
                                    0.0,
                                    depth,
                                    width=self._gripper_width,
                                    camera_intr=scaled_camera_intr)

                    # plot
                    vis.subplot(d, d, i + 1)
                    vis.imshow(image)
                    vis.grasp(grasp, scale=1.5)
                    vis.title('K=%d: d=%.3f, q=%.3f' % (i, depth, q_value))
                vis.show()

            # fit elite set
            num_refit = max(int(np.ceil(self._gmm_refit_p * num_grasps)), 1)
            elite_q_values = [i[0] for i in q_values_and_indices[:num_refit]]
            elite_grasp_indices = [
                i[1] for i in q_values_and_indices[:num_refit]
            ]
            elite_grasps = [grasps[i] for i in elite_grasp_indices]
            elite_grasp_arr = np.array([g.feature_vec for g in elite_grasps])

            if self.config['vis']['elite_grasps']:
                # display each grasp on the original image, colored by predicted success
                vis.figure(size=(FIGSIZE, FIGSIZE))
                vis.imshow(rgbd_im.depth)
                for grasp, q in zip(elite_grasps, elite_q_values):
                    vis.grasp(grasp,
                              scale=1.5,
                              show_center=False,
                              show_axis=True,
                              color=plt.cm.RdYlBu(q))
                vis.title('Elite grasps iter %d' % (j))
                vis.show()

            # normalize elite set
            elite_grasp_mean = np.mean(elite_grasp_arr, axis=0)
            elite_grasp_std = np.std(elite_grasp_arr, axis=0)
            elite_grasp_std[elite_grasp_std == 0] = 1.0
            elite_grasp_arr = (elite_grasp_arr -
                               elite_grasp_mean) / elite_grasp_std

            # fit a GMM to the top samples
            num_components = max(
                int(np.ceil(self._gmm_component_frac * num_refit)), 1)
            uniform_weights = (1.0 / num_components) * np.ones(num_components)
            gmm = GaussianMixture(n_components=num_components,
                                  weights_init=uniform_weights,
                                  reg_covar=self._gmm_reg_covar)
            train_start = time()

            gmm.fit(elite_grasp_arr)
            train_duration = time() - train_start
            logging.debug('GMM fitting with %d components took %.3f sec' %
                          (num_components, train_duration))

            # sample the next grasps
            sample_start = time()
            grasp_vecs, _ = gmm.sample(n_samples=self._num_gmm_samples)
            grasp_vecs = elite_grasp_std * grasp_vecs + elite_grasp_mean
            sample_duration = time() - sample_start
            logging.debug('GMM sampling took %.3f sec' % (sample_duration))

            # convert features to grasps
            grasps = []
            for grasp_vec in grasp_vecs:
                grasps.append(
                    Grasp2D.from_feature_vec(grasp_vec,
                                             width=self._gripper_width,
                                             camera_intr=camera_intr))
            num_grasps = len(grasps)
            if num_grasps == 0:
                logging.warning('No valid grasps could be found')
                return None

            # form tensors
            image_tensor, pose_tensor = self.grasps_to_tensors(grasps, state)
            if self.config['vis']['tf_images']:
                # read vis params
                k = self.config['vis']['k']
                d = utils.sqrt_ceil(k)

                # display grasp transformed images
                vis.figure(size=(FIGSIZE, FIGSIZE))
                for i, image_tf in enumerate(image_tensor[:k, ...]):
                    depth = pose_tensor[i][0]
                    vis.subplot(d, d, i + 1)
                    vis.imshow(DepthImage(image_tf))
                    vis.title('Image %d: d=%.3f' % (i, depth))
                vis.show()

        # predict final set of grasps
        predict_start = time()
        output_arr = self.gqcnn.predict(image_tensor, pose_tensor)
        q_values = output_arr[:, -1]
        logging.debug('Final prediction took %.3f sec' %
                      (time() - predict_start))

        if self.config['vis']['grasp_candidates']:
            # display each grasp on the original image, colored by predicted success
            vis.figure(size=(FIGSIZE, FIGSIZE))
            vis.imshow(rgbd_im.depth)
            for grasp, q in zip(grasps, q_values):
                vis.grasp(grasp,
                          scale=1.5,
                          show_center=False,
                          show_axis=True,
                          color=plt.cm.RdYlBu(q))
            vis.title('Final sampled grasps')
            vis.show()

        # select grasp
        index = self.select(grasps, q_values)
        grasp = grasps[index]
        q_value = q_values[index]
        image = DepthImage(image_tensor[index, ...])
        pose = pose_tensor[index, ...]
        depth = pose[0]
        if self.config['vis']['grasp_plan']:
            scale_factor = float(self.gqcnn.im_width) / float(self._crop_width)
            scaled_camera_intr = camera_intr.resize(scale_factor)
            grasp = Grasp2D(Point(image.center),
                            0.0,
                            pose[0],
                            width=self._gripper_width,
                            camera_intr=scaled_camera_intr)
            vis.figure()
            vis.imshow(image)
            vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True)
            vis.title('Best Grasp: d=%.3f, q=%.3f' % (depth, q_value))
            vis.show()

        # return action
        return ParallelJawGrasp(grasp, q_value, image)
예제 #16
0
    def visualize(self):
        """ Visualize predictions """

        logging.info('Visualizing ' + self.datapoint_type)

        # iterate through shuffled file indices
        for i in self.indices:
            im_filename = self.im_filenames[i]
            pose_filename = self.pose_filenames[i]
            label_filename = self.label_filenames[i]

            logging.info('Loading Image File: ' + im_filename +
                         ' Pose File: ' + pose_filename + ' Label File: ' +
                         label_filename)

            # load tensors from files
            metric_tensor = np.load(os.path.join(self.data_dir,
                                                 label_filename))['arr_0']
            label_tensor = 1 * (metric_tensor > self.metric_thresh)
            image_tensor = np.load(os.path.join(self.data_dir,
                                                im_filename))['arr_0']
            hand_poses_tensor = np.load(
                os.path.join(self.data_dir, pose_filename))['arr_0']

            pose_tensor = self._read_pose_data(hand_poses_tensor,
                                               self.input_data_mode)

            # score with neural network
            pred_p_success_tensor = self._gqcnn.predict(
                image_tensor, pose_tensor)

            # compute results
            classification_result = ClassificationResult(
                [pred_p_success_tensor], [label_tensor])

            logging.info('Error rate on files: %.3f' %
                         (classification_result.error_rate))
            logging.info('Precision on files: %.3f' %
                         (classification_result.precision))
            logging.info('Recall on files: %.3f' %
                         (classification_result.recall))
            mispred_ind = classification_result.mispredicted_indices()
            correct_ind = classification_result.correct_indices()
            # IPython.embed()

            if self.datapoint_type == 'true_positive' or self.datapoint_type == 'true_negative':
                vis_ind = correct_ind
            else:
                vis_ind = mispred_ind
            num_visualized = 0
            # visualize
            for ind in vis_ind:
                # limit the number of sampled datapoints displayed per object
                if num_visualized >= self.samples_per_object:
                    break
                num_visualized += 1

                # don't visualize the datapoints that we don't want
                if self.datapoint_type == 'true_positive':
                    if classification_result.labels[ind] == 0:
                        continue
                elif self.datapoint_type == 'true_negative':
                    if classification_result.labels[ind] == 1:
                        continue
                elif self.datapoint_type == 'false_positive':
                    if classification_result.labels[ind] == 0:
                        continue
                elif self.datapoint_type == 'false_negative':
                    if classification_result.labels[ind] == 1:
                        continue

                logging.info('Datapoint %d of files for %s' %
                             (ind, im_filename))
                logging.info('Depth: %.3f' % (hand_poses_tensor[ind, 2]))

                data = image_tensor[ind, ...]
                if self.display_image_type == RenderMode.SEGMASK:
                    image = BinaryImage(data)
                elif self.display_image_type == RenderMode.GRAYSCALE:
                    image = GrayscaleImage(data)
                elif self.display_image_type == RenderMode.COLOR:
                    image = ColorImage(data)
                elif self.display_image_type == RenderMode.DEPTH:
                    image = DepthImage(data)
                elif self.display_image_type == RenderMode.RGBD:
                    image = RgbdImage(data)
                elif self.display_image_type == RenderMode.GD:
                    image = GdImage(data)

                vis2d.figure()

                if self.display_image_type == RenderMode.RGBD:
                    vis2d.subplot(1, 2, 1)
                    vis2d.imshow(image.color)
                    grasp = Grasp2D(Point(image.center,
                                          'img'), 0, hand_poses_tensor[ind, 2],
                                    self.gripper_width_m)
                    grasp.camera_intr = grasp.camera_intr.resize(1.0 / 3.0)
                    vis2d.grasp(grasp)
                    vis2d.subplot(1, 2, 2)
                    vis2d.imshow(image.depth)
                    vis2d.grasp(grasp)
                elif self.display_image_type == RenderMode.GD:
                    vis2d.subplot(1, 2, 1)
                    vis2d.imshow(image.gray)
                    grasp = Grasp2D(Point(image.center,
                                          'img'), 0, hand_poses_tensor[ind, 2],
                                    self.gripper_width_m)
                    grasp.camera_intr = grasp.camera_intr.resize(1.0 / 3.0)
                    vis2d.grasp(grasp)
                    vis2d.subplot(1, 2, 2)
                    vis2d.imshow(image.depth)
                    vis2d.grasp(grasp)
                else:
                    vis2d.imshow(image)
                    grasp = Grasp2D(Point(image.center,
                                          'img'), 0, hand_poses_tensor[ind, 2],
                                    self.gripper_width_m)
                    grasp.camera_intr = grasp.camera_intr.resize(1.0 / 3.0)
                    vis2d.grasp(grasp)
                vis2d.title('Datapoint %d: Pred: %.3f Label: %.3f' %
                            (ind, classification_result.pred_probs[ind, 1],
                             classification_result.labels[ind]))
                vis2d.show()

        # cleanup
        self._cleanup()
예제 #17
0
def run_experiment():
    """ Run the experiment """
    # get the images from the sensor
    previous_grasp = None
    while True:
        rospy.loginfo("Waiting for images")
        start_time = time.time()
        raw_color = rospy.wait_for_message("/camera/rgb/image_color", Image)
        raw_depth = rospy.wait_for_message("/camera/depth_registered/image",
                                           Image)
        image_load_time = time.time() - start_time
        rospy.loginfo('Images loaded in: ' + str(image_load_time) + ' secs.')

        ### Create wrapped Perception RGB and Depth Images by unpacking the ROS Images using CVBridge ###
        try:
            color_image = perception.ColorImage(
                cv_bridge.imgmsg_to_cv2(raw_color, "rgb8"),
                frame=T_camera_world.from_frame)
            depth_image = perception.DepthImage(
                cv_bridge.imgmsg_to_cv2(raw_depth,
                                        desired_encoding="passthrough"),
                frame=T_camera_world.from_frame)
        except CvBridgeError as cv_bridge_exception:
            rospy.logerr(cv_bridge_exception)

        # inpaint to remove holes
        inpainted_color_image = color_image.inpaint(
            rescale_factor=INPAINT_RESCALE_FACTOR)
        inpainted_depth_image = depth_image.inpaint(
            rescale_factor=INPAINT_RESCALE_FACTOR)

        if DETECT_OBJECTS:
            detector = RgbdDetectorFactory.detector('point_cloud_box')
            detections = detector.detect(inpainted_color_image,
                                         inpainted_depth_image,
                                         detector_cfg,
                                         camera_intrinsics,
                                         T_camera_world,
                                         vis_foreground=False,
                                         vis_segmentation=False)

        detected_obj = None
        if previous_grasp is not None:
            position = previous_grasp.pose.position
            position = np.array([position.x, position.y, position.z])
            center_point = Point(position, camera_intrinsics.frame)
            center_pixel = camera_intrinsics.project(center_point,
                                                     camera_intrinsics.frame)
            i, j = center_pixel.y, center_pixel.x
            if DETECT_OBJECTS:
                for detection in detections:
                    binaryIm = detection.binary_im
                    if binaryIm[i, j]:
                        segmask = binaryIm
                        detected_obj = detection
                        break
            else:
                # Generate an ellipse inverse segmask centered on previous grasp
                y, x = np.ogrid[-i:IMAGE_HEIGHT - i, -j:IMAGE_WIDTH - j]
                circlemask = x * x + y * y <= CIRCLE_RAD * CIRCLE_RAD
                segmask_data = np.ones(
                    (IMAGE_HEIGHT, IMAGE_WIDTH), dtype=np.uint8) * 255
                segmask_data[circlemask] = 0
                segmask = BinaryImage(segmask_data, camera_intrinsics.frame)
        else:
            segmask = BinaryImage(
                np.ones((IMAGE_HEIGHT, IMAGE_WIDTH), dtype=np.uint8) * 255,
                camera_intrinsics.frame)
        segmask._encoding = 'mono8'

        if VISUALIZE_DETECTOR_OUTPUT:
            vis.figure()
            vis.subplot(1, 2, 1)
            vis.imshow(detected_obj.color_thumbnail)
            vis.subplot(1, 2, 2)
            vis.imshow(detected_obj.depth_thumbnail)
            vis.show()

        try:
            rospy.loginfo('Planning Grasp')
            start_time = time.time()
            planned_grasp_data = plan_grasp(inpainted_color_image.rosmsg,
                                            inpainted_depth_image.rosmsg,
                                            segmask.rosmsg, raw_camera_info,
                                            boundingBox)
            grasp_plan_time = time.time() - start_time
            rospy.loginfo('Total grasp planning time: ' +
                          str(grasp_plan_time) + ' secs.')

            rospy.loginfo('Queueing Grasp')
            previous_grasp = planned_grasp_data.grasp
            execute_grasp(previous_grasp)
            # raw_input("Press ENTER to resume")
        except rospy.ServiceException as e:
            rospy.logerr(e)
            previous_grasp = None
            raw_input("Press ENTER to resume")