def setattributes(self, args): self.hk = HouseKeeping() self.s = Stats_And_Summary() if args.subparser_name == 'graft': commands = ExternalProgramSuite([ 'orfm', 'nhmmer', 'hmmsearch', 'mfqe', 'pplacer', 'ktImportText', 'diamond' ]) self.hk.set_attributes(self.args) self.hk.set_euk_hmm(self.args) if args.euk_check: self.args.search_hmm_files.append(self.args.euk_hmm_file) self.ss = SequenceSearcher( self.args.search_hmm_files, (None if self.args.search_only else self.args.aln_hmm_file)) self.sequence_pair_list = self.hk.parameter_checks(args) if hasattr(args, 'reference_package'): self.p = Pplacer(self.args.reference_package) elif self.args.subparser_name == "create": commands = ExternalProgramSuite( ['taxit', 'FastTreeMP', 'hmmalign', 'mafft']) self.create = Create(commands)
class KronaBuilder: def __init__(self): self.hk = HouseKeeping() def otuTablePathListToKrona(self, otuTablePaths, outputName, cmd_log): otuTables = [] for path in otuTablePaths: for table in self.parseOtuTable(path): otuTables.append(table) self.runKrona(otuTables, outputName, cmd_log) def parseOtuTable(self, otuTablePath): data = csv.reader(open(otuTablePath), delimiter="\t") # Parse headers (sample names) fields = data.next() if len(fields) < 3: raise "Badly formed OTU table %s" % otuTablePath tables = [] for i in range(len(fields)-2): table = OtuTable(fields[i+1]) tables.append(table) # Parse the data in taxonomyColumn = len(fields)-1 for row in data: for i in range(len(fields)-2): taxonomy = row[taxonomyColumn] tables[i].sampleCounts[taxonomy] = row[i+1] return tables def runKrona(self, otuTables, outputName, cmd_log): # write out the tables to files tempfiles = [] tempfile_paths = [] for table in otuTables: tmps = tempfile.mkstemp('','CommunityMkrona') tmp = tmps[1] out = open(tmp,'w') tempfiles.append(out) tempfile_paths.append(tmp) for taxonomy, count in table.sampleCounts.iteritems(): tax = "\t".join(taxonomy.split(';')) out.write("%s\t%s\n" % (count,tax)) out.close() cmd = ["ktImportText",'-o',outputName] for i, tmp in enumerate(tempfile_paths): cmd.append(','.join([tmp,otuTables[i].sample_name])) # run the actual krona self.hk.add_cmd(cmd_log, ' '.join(cmd) + ' 1>/dev/null ') subprocess.check_call(' '.join(cmd) + ' 1>/dev/null ', shell=True) # close tempfiles for t in tempfiles: t.close()
def setattributes(self, args): self.kb = KronaBuilder() self.hk = HouseKeeping() self.s = Stats_And_Summary() self.tg = TaxoGroup() self.e = Extract() if args.subparser_name == 'graft': self.hk.set_attributes(self.args) self.h = Hmmer(self.args.search_hmm_files, self.args.aln_hmm_file) self.sequence_pair_list, self.input_file_format = self.hk.parameter_checks(args) if hasattr(args, 'reference_package'): self.p = Pplacer(self.args.reference_package)
def __init__(self, refpkg): self.refpkg = refpkg self.hk = HouseKeeping()
class Pplacer: ### Contains function related to processing alignment files to jplace files ### and running comparisons between forward and revere reads if reverse ### reads are provided. def __init__(self, refpkg): self.refpkg = refpkg self.hk = HouseKeeping() # Run pplacer def pplacer(self, output_file, output_path, input_path, threads, cmd_log): ## Runs pplacer on concatenated alignment file cmd = "pplacer -j %s --verbosity 0 --out-dir %s -c %s %s" % (threads, output_path, self.refpkg, input_path) # Set command self.hk.add_cmd(cmd_log, cmd) # Log it subprocess.check_call(cmd, shell=True) # Run it output_path = '.'.join(input_path.split('.')[:-1]) + '.jplace' return output_path def alignment_merger(self, alignment_files, output_alignment_path): ## Concatenate aligned read_files into one file. Each read with it's ## own unique identifier assigning it to a particular origin file alias_hash = {} # Set up a hash with file names and their unique identifier file_number = 0 # file counter (unique identifier) with open(output_alignment_path, 'w') as output: for alignment_file in alignment_files: # For each alignment alignments = list(SeqIO.parse(open(alignment_file, 'r'), 'fasta')) # read list for record in alignments: # For each record in the read list record.id = record.id + '_' + str(file_number) # append the unique identifier to the record id SeqIO.write(alignments, output, "fasta") # And write the reads to the file alias_hash[str(file_number)] = {'output_path': os.path.join(os.path.dirname(alignment_file),'placements.jplace') , 'place': []} file_number += 1 return alias_hash def guppy_class(self, main_guppy_path, jplace_list, cmd_log): ## Run guppy classify, and parse the output to the appropriate paths # Create concatenated guppy classify file from all .jplace files # created in the placement step cmd = 'guppy classify -c %s %s > %s' % (self.refpkg, ' '.join(jplace_list), main_guppy_path) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(cmd, shell=True) # Create list of guppys all_guppys = [x.rstrip() for x in open(main_guppy_path, 'r').readlines()] gup = [] guppys = [] for line in all_guppys: if 'name' in line and len(gup) == 0: gup.append(line) elif 'name' in line and len(gup) >= 0: guppys.append(gup) gup = [line] else: gup.append(line) guppys.append(gup) # Parse the guppy files. for idx, gup in enumerate(guppys): gup = [x for x in gup if x] # For each of the guppys remove empty components of the list out = os.path.join(os.path.dirname(jplace_list[idx]), 'placements.guppy') # Find the output r_num = len(list(set( [x.split()[0] for x in gup if 'name' not in x]))) # Calculate the number of placements with open(out, 'w') as out_guppy: for line in gup: out_guppy.write(line + '\n') self.hk.delete([main_guppy_path]) return def jplace_split(self, jplace_file, alias_hash, summary_dict): ## Split the jplace file into their respective directories # Load the placement file placement_file = json.load(open(jplace_file)) # Parse the placements based on unique identifies appended to the end # of each read for placement in placement_file['placements']: # for each placement hash = {} # create an empty hash for alias in alias_hash: # For each alias, append to the 'place' list each read that identifier hash = {'p': placement['p'], 'nm': [nm for nm in placement['nm'] if nm[0].split('_')[-1] == alias]} alias_hash[alias]['place'].append(hash) # Write the jplace file to their respective file paths. jplace_path_list = [] for alias in alias_hash: output = {'fields': placement_file['fields'], 'version': placement_file['version'], 'tree': placement_file['tree'], 'placements': alias_hash[alias]['place'], 'metadata': placement_file['metadata']} with open(alias_hash[alias]['output_path'], 'w') as output_path: json.dump(output, output_path, ensure_ascii=False) jplace_path_list.append(alias_hash[alias]['output_path']) summary_dict['jplace_path_list'] = jplace_path_list return summary_dict def place(self, summary_dict, files, args): ## Pipeline taking multiple alignment files and returning multiple ## placement and guppy files, as well as the comparison between forward ## and reverse reads, if the reverse pipeline is selected start = timeit.default_timer() # Start placement timer # Merge the alignments so they can all be placed at once. alias_hash = self.alignment_merger(summary_dict['seqs_list'], files.comb_aln_fa()) # Run pplacer on merged file jplace = self.pplacer(files.jplace_output_path(), args.output_directory, files.comb_aln_fa(), args.threads, files.command_log_path()) stop = timeit.default_timer() # stop placement timer and log summary_dict['place_t'] = str( int(round((stop - start), 0)) ) # Split the jplace file summary_dict = self.jplace_split(jplace, alias_hash, summary_dict) self.hk.delete([jplace]) # Run guppy classify and parse the output self.guppy_class(files.main_guppy_path(), summary_dict['jplace_path_list'], files.command_log_path()) # If the reverse pipe has been specified, run the comparisons between the two pipelines. If not then just return. for base in summary_dict['base_list']: if summary_dict['reverse_pipe']: summary_dict[base] = Compare().compare_hits(summary_dict[base], base) summary_dict[base] = Compare().compare_placements(os.path.join(args.output_directory, base, 'forward', 'placements.guppy'), os.path.join(args.output_directory, base, 'reverse', 'placements.guppy'), summary_dict[base], args.placements_cutoff) elif not summary_dict['reverse_pipe']: # Set the trusted placements as summary_dict[base]['trusted_placements'] = {} tc = TaxoGroup().guppy_splitter(os.path.join(args.output_directory,base,'placements.guppy'), args.placements_cutoff) for read, entry in tc.iteritems(): summary_dict[base]['trusted_placements'][read] = entry['placement'] return summary_dict
def __init__(self, search_hmm, aln_hmm=None): self.search_hmm = search_hmm self.aln_hmm = aln_hmm self.hk = HouseKeeping()
class Hmmer: def __init__(self, search_hmm, aln_hmm=None): self.search_hmm = search_hmm self.aln_hmm = aln_hmm self.hk = HouseKeeping() def hmmalign(self, input_path, run_stats, cmd_log, for_file, rev_file, for_sto_file, rev_sto_file, for_conv_file, rev_conv_file): # Align input reads to a specified hmm. if run_stats['rev_true']: read_info = run_stats['reads'] reverse = [] forward = [] records = list(SeqIO.parse(open(input_path), 'fasta')) # Split the reads into reverse and forward lists for record in records: if read_info[record.id]['direction'] == '+': forward.append(record) elif read_info[record.id]['direction'] == '-': reverse.append(record) else: raise Exception(Messenger().error_message('Programming error: hmmalign')) exit(1) # Write reverse complement and forward reads to files with open(for_file, 'w') as for_aln: for record in forward: if record.id and record.seq: # Check that both the sequence and ID fields are there, HMMalign will segfault if not. for_aln.write('>'+record.id+'\n') for_aln.write(str(record.seq)+'\n') with open(rev_file, 'w') as rev_aln: for record in reverse: if record.id and record.seq: rev_aln.write('>'+record.id+'\n') rev_aln.write(str(record.seq.reverse_complement())+'\n') # HMMalign and convert to fasta format cmd = 'hmmalign --trim -o %s %s %s 2>/dev/null; seqmagick convert %s %s' % (for_sto_file, self.aln_hmm, for_file, for_sto_file, for_conv_file) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(cmd, shell=True) cmd = 'hmmalign --trim -o %s %s %s 2>/dev/null; seqmagick convert %s %s' % (rev_sto_file, self.aln_hmm, rev_file, rev_sto_file, rev_conv_file) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(cmd, shell=True) # If there are only forward reads, just hmmalign and be done with it. else: cmd = 'hmmalign --trim -o %s %s %s ; seqmagick convert %s %s' % (for_sto_file, self.aln_hmm, input_path, for_sto_file, for_conv_file) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(cmd, shell=True) def hmmsearch(self, output_path, input_path, input_file_format, seq_type, threads, eval, min_orf_length, restrict_read_length, cmd_log): '''Run a hmmsearch on the input_path raw reads, and return the name of the output table. Keep a log of the commands.''' # Define the base hmmsearch command. output_table_list = [] tee = ' | tee' hmm_number = len(self.search_hmm) if hmm_number > 1: for idx, hmm in enumerate(self.search_hmm): out = os.path.join(os.path.split(output_path)[0], os.path.basename(hmm).split('.')[0] +'_'+ os.path.split(output_path)[1]) output_table_list.append(out) if idx + 1 == hmm_number: tee += " | hmmsearch %s --cpu %s --domtblout %s %s - >/dev/null " % (eval, threads, out, hmm) elif idx + 1 < hmm_number: tee += " >(hmmsearch %s --cpu %s --domtblout %s %s - >/dev/null) " % (eval, threads, out, hmm) else: raise Exception("Programming Error.") elif hmm_number == 1: tee = ' | hmmsearch %s --cpu %s --domtblout %s %s - >/dev/null' % (eval, threads, output_path, self.search_hmm[0]) output_table_list.append(output_path) # Choose an input to this base command based off the file format found. if seq_type == 'nucleotide': # If the input is nucleotide sequence orfm_cmdline = self.orfm_command_line(min_orf_length, restrict_read_length) cmd = '%s %s %s ' % (orfm_cmdline, input_path, tee) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(["/bin/bash", "-c", cmd]) elif seq_type == 'protein': # If the input is amino acid sequence if input_file_format == FORMAT_FASTQ_GZ: # If its gzipped cmd = "awk '{print \">\" substr($0,2);getline;print;getline;getline}' <(zcat %s) %s" % (input_path, tee) # Unzip it and feed it into the base command self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(["/bin/bash", "-c", cmd]) elif input_file_format == FORMAT_FASTA: # If it is in fasta format cmd = "cat %s %s" % (input_path, tee) # It can be searched directly, no manpulation required self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(["/bin/bash", "-c", cmd]) else: raise Exception('Programming Error: error guessing input file format') else: raise Exception('Programming Error: error guessing input sequence type') return output_table_list def nhmmer(self, output_path, input_path, input_file_format, threads, eval, cmd_log): ## Run a nhmmer search on input_path file and return the name of ## resultant output table. Keep log of command. output_table_list = [] tee = '' hmm_number = len(self.search_hmm) if hmm_number > 1: for idx, hmm in enumerate(self.search_hmm): out = os.path.join(os.path.split(output_path)[0], os.path.basename(hmm).split('.')[0] +'_'+ os.path.split(output_path)[1]) output_table_list.append(out) if idx + 1 == hmm_number: tee += " | nhmmer %s --cpu %s --tblout %s %s - >/dev/null " % (eval, threads, out, hmm) elif idx + 1 < hmm_number: tee += " >(nhmmer %s --cpu %s --tblout %s %s - >/dev/null) " % (eval, threads, out, hmm) else: raise Exception("Programming Error.") elif hmm_number == 1: tee = ' | nhmmer %s --cpu %s --tblout %s %s - >/dev/null' % (eval, threads, output_path, self.search_hmm[0]) output_table_list.append(output_path) if input_file_format == FORMAT_FASTA: cmd = "cat %s | tee %s" % (input_path, tee) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(["/bin/bash", "-c", cmd]) elif input_file_format == FORMAT_FASTQ_GZ: cmd = "awk '{print \">\" substr($0,2);getline;print;getline;getline}' <(zcat %s) | tee %s " % (input_path, tee) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(["/bin/bash", "-c", cmd]) else: raise Exception(Messenger().message('ERROR: Suffix on %s not familiar. Please submit an .fq.gz or .fa file\n' % (input_path))) return output_table_list def hmmtable_reader(self, hmmtable): hash = {} seen = {} def buildHash(hit, program): if program == 'hmmsearch': if float(hit[17]) - float(hit[18]) > 0: len = float(hit[17]) - float(hit[18]) elif float(hit[17]) - float(hit[18]) < 0: len = float(hit[18]) - float(hit[17]) read_hash= {'len': len, 'bit': float(hit[7]), 'hmmfrom':float(hit[16]), 'hmmto':float(hit[15]), 'alifrom':hit[17], 'alito':hit[18]} elif program == 'nhmmer': if float(hit[6]) - float(hit[7]) > 0: len = float(hit[6]) - float(hit[7]) elif float(hit[6]) - float(hit[7]) < 0: len = float(hit[7]) - float(hit[6]) read_hash = {'len':len, 'bit':float(hit[13]), 'direction':hit[11], 'hmmfrom':hit[4], 'hmmto':hit[5], 'alifrom':hit[6], 'alito':hit[7]} return read_hash for idx, table in enumerate(hmmtable): program = [line.rstrip().split()[2] for line in open(table).readlines() if line.startswith('# Program:')][0] for hit in [line.rstrip().split() for line in open(table).readlines() if not line.startswith('#')]: read_name = hit[0] if read_name in seen.keys(): # If the read name has been seen before.. if seen[read_name]==idx: hash[read_name].append(buildHash(hit, program)) else: hash[read_name]=[buildHash(hit, program)] seen[read_name]=idx return hash def check_euk_contamination(self, output_path, euk_free_output_path, input_path, run_stats, input_file_format, threads, evalue, raw_reads, base, cmd_log, euk_hmm): reads_with_better_euk_hit = [] reads_unique_to_eukaryotes = [] cutoff = float(0.9*run_stats['read_length']) # do a nhmmer using a Euk specific hmm nhmmer_cmd = "nhmmer --cpu %s %s --tblout %s %s" % (threads, evalue, output_path, euk_hmm) if input_file_format == FORMAT_FASTA: cmd = "%s %s 2>&1 > /dev/null" % (nhmmer_cmd, raw_reads) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(cmd, shell = True) elif input_file_format == FORMAT_FASTQ_GZ: cmd = "%s <(awk '{print \">\" substr($0,2);getline;print;getline;getline}' <(zcat %s )) 2>&1 > /dev/null" % (nhmmer_cmd, raw_reads) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(["/bin/bash", "-c", cmd]) else: raise Exception(Messenger().error_message('Suffix on %s not familiar. Please submit an .fq.gz or .fa file\n' % (raw_reads))) # check for evalues that are lower, after eliminating hits with an # alignment length of < 90% the length of the whole read. euk_reads = self.hmmtable_reader([output_path]) euk_crossover = [x for x in euk_reads.keys() if x in run_stats['reads'].keys()] reads_unique_to_eukaryotes = [x for x in euk_reads.keys() if x not in run_stats['reads'].keys()] for entry in euk_crossover: # for every cross match if euk_reads[entry][0]['bit'] >= float(run_stats['reads'][entry]['bit']): if euk_reads[entry][0]['len'] > cutoff: reads_with_better_euk_hit.append(entry) elif euk_reads[entry][0]['len'] < cutoff: continue else: continue # Return Euk contamination if len(reads_with_better_euk_hit) == 0: Messenger().message("No contaminating eukaryotic reads detected in %s" % (os.path.basename(raw_reads))) else: Messenger().message("Found %s read(s) that may be eukaryotic" % len(reads_with_better_euk_hit + reads_unique_to_eukaryotes)) # Write a file with the Euk free reads. with open(euk_free_output_path, 'w') as euk_free_output: for record in list(SeqIO.parse(open(input_path, 'r'), 'fasta')): if record.id not in reads_with_better_euk_hit: SeqIO.write(record, euk_free_output, "fasta") run_stats['euk_uniq'] = len(reads_unique_to_eukaryotes) run_stats['euk_contamination'] = len(reads_with_better_euk_hit) return run_stats, euk_free_output_path def filter_hmmsearch(self, output_hash, contents, args, input_file_format, cmd_log): for seq_file in sequence_file_list: hmmout_table_title = suffix[0] table_title_list.append(hmmout_table_title) hmmsearch_cmd = " hmmsearch --cpu %s %s -o /dev/null --domtblout %s %s " % (threads, eval, hmmout_table_title, self.hmm) # TODO: capture stderr and report if the check_call fails if input_file_format == FORMAT_FASTA or input_file_format == FORMAT_FASTQ_GZ: if contents.pipe == 'P': cmd = 'orfm %s | %s /dev/stdin' % (seq_file, hmmsearch_cmd) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(["/bin/bash", "-c", cmd]) else: Messenger().message('ERROR: Suffix on %s not recegnised\n' % (seq_file)) exit(1) del suffix[0] return table_title_list def csv_to_titles(self, output_path, input_path, run_stats): ## process hmmsearch/nhmmer results into a list of titles to <base_filename>_readnames.txt run_stats['reads'] = self.hmmtable_reader(input_path) count=sum([len(x) for x in run_stats['reads'].values()]) # See if there are any reads in there reverse direction. Store True if so for later reference try: if any([x for x in sum(run_stats['reads'].values(), []) if x['direction'] =='-']): run_stats['rev_true'] = True else: run_stats['rev_true'] = False except KeyError: run_stats['rev_true'] = False if count > 0: # Return if there weren't any reads found Messenger().message('%s read(s) found' % (count)) else: # Otherwise, report the number of reads Messenger().message('%s reads found, cannot continue with no information' % (len(run_stats['reads'].keys()))) return run_stats, False # And write the read names to output orfm_regex = re.compile('^(\S+)_(\d+)_(\d)_(\d+)') with open(output_path, 'w') as output_file: for record in run_stats['reads'].keys(): regex_match = orfm_regex.match(record) if regex_match is not None: output_file.write(regex_match.groups(0)[0]+'\n') if regex_match is None: output_file.write(record+'\n') return run_stats, output_path def extract_from_raw_reads(self, output_path, input_path, raw_sequences_path, input_file_format, cmd_log, read_stats): # Use the readnames specified to extract from the original sequence # file to a fasta formatted file. def removeOverlaps(item): for a, b in itertools.combinations(item, 2): fromto_a=[int(a['alifrom']),int(a['alito'])] fromto_b=[int(b['alifrom']),int(b['alito'])] range_a=range(min(fromto_a), max(fromto_a)) range_b=range(min(fromto_b), max(fromto_b)) intersect_length=len(set(range_a).intersection(set(range_b))) if intersect_length > 0: if range_a > range_b: item.remove(b) elif a in item: item.remove(a) else: continue return item def extractMultipleHits(reads_path, stats): # Extra function that reads in hits and splits out the regions # (usually in a contig) that hit the HMM as a distinct match. reads=SeqIO.to_dict(SeqIO.parse(reads_path, "fasta")) new_stats={} out_reads={} for key,item in stats.iteritems(): item=removeOverlaps(item) if len(item)>1: counter=0 for entry in item: f=int(entry['alifrom'])-1 t=int(entry['alito'])-1 read_rename=key + '_%s' % str(counter) out_reads[read_rename]=str(reads[key].seq)[f:t] new_stats[read_rename]=entry counter+=1 else: out_reads[key]=str(reads[key].seq) new_stats[key]=item[0] out_path = reads_path[:-3]+'_split.fa' with open(out_path, 'w') as out: for key,item in out_reads.iteritems(): out.write(">%s\n" % (str(key))) out.write("%s\n" % (str(item))) return new_stats, out_path # Run fxtract to obtain reads form original sequence file fxtract_cmd = "fxtract -H -X -f %s " % input_path if input_file_format == FORMAT_FASTA: cmd = "%s %s > %s" % (fxtract_cmd, raw_sequences_path, output_path) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(cmd, shell=True) elif input_file_format == FORMAT_FASTQ_GZ: cmd = "%s -z %s | awk '{print \">\" substr($0,2);getline;print;getline;getline}' > %s" % (fxtract_cmd, raw_sequences_path, output_path) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(cmd, shell=True) else: raise Exception("Programming error") # Check if there are reads that need splitting if any([x for x in read_stats if len(read_stats[x])>1]): read_stats, output_path=extractMultipleHits(output_path, read_stats) else: new_stats={} for key, item in read_stats.iteritems(): new_stats[key]=item[0] read_stats=new_stats return read_stats, output_path def check_read_length(self, reads, pipe): lengths = [] record_list = [] # First check if the reverse pipe is happening, because the read names # are different. record_list += list(SeqIO.parse(open(reads, 'r'), 'fasta')) for record in record_list: lengths.append(len(record.seq)) if pipe == "P": return (sum(lengths) / float(len(lengths)))/3 elif pipe =="D": return sum(lengths) / float(len(lengths)) def alignment_correcter(self, alignment_file_list, output_file_name): corrected_sequences = {} for alignment_file in alignment_file_list: insert_list = [] # Define list containing inserted positions to be removed (lower case characters) sequence_list = list(SeqIO.parse(open(alignment_file, 'r'), 'fasta')) for sequence in sequence_list: # For each sequence in the alignment for idx, nt in enumerate(list(sequence.seq)): # For each nucleotide in the sequence if nt.islower(): # Check for lower case character insert_list.append(idx) # Add to the insert list if it is insert_list = list(OrderedDict.fromkeys(sorted(insert_list, reverse = True))) # Reverse the list and remove duplicate positions for sequence in sequence_list: # For each sequence in the alignment new_seq = list(sequence.seq) # Define a list of sequences to be iterable list for writing for position in insert_list: # For each position in the removal list del new_seq[position] # Delete that inserted position in every sequence corrected_sequences['>'+sequence.id+'\n'] = ''.join(new_seq)+'\n' with open(output_file_name, 'w') as output_file: # Create an open file to write the new sequences to for fasta_id, fasta_seq in corrected_sequences.iteritems(): output_file.write(fasta_id) output_file.write(fasta_seq) def orfm_command_line(self, min_orf_length, restrict_read_length): '''Return a string to run OrfM with, assuming sequences are incoming on stdin''' if restrict_read_length: orfm_arg_l = " -l %d" % restrict_read_length else: orfm_arg_l = '' return 'orfm -m %d %s ' % (min_orf_length, orfm_arg_l) def extract_orfs(self, input_path, raw_orf_path, hmmsearch_out_path, orf_titles_path, min_orf_length, restrict_read_length, orf_out_path, cmd_log): 'Extract only the orfs that hit the hmm, return sequence file with within.' # Build the command output_table_list = [] tee = ' | tee' hmm_number = len(self.search_hmm) if hmm_number > 1: for idx, hmm in enumerate(self.search_hmm): out = os.path.join(os.path.split(hmmsearch_out_path)[0], os.path.basename(hmm).split('.')[0] +'_'+ os.path.split(hmmsearch_out_path)[1]) output_table_list.append(out) if idx + 1 == hmm_number: tee += " | hmmsearch --domtblout %s %s - >/dev/null " % (out, hmm) elif idx + 1 < hmm_number: tee += " >(hmmsearch --domtblout %s %s - >/dev/null) " % (out, hmm) else: raise Exception("Programming Error.") elif hmm_number == 1: tee = ' | hmmsearch --domtblout %s %s - >/dev/null' % (hmmsearch_out_path, self.search_hmm[0]) output_table_list.append(hmmsearch_out_path) # Call orfs on the sequences orfm_cmd = self.orfm_command_line(min_orf_length, restrict_read_length) cmd = '%s %s > %s' % (orfm_cmd, input_path, raw_orf_path) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(cmd, shell=True) cmd = 'cat %s %s' % (raw_orf_path, tee) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(['bash','-c',cmd]) with open(orf_titles_path, 'w') as output: seen = [] for table in output_table_list: for title in [x.split(' ')[0] for x in open(table).readlines() if not x.startswith('#')]: if title not in seen: output.write(str(title) + '\n') seen.append(title) else: pass # Extract the reads using the titles. cmd = 'fxtract -H -X -f %s %s > %s' % (orf_titles_path, raw_orf_path, orf_out_path) self.hk.add_cmd(cmd_log, cmd) subprocess.check_call(cmd, shell=True) # Return name of output file return orf_out_path def p_search(self, files, args, run_stats, base, input_file_format, raw_reads): # Main pipe of search step in protein pipeline: # recieves reads, and returns hits start = timeit.default_timer() # Start search timer # Searching raw reads with HMM hit_table = self.hmmsearch(files.hmmsearch_output_path(base), raw_reads, input_file_format, args.input_sequence_type, args.threads, args.eval, args.min_orf_length, args.restrict_read_length, files.command_log_path()) # Processing the output table to give you the readnames of the hits run_stats, hit_readnames = self.csv_to_titles(files.readnames_output_path(base), hit_table, run_stats) if not hit_readnames: return False, run_stats # Extract the hits form the original raw read file run_stats['reads'], hit_reads = self.extract_from_raw_reads(files.fa_output_path(base), hit_readnames, raw_reads, input_file_format, files.command_log_path(), run_stats['reads']) if args.input_sequence_type == 'nucleotide': # Extract the orfs of these reads that hit the original search hit_orfs = self.extract_orfs(hit_reads, files.orf_output_path(base), files.orf_hmmsearch_output_path(base), files.orf_titles_output_path(base), args.min_orf_length, args.restrict_read_length, files.orf_fasta_output_path(base), files.command_log_path()) elif args.input_sequence_type == 'protein': hit_orfs = hit_reads else: raise Exception('Programming Error') # Define the average read length of the hits run_stats['read_length'] = self.check_read_length(hit_orfs, "P") # Stop and log search timer stop = timeit.default_timer() run_stats['search_t'] = str(int(round((stop - start), 0)) ) # Falsify some summary entries run_stats['euk_contamination'] = 'N/A' run_stats['euk_uniq'] = 'N/A' run_stats['euk_check_t'] = 'N/A' # Return hit reads, and summary hash return hit_orfs, run_stats def d_search(self, files, args, run_stats, base, input_file_format, raw_reads, euk_check): # Main pipe of search step in nucleotide pipeline: # recieves reads, and returns hits start = timeit.default_timer() # Start search timer # First search the reads using the HMM hit_table = self.nhmmer(files.hmmsearch_output_path(base), raw_reads, input_file_format, args.threads, args.eval, files.command_log_path()) # Next, get a list of readnames run_stats, hit_readnames = self.csv_to_titles(files.readnames_output_path(base), hit_table, run_stats) if not hit_readnames: return False, run_stats # And extract them from the original sequence file run_stats['reads'], hit_reads = self.extract_from_raw_reads(files.fa_output_path(base), hit_readnames, raw_reads, input_file_format, files.command_log_path(), run_stats['reads']) # Define the read length run_stats['read_length'] = self.check_read_length(hit_reads, "D") # Stop timing search and start timing euk check step. stop = timeit.default_timer() run_stats['search_t'] = str(int(round((stop - start), 0)) ) start = timeit.default_timer() # Check for Eukarytoic contamination if euk_check: Messenger().message("Checking for Eukaryotic contamination") run_stats, hit_reads = self.check_euk_contamination(files.euk_contam_path(base), files.euk_free_path(base), hit_reads, run_stats, input_file_format, args.threads, args.eval, raw_reads, base, files.command_log_path(), args.euk_hmm_file) # Stop timing eukaryote check stop = timeit.default_timer() run_stats['euk_check_t'] = str(int(round((stop - start), 0)) ) # Finally, return the hits return hit_reads, run_stats def align(self, files, args, run_stats, base, reads): # This pipeline takes unaligned reads, and aligns them agains a hmm, # regardless of their direction. Aligned reads with base insertions # removed are returned in the end. Times and commands are logged. start = timeit.default_timer() # HMMalign the forward reads, and reverse complement reads. self.hmmalign(reads, run_stats, files.command_log_path(), files.output_for_path(base), files.output_rev_path(base), files.sto_for_output_path(base), files.sto_rev_output_path(base), files.conv_output_for_path(base), files.conv_output_rev_path(base)) # Correct the alignment for base insertions. if run_stats['rev_true']: self.alignment_correcter([files.conv_output_for_path(base), files.conv_output_rev_path(base)], files.aligned_fasta_output_path(base)) else: self.alignment_correcter([files.conv_output_for_path(base)], files.aligned_fasta_output_path(base)) stop = timeit.default_timer() run_stats['aln_t'] = str(int(round((stop - start), 0)) ) # Return return files.aligned_fasta_output_path(base), run_stats
class Run: ### Functions that make up pipelines in GraftM def __init__(self, args): self.args = args self.setattributes(self.args) def setattributes(self, args): self.kb = KronaBuilder() self.hk = HouseKeeping() self.s = Stats_And_Summary() self.tg = TaxoGroup() self.e = Extract() if args.subparser_name == 'graft': self.hk.set_attributes(self.args) self.h = Hmmer(self.args.search_hmm_files, self.args.aln_hmm_file) self.sequence_pair_list, self.input_file_format = self.hk.parameter_checks(args) if hasattr(args, 'reference_package'): self.p = Pplacer(self.args.reference_package) def protein_pipeline(self, base, summary_dict, sequence_file, direction): ## The main pipeline for GraftM searching for protein sequence # Set a variable to store the run statistics, to be added later to # the summary_dict if direction: run_stats = summary_dict[base][direction] elif not direction: run_stats = summary_dict[base] else: raise Exception('Programming Error: Assigning run_stats hash') # Tell user what is being searched with what Messenger().message('Searching %s' % (os.path.basename(sequence_file))) # Search for reads using hmmsearch hit_reads, run_stats = self.h.p_search(self.gmf, self.args, run_stats, base, self.input_file_format, sequence_file) if not hit_reads: return summary_dict, False # Align the reads. Messenger().message('Aligning reads to reference package database') hit_aligned_reads, run_stats = self.h.align(self.gmf, self.args, run_stats, base, hit_reads) # Set these paramaters as N/A 'cos they don't apply to the protein pipeline run_stats['n_contamin_euks'] = 'N/A' run_stats['n_uniq_euks'] = 'N/A' run_stats['euk_check_t'] = 'N/A' if direction: summary_dict[base][direction] = run_stats elif not direction: summary_dict[base] = run_stats else: raise Exception('Programming Error: Logging %s hash' % direction) return summary_dict, hit_aligned_reads def dna_pipeline(self, base, summary_dict, sequence_file, direction): ## The main pipeline for GraftM searching for DNA sequence # Set a variable to store the run statistics, to be added later to # the summary_dict if direction: run_stats = summary_dict[base][direction] elif not direction: run_stats = summary_dict[base] else: raise Exception('Programming Error: Assigning run_stats hash') # Search for reads using nhmmer Messenger().message('Searching %s' % os.path.basename(sequence_file)) hit_reads, run_stats = self.h.d_search(self.gmf, self.args, run_stats, base, self.input_file_format, sequence_file) if not hit_reads: return summary_dict, False # Otherwise, run through the alignment Messenger().message('Aligning reads to reference package database') hit_aligned_reads, run_stats = self.h.align(self.gmf, self.args, run_stats, base, hit_reads) if direction: summary_dict[base][direction] = run_stats elif not direction: summary_dict[base] = run_stats else: raise Exception('Programming Error: Logging %s hash' % direction) return summary_dict, hit_aligned_reads def placement(self, summary_dict): ## This is the placement pipeline in GraftM, in aligned reads are ## placed into phylogenetic trees, and the results interpreted. ## If reverse reads are used, this is where the comparisons are made ## between placements, for the summary tables to be build in the ## next stage. # Concatenate alignment files, place in tree, split output guppy # and .jplace file for the output summary_dict = self.p.place(summary_dict, self.gmf, self.args) # Summary steps. start = timeit.default_timer() otu_tables = [] for idx, base in enumerate(summary_dict['base_list']): # First assign the hash that contains all of the trusted placements # to a variable to it can be passed to otu_builder, to be written # to a file. :) if summary_dict['reverse_pipe']: placements = summary_dict[base]['comparison_hash']['trusted_placements'] summary_dict[base]['read_length'] = (summary_dict[base]['forward']['read_length'] + summary_dict[base]['reverse']['read_length'])/2 elif not summary_dict['reverse_pipe']: placements = summary_dict[base]['trusted_placements'] else: raise Exception('Programming Error: Assigning placements hash') self.gmf = GraftMFiles(base, self.args.output_directory, False) # Assign the output directory to place output in Messenger().message('Building summary table for %s' % base) self.s.otu_builder(placements, self.gmf.summary_table_output_path(base), base) otu_tables.append(self.gmf.summary_table_output_path(base)) # Generate coverage table Messenger().message('Building coverage table for %s' % base) self.s.coverage_of_hmm(self.args.aln_hmm_file, self.gmf.summary_table_output_path(base), self.gmf.coverage_table_path(base), summary_dict[base]['read_length']) Messenger().message('Building summary krona plot') self.kb.otuTablePathListToKrona(otu_tables, self.gmf.krona_output_path(), self.gmf.command_log_path()) stop = timeit.default_timer() summary_dict['summary_t'] = str(int(round((stop - start), 0)) ) # Compile basic run statistics if they are wanted summary_dict['stop_all'] = timeit.default_timer() summary_dict['all_t'] = str(int(round((summary_dict['stop_all'] - summary_dict['start_all']), 0)) ) self.s.build_basic_statistics(summary_dict, self.gmf.basic_stats_path(), self.args.type) # Delete unnecessary files Messenger().message('Cleaning up') for base in summary_dict['base_list']: directions = ['forward', 'reverse'] if summary_dict['reverse_pipe']: for i in range(0,2): self.gmf = GraftMFiles(base, self.args.output_directory, directions[i]) self.hk.delete([self.gmf.for_aln_path(base), self.gmf.rev_aln_path(base), self.gmf.sto_for_output_path(base), self.gmf.sto_rev_output_path(base), self.gmf.conv_output_rev_path(base), self.gmf.conv_output_for_path(base), self.gmf.euk_free_path(base), self.gmf.euk_contam_path(base), self.gmf.readnames_output_path(base), self.gmf.sto_output_path(base), self.gmf.orf_titles_output_path(base), self.gmf.orf_hmmsearch_output_path(base), self.gmf.hmmsearch_output_path(base), self.gmf.orf_output_path(base), self.gmf.comb_aln_fa()]) elif not summary_dict['reverse_pipe']: self.gmf = GraftMFiles(base, self.args.output_directory, False) self.hk.delete([self.gmf.for_aln_path(base), self.gmf.rev_aln_path(base), self.gmf.sto_for_output_path(base), self.gmf.sto_rev_output_path(base), self.gmf.conv_output_rev_path(base), self.gmf.conv_output_for_path(base), self.gmf.euk_free_path(base), self.gmf.euk_contam_path(base), self.gmf.readnames_output_path(base), self.gmf.sto_output_path(base), self.gmf.orf_titles_output_path(base), self.gmf.hmmsearch_output_path(base), self.gmf.orf_hmmsearch_output_path(base), self.gmf.orf_output_path(base), self.gmf.comb_aln_fa()]) Messenger().message('Done, thanks for using graftM!\n') def graft(self): # The Graft pipeline: # Searches for reads using hmmer, and places them in phylogenetic # trees to derive a community structure. print ''' GRAFT Joel Boyd, Ben Woodcroft __/__ ______| _- - _ ________| |_____/ - - - | |____/_ - _ ---> - ---> ____| - _- - - | ______ - _ |_____| - |______ ''' # Set up a dictionary that will record stats as the pipeline is running summary_table = {'euks_checked': self.args.check_total_euks, 'base_list': [], 'seqs_list': [], 'start_all': timeit.default_timer(), 'reverse_pipe': False} # Set the output directory if not specified and create that directory if not hasattr(self.args, 'output_directory'): self.args.output_directory = "GraftM_proc" self.hk.make_working_directory(self.args.output_directory, self.args.force) # For each pair (or single file passed to GraftM) for pair in self.sequence_pair_list: # Set the basename, and make an entry to the summary table. base = os.path.basename(pair[0]).split('.')[0] # Set reverse pipe if more than one pair if hasattr(self.args, 'reverse'): summary_table['reverse_pipe'] = True summary_table[base] = {'reverse':{}, 'forward':{}} pair_direction = ['forward', 'reverse'] else: summary_table[base] = {} # Set pipeline and evalue by checking HMM format hmm_type, hmm_tc = self.hk.setpipe(self.args.aln_hmm_file) setattr(self.args, 'type', hmm_type) if hmm_tc: setattr(self.args, 'eval', '--cut_tc') # Guess the sequence file type, if not already specified to GraftM if not hasattr(self.args, 'input_sequence_type'): setattr(self.args, 'input_sequence_type', self.hk.guess_sequence_type(pair[0], self.input_file_format)) # Make the working base directory self.hk.make_working_directory(os.path.join(self.args.output_directory, base), self.args.force) # tell the user which file/s is being processed Messenger().header("Working on %s" % base) # for each of the paired end read files for read_file in pair: # Set the output file_name if summary_table['reverse_pipe']: direction = pair_direction.pop(0) Messenger().header("Working on %s reads" % direction) self.gmf = GraftMFiles(base, self.args.output_directory, direction) self.hk.make_working_directory(os.path.join(self.args.output_directory, base, direction), self.args.force) elif not summary_table['reverse_pipe']: direction = False self.gmf = GraftMFiles(base, self.args.output_directory, direction) else: raise Exception('Programming Error') if self.args.type == 'P': summary_table, hit_aligned_reads = self.protein_pipeline(base, summary_table, read_file, direction) # Or the DNA pipeline elif self.args.type == 'D': self.hk.set_euk_hmm(self.args) summary_table, hit_aligned_reads = self.dna_pipeline(base, summary_table, read_file, direction) if not hit_aligned_reads: continue # Add the run stats and the completed run to the summary table summary_table['seqs_list'].append(hit_aligned_reads) if base not in summary_table['base_list']: summary_table['base_list'].append(base) # Leave the pipeline if search only was specified if self.args.search_only: Messenger().header('Stopping before placement\n') exit(0) # Tell the user we're on to placing the sequences into the tree. self.gmf = GraftMFiles('', self.args.output_directory, False) Messenger().header("Placing reads into phylogenetic tree") self.placement(summary_table) def manage(self): print ''' MANAGE Joel Boyd, Ben Woodcroft ''' if self.args.seq: self.e.extract(self.args) def assemble(self): print ''' ASSEMBLE Joel Boyd, Ben Woodcroft _- - _ ___ __/ - /___\____ /\/ - _ ---> ___/ \_\ \/ - _- /_/ \ / - _ / \__/ / ''' self.tg.main(self.args) def main(self): if self.args.subparser_name == 'graft': self.graft() elif self.args.subparser_name == 'assemble': self.assemble() elif self.args.subparser_name == 'manage': self.manage()
class Pplacer: ### Contains function related to processing alignment files to jplace files ### and running comparisons between forward and revere reads if reverse ### reads are provided. def __init__(self, refpkg): self.refpkg = refpkg self.hk = HouseKeeping() # Run pplacer def pplacer(self, output_file, output_path, input_path, threads): ## Runs pplacer on concatenated alignment file cmd = "pplacer -j %s --verbosity 0 --out-dir %s -c %s %s" % ( str(threads), output_path, self.refpkg, input_path) # Set command extern.run(cmd) output_path = '.'.join(input_path.split('.')[:-1]) + '.jplace' return output_path def alignment_merger(self, alignment_files, output_alignment_path): ## Concatenate aligned read_files into one file. Each read with it's ## own unique identifier assigning it to a particular origin file alias_hash = { } # Set up a hash with file names and their unique identifier file_number = 0 # file counter (unique identifier) with open(output_alignment_path, 'w') as output: for alignment_file in alignment_files: # For each alignment alignments = list( SeqIO.parse(open(alignment_file, 'r'), 'fasta')) # read list for record in alignments: # For each record in the read list record.id = record.id + '_' + str( file_number ) # append the unique identifier to the record id SeqIO.write(alignments, output, "fasta") # And write the reads to the file alias_hash[str(file_number)] = { 'output_path': os.path.join(os.path.dirname(alignment_file), 'placements.jplace') } file_number += 1 return alias_hash def convert_cluster_dict_keys_to_aliases(self, cluster_dict, alias_hash): ''' Parameters ---------- cluster_dict : dict dictionary stores information on pre-placement clustering alias_hash : dict Stores information on each input read file given to GraftM, the corresponding reads found within each file, and their taxonomy Returns -------- updated cluster_dict dict containing alias indexes for keys. ''' output_dict = {} directory_to_index_dict = { os.path.split(item["output_path"])[0]: key for key, item in alias_hash.iteritems() } for key, item in cluster_dict.iteritems(): cluster_file_directory = os.path.split(key)[0] cluster_idx = directory_to_index_dict[cluster_file_directory] output_dict[cluster_idx] = item return output_dict def jplace_split(self, original_jplace, cluster_dict): ''' To make GraftM more efficient, reads are dereplicated and merged into one file prior to placement using pplacer. This function separates the single jplace file produced by this process into the separate jplace files, one per input file (if multiple were provided) and backfills abundance (re-replicates?) into the placement file so analyses can be done using the placement files. Parameters ---------- original_jplace : dict (json) json .jplace file from the pplacer step. cluster_dict : dict dictionary stores information on pre-placement clustering Returns ------- A dict containing placement hashes to write to new jplace file. Each key represents a file alias ''' output_hash = {} for placement in original_jplace['placements']: # for each placement alias_placements_list = [] nm_dict = {} p = placement['p'] if 'nm' in placement.keys(): nm = placement['nm'] elif 'n' in placement.keys(): nm = placement['n'] else: raise Exception( "Unexpected jplace format: Either 'nm' or 'n' are expected as keys in placement jplace .JSON file" ) for nm_entry in nm: nm_list = [] placement_read_name, plval = nm_entry read_alias_idx = placement_read_name.split('_')[ -1] # Split the alias # index out of the read name, which # corresponds to the input file from # which the read originated. read_name = '_'.join(placement_read_name.split('_')[:-1]) read_cluster = cluster_dict[read_alias_idx][read_name] for read in read_cluster: nm_list.append([read.name, plval]) if read_alias_idx not in nm_dict: nm_dict[read_alias_idx] = nm_list else: nm_dict[read_alias_idx] += nm_entry for alias_idx, nm_list in nm_dict.iteritems(): placement_hash = {'p': p, 'nm': nm_list} if alias_idx not in output_hash: output_hash[alias_idx] = [placement_hash] else: output_hash[alias_idx].append(placement_hash) return output_hash def write_jplace(self, original_jplace, alias_hash): # Write the jplace file to their respective file paths. for alias_idx in alias_hash.keys(): output = { 'fields': original_jplace['fields'], 'version': original_jplace['version'], 'tree': original_jplace['tree'], 'placements': alias_hash[alias_idx]['place'], 'metadata': original_jplace['metadata'] } with open(alias_hash[alias_idx]['output_path'], 'w') as output_io: json.dump(output, output_io, ensure_ascii=False, indent=3, separators=(',', ': ')) @T.timeit def place(self, reverse_pipe, seqs_list, resolve_placements, files, args, slash_endings, tax_descr, clusterer): ''' placement - This is the placement pipeline in GraftM, in aligned reads are placed into phylogenetic trees, and the results interpreted. If reverse reads are used, this is where the comparisons are made between placements, for the summary tables to be build in the next stage. Parameters ---------- reverse_pipe : bool True: reverse reads are placed separately False: no reverse reads to place. seqs_list : list list of paths to alignment fastas to be placed into the tree resolve_placements : bool True:resolve placements to their most trusted taxonomy False: classify reads to their most trusted taxonomy, until the confidence cutoff is reached. files : list graftM output file name object args : obj argparse object Returns ------- trusted_placements : dict dictionary of reads and their trusted placements ''' trusted_placements = {} files_to_delete = [] # Merge the alignments so they can all be placed at once. alias_hash = self.alignment_merger(seqs_list, files.comb_aln_fa()) files_to_delete += seqs_list files_to_delete.append(files.comb_aln_fa()) # Run pplacer on merged file jplace = self.pplacer(files.jplace_output_path(), args.output_directory, files.comb_aln_fa(), args.threads) files_to_delete.append(jplace) logging.info("Placements finished") #Read the json of refpkg logging.info("Reading classifications") classifications = Classify(tax_descr).assignPlacement( jplace, args.placements_cutoff, resolve_placements) logging.info("Reads classified") # If the reverse pipe has been specified, run the comparisons between the two pipelines. If not then just return. for idx, file in enumerate(seqs_list): if reverse_pipe: base_file = os.path.basename(file).replace( '_forward_hits.aln.fa', '') forward_gup = classifications.pop( sorted(classifications.keys())[0]) reverse_gup = classifications.pop( sorted(classifications.keys())[0]) seqs_list.pop(idx + 1) placements_hash = Compare().compare_placements( forward_gup, reverse_gup, args.placements_cutoff, slash_endings, base_file) trusted_placements[base_file] = placements_hash[ 'trusted_placements'] else: # Set the trusted placements as base_file = os.path.basename(file).replace('_hits.aln.fa', '') trusted_placements[base_file] = {} for read, entry in classifications[str(idx)].iteritems(): trusted_placements[base_file][read] = entry['placement'] # Split the original jplace file # and write split jplaces to separate file directories with open(jplace) as f: jplace_json = json.load(f) cluster_dict = self.convert_cluster_dict_keys_to_aliases( clusterer.seq_library, alias_hash) hash_with_placements = self.jplace_split(jplace_json, cluster_dict) for file_alias, placement_entries_list in hash_with_placements.items(): alias_hash[file_alias]['place'] = placement_entries_list self.write_jplace(jplace_json, alias_hash) self.hk.delete( files_to_delete) # Remove combined split, not really useful return trusted_placements
def __init__(self): self.hk = HouseKeeping()
class Run: PIPELINE_AA = "P" PIPELINE_NT = "D" _MIN_VERBOSITY_FOR_ART = 3 # with 2 then, only errors are printed PPLACER_TAXONOMIC_ASSIGNMENT = 'pplacer' DIAMOND_TAXONOMIC_ASSIGNMENT = 'diamond' MIN_ALIGNED_FILTER_FOR_NUCLEOTIDE_PACKAGES = 95 MIN_ALIGNED_FILTER_FOR_AMINO_ACID_PACKAGES = 30 DEFAULT_MAX_SAMPLES_FOR_KRONA = 100 NO_ORFS_EXITSTATUS = 128 def __init__(self, args): self.args = args self.setattributes(self.args) def setattributes(self, args): self.hk = HouseKeeping() self.s = Stats_And_Summary() if args.subparser_name == 'graft': commands = ExternalProgramSuite([ 'orfm', 'nhmmer', 'hmmsearch', 'mfqe', 'pplacer', 'ktImportText', 'diamond' ]) self.hk.set_attributes(self.args) self.hk.set_euk_hmm(self.args) if args.euk_check: self.args.search_hmm_files.append(self.args.euk_hmm_file) self.ss = SequenceSearcher( self.args.search_hmm_files, (None if self.args.search_only else self.args.aln_hmm_file)) self.sequence_pair_list = self.hk.parameter_checks(args) if hasattr(args, 'reference_package'): self.p = Pplacer(self.args.reference_package) elif self.args.subparser_name == "create": commands = ExternalProgramSuite( ['taxit', 'FastTreeMP', 'hmmalign', 'mafft']) self.create = Create(commands) def summarise(self, base_list, trusted_placements, reverse_pipe, times, hit_read_count_list, max_samples_for_krona): ''' summarise - write summary information to file, including otu table, biom file, krona plot, and timing information Parameters ---------- base_list : array list of each of the files processed by graftm, with the path and and suffixed removed trusted_placements : dict dictionary of placements with entry as the key, a taxonomy string as the value reverse_pipe : bool True = run reverse pipe, False = run normal pipeline times : array list of the recorded times for each step in the pipeline in the format: [search_step_time, alignment_step_time, placement_step_time] hit_read_count_list : array list containing sublists, one for each file run through the GraftM pipeline, each two entries, the first being the number of putative eukaryotic reads (when searching 16S), the second being the number of hits aligned and placed in the tree. max_samples_for_krona: int If the number of files processed is greater than this number, then do not generate a krona diagram. Returns ------- ''' # Summary steps. placements_list = [] for base in base_list: # First assign the hash that contains all of the trusted placements # to a variable to it can be passed to otu_builder, to be written # to a file. :) placements = trusted_placements[base] self.s.readTax( placements, GraftMFiles(base, self.args.output_directory, False).read_tax_output_path(base)) placements_list.append(placements) #Generate coverage table #logging.info('Building coverage table for %s' % base) #self.s.coverage_of_hmm(self.args.aln_hmm_file, # self.gmf.summary_table_output_path(base), # self.gmf.coverage_table_path(base), # summary_dict[base]['read_length']) logging.info('Writing summary table') with open(self.gmf.combined_summary_table_output_path(), 'w') as f: self.s.write_tabular_otu_table(base_list, placements_list, f) logging.info('Writing biom file') with biom_open(self.gmf.combined_biom_output_path(), 'w') as f: biom_successful = self.s.write_biom(base_list, placements_list, f) if not biom_successful: os.remove(self.gmf.combined_biom_output_path()) logging.info('Building summary krona plot') if len(base_list) > max_samples_for_krona: logging.warn( "Skipping creation of Krona diagram since there are too many input files. The maximum can be overridden using --max_samples_for_krona" ) else: self.s.write_krona_plot(base_list, placements_list, self.gmf.krona_output_path()) # Basic statistics placed_reads = [len(trusted_placements[base]) for base in base_list] self.s.build_basic_statistics(times, hit_read_count_list, placed_reads, \ base_list, self.gmf.basic_stats_path()) # Delete unnecessary files logging.info('Cleaning up') for base in base_list: directions = ['forward', 'reverse'] if reverse_pipe: for i in range(0, 2): self.gmf = GraftMFiles(base, self.args.output_directory, directions[i]) self.hk.delete([ self.gmf.for_aln_path(base), self.gmf.rev_aln_path(base), self.gmf.conv_output_rev_path(base), self.gmf.conv_output_for_path(base), self.gmf.euk_free_path(base), self.gmf.euk_contam_path(base), self.gmf.readnames_output_path(base), self.gmf.sto_output_path(base), self.gmf.orf_titles_output_path(base), self.gmf.orf_output_path(base), self.gmf.output_for_path(base), self.gmf.output_rev_path(base) ]) else: self.gmf = GraftMFiles(base, self.args.output_directory, False) self.hk.delete([ self.gmf.for_aln_path(base), self.gmf.rev_aln_path(base), self.gmf.conv_output_rev_path(base), self.gmf.conv_output_for_path(base), self.gmf.euk_free_path(base), self.gmf.euk_contam_path(base), self.gmf.readnames_output_path(base), self.gmf.sto_output_path(base), self.gmf.orf_titles_output_path(base), self.gmf.orf_output_path(base), self.gmf.output_for_path(base), self.gmf.output_rev_path(base) ]) logging.info('Done, thanks for using graftM!\n') def graft(self): # The Graft pipeline: # Searches for reads using hmmer, and places them in phylogenetic # trees to derive a community structure. if self.args.graftm_package: gpkg = GraftMPackage.acquire(self.args.graftm_package) else: gpkg = None REVERSE_PIPE = (True if self.args.reverse else False) INTERLEAVED = (True if self.args.interleaved else False) base_list = [] seqs_list = [] search_results = [] hit_read_count_list = [] db_search_results = [] if gpkg: maximum_range = gpkg.maximum_range() if self.args.search_diamond_file: self.args.search_method = self.hk.DIAMOND_SEARCH_METHOD diamond_db = self.args.search_diamond_file[0] else: diamond_db = gpkg.diamond_database_path() if self.args.search_method == self.hk.DIAMOND_SEARCH_METHOD: if not diamond_db: logging.error( "%s search method selected, but no diamond database specified. \ Please either provide a gpkg to the --graftm_package flag, or a diamond \ database to the --search_diamond_file flag." % self.args.search_method) raise Exception() else: # Get the maximum range, if none exists, make one from the HMM profile if self.args.maximum_range: maximum_range = self.args.maximum_range else: if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD: if not self.args.search_only: maximum_range = self.hk.get_maximum_range( self.args.aln_hmm_file) else: logging.debug( "Running search only pipeline. maximum_range not configured." ) maximum_range = None else: logging.warning( 'Cannot determine maximum range when using %s pipeline and with no GraftM package specified' % self.args.search_method) logging.warning( 'Setting maximum_range to None (linked hits will not be detected)' ) maximum_range = None if self.args.search_diamond_file: diamond_db = self.args.search_diamond_file else: if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD: diamond_db = None else: logging.error( "%s search method selected, but no gpkg or diamond database selected" % self.args.search_method) if self.args.assignment_method == Run.DIAMOND_TAXONOMIC_ASSIGNMENT: if self.args.reverse: logging.warn( "--reverse reads specified with --assignment_method diamond. Reverse reads will be ignored." ) self.args.reverse = None # If merge reads is specified, check that there are reverse reads to merge with if self.args.merge_reads and not hasattr(self.args, 'reverse'): raise Exception("Programming error") # Set the output directory if not specified and create that directory logging.debug('Creating working directory: %s' % self.args.output_directory) self.hk.make_working_directory(self.args.output_directory, self.args.force) # Set pipeline and evalue by checking HMM format if self.args.search_only: if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD: hmm_type, hmm_tc = self.hk.setpipe( self.args.search_hmm_files[0]) logging.debug("HMM type: %s Trusted Cutoff: %s" % (hmm_type, hmm_tc)) else: hmm_type, hmm_tc = self.hk.setpipe(self.args.aln_hmm_file) logging.debug("HMM type: %s Trusted Cutoff: %s" % (hmm_type, hmm_tc)) if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD: setattr(self.args, 'type', hmm_type) if hmm_tc: setattr(self.args, 'evalue', '--cut_tc') else: setattr(self.args, 'type', self.PIPELINE_AA) if self.args.filter_minimum is not None: filter_minimum = self.args.filter_minimum else: if self.args.type == self.PIPELINE_NT: filter_minimum = Run.MIN_ALIGNED_FILTER_FOR_NUCLEOTIDE_PACKAGES else: filter_minimum = Run.MIN_ALIGNED_FILTER_FOR_AMINO_ACID_PACKAGES # Generate expand_search database if required if self.args.expand_search_contigs: if self.args.graftm_package: pkg = GraftMPackage.acquire(self.args.graftm_package) else: pkg = None boots = ExpandSearcher(search_hmm_files=self.args.search_hmm_files, maximum_range=self.args.maximum_range, threads=self.args.threads, evalue=self.args.evalue, min_orf_length=self.args.min_orf_length, graftm_package=pkg) # this is a hack, it should really use GraftMFiles but that class isn't currently flexible enough new_database = (os.path.join(self.args.output_directory, "expand_search.hmm") \ if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD \ else os.path.join(self.args.output_directory, "expand_search") ) if boots.generate_expand_search_database_from_contigs( self.args.expand_search_contigs, new_database, self.args.search_method): if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD: self.ss.search_hmm.append(new_database) else: diamond_db = new_database first_search_method = self.args.search_method if self.args.decoy_database: decoy_filter = DecoyFilter( Diamond(diamond_db, threads=self.args.threads), Diamond(self.args.decoy_database, threads=self.args.threads)) doing_decoy_search = True elif self.args.search_method == self.hk.HMMSEARCH_AND_DIAMOND_SEARCH_METHOD: decoy_filter = DecoyFilter( Diamond(diamond_db, threads=self.args.threads)) doing_decoy_search = True first_search_method = self.hk.HMMSEARCH_SEARCH_METHOD else: doing_decoy_search = False # For each pair (or single file passed to GraftM) logging.debug('Working with %i file(s)' % len(self.sequence_pair_list)) for pair in self.sequence_pair_list: # Guess the sequence file type, if not already specified to GraftM unpack = UnpackRawReads(pair[0], self.args.input_sequence_type, INTERLEAVED) # Set the basename, and make an entry to the summary table. base = unpack.basename() pair_direction = ['forward', 'reverse'] logging.info("Working on %s" % base) # Make the working base subdirectory self.hk.make_working_directory( os.path.join(self.args.output_directory, base), self.args.force) # for each of the paired end read files for read_file in pair: unpack = UnpackRawReads(read_file, self.args.input_sequence_type, INTERLEAVED) if read_file is None: # placeholder for interleaved (second file is None) continue if not os.path.isfile(read_file): # Check file exists logging.info('%s does not exist! Skipping this file..' % read_file) continue # Set the output file_name if len(pair) == 2: direction = 'interleaved' if pair[1] is None \ else pair_direction.pop(0) logging.info("Working on %s reads" % direction) self.gmf = GraftMFiles(base, self.args.output_directory, direction) self.hk.make_working_directory( os.path.join(self.args.output_directory, base, direction), self.args.force) else: direction = False self.gmf = GraftMFiles(base, self.args.output_directory, direction) if self.args.type == self.PIPELINE_AA: logging.debug("Running protein pipeline") try: search_time, ( result, complement_information) = self.ss.aa_db_search( self.gmf, base, unpack, first_search_method, maximum_range, self.args.threads, self.args.evalue, self.args.min_orf_length, self.args.restrict_read_length, diamond_db, self.args.diamond_performance_parameters, ) except NoInputSequencesException as e: logging.error( "No sufficiently long open reading frames were found, indicating" " either the input sequences are too short or the min orf length" " cutoff is too high. Cannot continue sorry. Alternatively, there" " is something amiss with the installation of OrfM. The specific" " command that failed was: %s" % e.command) exit(Run.NO_ORFS_EXITSTATUS) # Or the DNA pipeline elif self.args.type == self.PIPELINE_NT: logging.debug("Running nucleotide pipeline") search_time, ( result, complement_information) = self.ss.nt_db_search( self.gmf, base, unpack, self.args.euk_check, self.args.search_method, maximum_range, self.args.threads, self.args.evalue) reads_detected = True if not result.hit_fasta() or os.path.getsize( result.hit_fasta()) == 0: logging.info('No reads found in %s' % base) reads_detected = False if self.args.search_only: db_search_results.append(result) base_list.append(base) continue # Filter out decoys if specified if reads_detected and doing_decoy_search: with tempfile.NamedTemporaryFile(prefix="graftm_decoy", suffix='.fa') as f: tmpname = f.name any_remaining = decoy_filter.filter( result.hit_fasta(), tmpname) if any_remaining: shutil.move(tmpname, result.hit_fasta()) else: # No hits remain after decoy filtering. os.remove(result.hit_fasta()) continue if self.args.assignment_method == Run.PPLACER_TAXONOMIC_ASSIGNMENT: logging.info( 'aligning reads to reference package database') hit_aligned_reads = self.gmf.aligned_fasta_output_path( base) if reads_detected: aln_time, aln_result = self.ss.align( result.hit_fasta(), hit_aligned_reads, complement_information, self.args.type, filter_minimum) else: aln_time = 'n/a' if not os.path.exists( hit_aligned_reads ): # If all were filtered out, or there just was none.. with open(hit_aligned_reads, 'w') as f: pass # just touch the file, nothing else seqs_list.append(hit_aligned_reads) db_search_results.append(result) base_list.append(base) search_results.append(result.search_result) hit_read_count_list.append(result.hit_count) # Write summary table srchtw = SearchTableWriter() srchtw.build_search_otu_table( [x.search_objects for x in db_search_results], base_list, self.gmf.search_otu_table()) if self.args.search_only: logging.info( 'Stopping before alignment and taxonomic assignment phase\n') exit(0) if self.args.merge_reads: # not run when diamond is the assignment mode- enforced by argparse grokking logging.debug("Running merge reads output") if self.args.interleaved: fwd_seqs = seqs_list rev_seqs = [] else: base_list = base_list[0::2] fwd_seqs = seqs_list[0::2] rev_seqs = seqs_list[1::2] merged_output=[GraftMFiles(base, self.args.output_directory, False).aligned_fasta_output_path(base) \ for base in base_list] logging.debug("merged reads to %s", merged_output) self.ss.merge_forev_aln(fwd_seqs, rev_seqs, merged_output) seqs_list = merged_output REVERSE_PIPE = False elif REVERSE_PIPE: base_list = base_list[0::2] # Leave the pipeline if search only was specified if self.args.search_and_align_only: logging.info('Stopping before taxonomic assignment phase\n') exit(0) elif not any(base_list): logging.error( 'No hits in any of the provided files. Cannot continue with no reads to assign taxonomy to.\n' ) exit(0) self.gmf = GraftMFiles('', self.args.output_directory, False) if self.args.assignment_method == Run.PPLACER_TAXONOMIC_ASSIGNMENT: clusterer = Clusterer() # Classification steps seqs_list = clusterer.cluster(seqs_list, REVERSE_PIPE) logging.info("Placing reads into phylogenetic tree") taxonomic_assignment_time, assignments = self.p.place( REVERSE_PIPE, seqs_list, self.args.resolve_placements, self.gmf, self.args, result.slash_endings, gpkg.taxtastic_taxonomy_path(), clusterer) assignments = clusterer.uncluster_annotations( assignments, REVERSE_PIPE) elif self.args.assignment_method == Run.DIAMOND_TAXONOMIC_ASSIGNMENT: logging.info("Assigning taxonomy with diamond") taxonomic_assignment_time, assignments = self._assign_taxonomy_with_diamond(\ base_list, db_search_results, gpkg, self.gmf, self.args.diamond_performance_parameters) aln_time = 'n/a' else: raise Exception("Unexpected assignment method encountered: %s" % self.args.placement_method) self.summarise(base_list, assignments, REVERSE_PIPE, [search_time, aln_time, taxonomic_assignment_time], hit_read_count_list, self.args.max_samples_for_krona) @T.timeit def _assign_taxonomy_with_diamond(self, base_list, db_search_results, graftm_package, graftm_files, diamond_performance_parameters): '''Run diamond to assign taxonomy Parameters ---------- base_list: list of str list of sequence block names db_search_results: list of DBSearchResult the result of running hmmsearches graftm_package: GraftMPackage object Diamond is run against this database graftm_files: GraftMFiles object Result files are written here diamond_performance_parameters : str extra args for DIAMOND Returns ------- list of 1. time taken for assignment 2. assignments i.e. dict of base_list entry to dict of read names to to taxonomies, or None if there was no hit detected. ''' runner = Diamond(graftm_package.diamond_database_path(), self.args.threads, self.args.evalue) taxonomy_definition = Getaxnseq().read_taxtastic_taxonomy_and_seqinfo\ (open(graftm_package.taxtastic_taxonomy_path()), open(graftm_package.taxtastic_seqinfo_path())) results = {} # For each of the search results, for i, search_result in enumerate(db_search_results): if search_result.hit_fasta() is None: sequence_id_to_taxonomy = {} else: sequence_id_to_hit = {} # Run diamond logging.debug("Running diamond on %s" % search_result.hit_fasta()) diamond_result = runner.run( search_result.hit_fasta(), UnpackRawReads.PROTEIN_SEQUENCE_TYPE, daa_file_basename=graftm_files. diamond_assignment_output_basename(base_list[i]), extra_args=diamond_performance_parameters) for res in diamond_result.each([ SequenceSearchResult.QUERY_ID_FIELD, SequenceSearchResult.HIT_ID_FIELD ]): if res[0] in sequence_id_to_hit: # do not accept duplicates if sequence_id_to_hit[res[0]] != res[1]: raise Exception( "Diamond unexpectedly gave two hits for a single query sequence for %s" % res[0]) else: sequence_id_to_hit[res[0]] = res[1] # Extract taxonomy of the best hit, and add in the no hits sequence_id_to_taxonomy = {} for seqio in SequenceIO().read_fasta_file( search_result.hit_fasta()): name = seqio.name if name in sequence_id_to_hit: # Add Root; to be in line with pplacer assignment method sequence_id_to_taxonomy[name] = [ 'Root' ] + taxonomy_definition[sequence_id_to_hit[name]] else: # picked up in the initial search (by hmmsearch, say), but diamond misses it sequence_id_to_taxonomy[name] = ['Root'] results[base_list[i]] = sequence_id_to_taxonomy return results def main(self): if self.args.subparser_name == 'graft': if self.args.verbosity >= self._MIN_VERBOSITY_FOR_ART: print(''' GRAFT Joel Boyd, Ben Woodcroft __/__ ______| _- - _ ________| |_____/ - - - | |____/_ - _ >>>> - >>>> ____| - _- - - | ______ - _ |_____| - |______ ''') self.graft() elif self.args.subparser_name == 'create': if self.args.verbosity >= self._MIN_VERBOSITY_FOR_ART: print(''' CREATE Joel Boyd, Ben Woodcroft / >a / ------------- / >b | | -------- >>> | GPKG | >c |________| ---------- ''') if self.args.dereplication_level < 0: logging.error( "Invalid dereplication level selected! please enter a positive integer" ) exit(1) else: if not self.args.sequences: if not self.args.alignment and not self.args.rerooted_annotated_tree \ and not self.args.rerooted_tree: logging.error( "Some sort of sequence data must be provided to run graftM create" ) exit(1) if self.args.taxonomy: if self.args.rerooted_annotated_tree: logging.error( "--taxonomy is incompatible with --rerooted_annotated_tree" ) exit(1) if self.args.taxtastic_taxonomy or self.args.taxtastic_seqinfo: logging.error( "--taxtastic_taxonomy and --taxtastic_seqinfo are incompatible with --taxonomy" ) exit(1) elif self.args.rerooted_annotated_tree: if self.args.taxtastic_taxonomy or self.args.taxtastic_seqinfo: logging.error( "--taxtastic_taxonomy and --taxtastic_seqinfo are incompatible with --rerooted_annotated_tree" ) exit(1) else: if not self.args.taxtastic_taxonomy or not self.args.taxtastic_seqinfo: logging.error( "--taxonomy, --rerooted_annotated_tree or --taxtastic_taxonomy/--taxtastic_seqinfo is required" ) exit(1) if bool(self.args.taxtastic_taxonomy) ^ bool( self.args.taxtastic_seqinfo): logging.error( "Both or neither of --taxtastic_taxonomy and --taxtastic_seqinfo must be defined" ) exit(1) if self.args.alignment and self.args.hmm: logging.warn( "Using both --alignment and --hmm is rarely useful, but proceding on the assumption you understand." ) if len([ _f for _f in [ self.args.rerooted_tree, self.args.rerooted_annotated_tree, self.args.tree ] if _f ]) > 1: logging.error("Only 1 input tree can be specified") exit(1) self.create.main( dereplication_level=self.args.dereplication_level, sequences=self.args.sequences, alignment=self.args.alignment, taxonomy=self.args.taxonomy, rerooted_tree=self.args.rerooted_tree, unrooted_tree=self.args.tree, tree_log=self.args.tree_log, prefix=self.args.output, rerooted_annotated_tree=self.args.rerooted_annotated_tree, min_aligned_percent=float(self.args.min_aligned_percent) / 100, taxtastic_taxonomy=self.args.taxtastic_taxonomy, taxtastic_seqinfo=self.args.taxtastic_seqinfo, hmm=self.args.hmm, search_hmm_files=self.args.search_hmm_files, force=self.args.force, threads=self.args.threads) elif self.args.subparser_name == 'update': logging.info( "GraftM package %s specified to update with sequences in %s" % (self.args.graftm_package, self.args.sequences)) if self.args.regenerate_diamond_db: gpkg = GraftMPackage.acquire(self.args.graftm_package) logging.info("Regenerating diamond DB..") gpkg.create_diamond_db() logging.info("Diamond database regenerated.") return elif not self.args.sequences: logging.error( "--sequences is required unless regenerating the diamond DB" ) exit(1) if not self.args.output: if self.args.graftm_package.endswith(".gpkg"): self.args.output = self.args.graftm_package.replace( ".gpkg", "-updated.gpkg") else: self.args.output = self.args.graftm_package + '-update.gpkg' Update( ExternalProgramSuite([ 'taxit', 'FastTreeMP', 'hmmalign', 'mafft' ])).update(input_sequence_path=self.args.sequences, input_taxonomy_path=self.args.taxonomy, input_graftm_package_path=self.args.graftm_package, output_graftm_package_path=self.args.output) elif self.args.subparser_name == 'expand_search': args = self.args if not args.graftm_package and not args.search_hmm_files: logging.error( "expand_search mode requires either --graftm_package or --search_hmm_files" ) exit(1) if args.graftm_package: pkg = GraftMPackage.acquire(args.graftm_package) else: pkg = None expandsearcher = ExpandSearcher( search_hmm_files=args.search_hmm_files, maximum_range=args.maximum_range, threads=args.threads, evalue=args.evalue, min_orf_length=args.min_orf_length, graftm_package=pkg) expandsearcher.generate_expand_search_database_from_contigs( args.contigs, args.output_hmm, search_method=ExpandSearcher.HMM_SEARCH_METHOD) elif self.args.subparser_name == 'tree': if self.args.graftm_package: # shim in the paths from the graftm package, not overwriting # any of the provided paths. gpkg = GraftMPackage.acquire(self.args.graftm_package) if not self.args.rooted_tree: self.args.rooted_tree = gpkg.reference_package_tree_path() if not self.args.input_greengenes_taxonomy: if not self.args.input_taxtastic_seqinfo: self.args.input_taxtastic_seqinfo = gpkg.taxtastic_seqinfo_path( ) if not self.args.input_taxtastic_taxonomy: self.args.input_taxtastic_taxonomy = gpkg.taxtastic_taxonomy_path( ) if self.args.rooted_tree: if self.args.unrooted_tree: logging.error( "Both a rooted tree and an un-rooted tree were provided, so it's unclear what you are asking GraftM to do. \ If you're unsure see graftM tree -h") exit(1) elif self.args.reference_tree: logging.error( "Both a rooted tree and reference tree were provided, so it's unclear what you are asking GraftM to do. \ If you're unsure see graftM tree -h") exit(1) if not self.args.decorate: logging.error( "It seems a rooted tree has been provided, but --decorate has not been specified so it is unclear what you are asking graftM to do." ) exit(1) dec = Decorator(tree_path=self.args.rooted_tree) elif self.args.unrooted_tree and self.args.reference_tree: logging.debug( "Using provided reference tree %s to reroot %s" % (self.args.reference_tree, self.args.unrooted_tree)) dec = Decorator(reference_tree_path=self.args.reference_tree, tree_path=self.args.unrooted_tree) else: logging.error( "Some tree(s) must be provided, either a rooted tree or both an unrooted tree and a reference tree" ) exit(1) if self.args.output_taxonomy is None and self.args.output_tree is None: logging.error( "Either an output tree or taxonomy must be provided") exit(1) if self.args.input_greengenes_taxonomy: if self.args.input_taxtastic_seqinfo or self.args.input_taxtastic_taxonomy: logging.error( "Both taxtastic and greengenes taxonomy were provided, so its unclear what taxonomy you want graftM to decorate with" ) exit(1) logging.debug("Using input GreenGenes style taxonomy file") dec.main(self.args.input_greengenes_taxonomy, self.args.output_tree, self.args.output_taxonomy, self.args.no_unique_tax, self.args.decorate, None) elif self.args.input_taxtastic_seqinfo and self.args.input_taxtastic_taxonomy: logging.debug("Using input taxtastic style taxonomy/seqinfo") dec.main(self.args.input_taxtastic_taxonomy, self.args.output_tree, self.args.output_taxonomy, self.args.no_unique_tax, self.args.decorate, self.args.input_taxtastic_seqinfo) else: logging.error( "Either a taxtastic taxonomy or seqinfo file was provided. GraftM cannot continue without both." ) exit(1) elif self.args.subparser_name == 'archive': # Back slashes in the ASCII art are escaped. if self.args.verbosity >= self._MIN_VERBOSITY_FOR_ART: print(""" ARCHIVE Joel Boyd, Ben Woodcroft ____.----. ____.----' \\ \\ \\ \\ \\ \\ \\ \\ ____.----'`--.__ \\___.----' | `--.____ /`-._ | __.-' \\ / `-._ ___.---' \\ / `-.____.---' \\ +------+ / / | \\ \\ |`. |`. / / | \\ _.--' <===> | `+--+---+ `-. / | \\ __.--' | | | | `-._ / | \\ __.--' | | | | | | `-./ | \\_.-' | +---+--+ | | | | `. | `. | | | | `+------+ | | | | | | | | | | | | | | | `-. | _.-' `-. | __..--' `-. | __.-' `-|__.--' """) if self.args.create: if self.args.extract: logging.error( "Please specify whether to either create or export a GraftM package" ) exit(1) if not self.args.graftm_package: logging.error( "Creating a GraftM package archive requires an package to be specified" ) exit(1) if not self.args.archive: logging.error( "Creating a GraftM package archive requires an output archive path to be specified" ) exit(1) archive = Archive() archive.create(self.args.graftm_package, self.args.archive, force=self.args.force) elif self.args.extract: archive = Archive() archive.extract(self.args.archive, self.args.graftm_package, force=self.args.force) else: logging.error( "Please specify whether to either create or export a GraftM package" ) exit(1) else: raise Exception("Unexpected subparser name %s" % self.args.subparser_name)
class Pplacer: ### Contains function related to processing alignment files to jplace files ### and running comparisons between forward and revere reads if reverse ### reads are provided. def __init__(self, refpkg): self.refpkg = refpkg self.hk = HouseKeeping() # Run pplacer def pplacer(self, output_file, output_path, input_path, threads, cmd_log): ## Runs pplacer on concatenated alignment file cmd = "pplacer -j %s --verbosity 0 --out-dir %s -c %s %s" % (threads, output_path, self.refpkg, input_path) # Set command self.hk.add_cmd(cmd_log, cmd) # Log it subprocess.check_call(cmd, shell=True) # Run it output_path = '.'.join(input_path.split('.')[:-1]) + '.jplace' return output_path def alignment_merger(self, alignment_files, output_alignment_path): ## Concatenate aligned read_files into one file. Each read with it's ## own unique identifier assigning it to a particular origin file alias_hash = {} # Set up a hash with file names and their unique identifier file_number = 0 # file counter (unique identifier) with open(output_alignment_path, 'w') as output: for alignment_file in alignment_files: # For each alignment alignments = list(SeqIO.parse(open(alignment_file, 'r'), 'fasta')) # read list for record in alignments: # For each record in the read list record.id = record.id + '_' + str(file_number) # append the unique identifier to the record id SeqIO.write(alignments, output, "fasta") # And write the reads to the file alias_hash[str(file_number)] = {'output_path': os.path.join(os.path.dirname(alignment_file),'placements.jplace') , 'place': []} file_number += 1 return alias_hash def jplace_split(self, jplace_file, alias_hash, summary_dict): ## Split the jplace file into their respective directories # Load the placement file placement_file = json.load(open(jplace_file)) # Parse the placements based on unique identifies appended to the end # of each read for placement in placement_file['placements']: # for each placement hash = {} # create an empty hash for alias in alias_hash: # For each alias, append to the 'place' list each read that identifier hash = {'p': placement['p'], 'nm': [nm for nm in placement['nm'] if nm[0].split('_')[-1] == alias]} alias_hash[alias]['place'].append(hash) # Write the jplace file to their respective file paths. jplace_path_list = [] for alias in alias_hash: output = {'fields': placement_file['fields'], 'version': placement_file['version'], 'tree': placement_file['tree'], 'placements': alias_hash[alias]['place'], 'metadata': placement_file['metadata']} with open(alias_hash[alias]['output_path'], 'w') as output_path: json.dump(output, output_path, ensure_ascii=False) jplace_path_list.append(alias_hash[alias]['output_path']) summary_dict['jplace_path_list'] = jplace_path_list return summary_dict def place(self, summary_dict, files, args): ## Pipeline taking multiple alignment files and returning multiple ## placement and guppy files, as well as the comparison between forward ## and reverse reads, if the reverse pipeline is selected start = timeit.default_timer() # Start placement timer # Merge the alignments so they can all be placed at once. alias_hash = self.alignment_merger(summary_dict['seqs_list'], files.comb_aln_fa()) # Run pplacer on merged file jplace = self.pplacer(files.jplace_output_path(), args.output_directory, files.comb_aln_fa(), args.threads, files.command_log_path()) Messenger().message("Placements finished") stop = timeit.default_timer() # stop placement timer and log summary_dict['place_t'] = str( int(round((stop - start), 0)) ) # Split the jplace file summary_dict = self.jplace_split(jplace, alias_hash, summary_dict) #Read the json of refpkg Messenger().message("Reading classifications") tax_descr=json.load(open(self.refpkg+'/CONTENTS.json'))['files']['taxonomy'] classifications=Classify(os.path.join(self.refpkg,tax_descr)).assignPlacement(jplace, args.placements_cutoff, 'reads', summary_dict['resolve_placements']) self.hk.delete([jplace])# Remove combined split, not really useful Messenger().message("Reads classified.") # If the reverse pipe has been specified, run the comparisons between the two pipelines. If not then just return. for idx, base in enumerate(summary_dict['base_list']): if summary_dict['reverse_pipe']: summary_dict[base] = Compare().compare_hits(summary_dict[base], base) forward_gup=classifications.pop(sorted(classifications.keys())[0]) reverse_gup=classifications.pop(sorted(classifications.keys())[0]) summary_dict[base] = Compare().compare_placements(forward_gup, reverse_gup, summary_dict[base], args.placements_cutoff) elif not summary_dict['reverse_pipe']: # Set the trusted placements as summary_dict[base]['trusted_placements'] = {} for read, entry in classifications[str(idx)].iteritems(): summary_dict[base]['trusted_placements'][read] = entry['placement'] return summary_dict