예제 #1
0
    def test_basic_split(self):
        input_alias_hash = {'0':{'place':[]}, '1':{'place':[]}}
        expected_placement=['p__Proteobacteria', 'k__Bacteria', 'p__Proteobacteria']
        mock_cluster_hash = {'0':  {"test_read1": [Sequence("test_read1", "SEQUENCE")]},
                             '1':  {"test_read2": [Sequence("test_read2", "SEQUENCE")]}}
        test_json = {
                     "fields":["classification", "distal_length", "edge_num", "like_weight_ratio", "likelihood", "pendant_length"], 
                     "tree":"((696036:0.2205{0},229854:0.20827{1})1.000:0.14379{2},3190878:0.23845{3},2107103:0.32104{4}){5};",
                     "placements":[{"p":  [["p__Proteobacteria", 0.107586583111, 1, 0.970420466541, -614.032176075, 0.22226616471],
                                           ["k__Bacteria", 0.220493270874, 0, 0.0147918928965, -618.21582627, 0.248671444337],
                                           ["p__Proteobacteria", 8.77624511719e-06, 2, 0.0147876405626, -618.216113788, 0.248672441848]], 
                                    "nm": [["test_read1_0", 1], ["test_read2_1", 1]]}], 
                     "version": 3, 
                     "metadata": {"invocation": "pplacer -c test_16S.gpkg\/test_16S.gpkg.refpkg\/ GraftM_output\/combined_alignment.aln.fa"}
                     }
        
        pplacer = Pplacer("refpkg_decoy")
        
        observed_placement = pplacer.jplace_split(test_json, mock_cluster_hash)
        
        expected_placement = {'0':[{"p": [["p__Proteobacteria", 0.107586583111, 1, 0.970420466541, -614.032176075, 0.22226616471],
                                           ["k__Bacteria", 0.220493270874, 0, 0.0147918928965, -618.21582627, 0.248671444337],
                                           ["p__Proteobacteria", 8.77624511719e-06, 2, 0.0147876405626, -618.216113788, 0.248672441848]], 
                                     "nm":[["test_read1", 1]]}],
                               '1': [{"p": [["p__Proteobacteria", 0.107586583111, 1, 0.970420466541, -614.032176075, 0.22226616471],
                                           ["k__Bacteria", 0.220493270874, 0, 0.0147918928965, -618.21582627, 0.248671444337],
                                           ["p__Proteobacteria", 8.77624511719e-06, 2, 0.0147876405626, -618.216113788, 0.248672441848]], 
                                     "nm": [["test_read2", 1]]}]}

        self.assertEqual(expected_placement,
                         observed_placement)
예제 #2
0
파일: run.py 프로젝트: eliasOnAWS/graftM
    def setattributes(self, args):

        self.hk = HouseKeeping()
        self.s = Stats_And_Summary()
        if args.subparser_name == 'graft':
            commands = ExternalProgramSuite([
                'orfm', 'nhmmer', 'hmmsearch', 'mfqe', 'pplacer',
                'ktImportText', 'diamond'
            ])
            self.hk.set_attributes(self.args)
            self.hk.set_euk_hmm(self.args)
            if args.euk_check:
                self.args.search_hmm_files.append(self.args.euk_hmm_file)

            self.ss = SequenceSearcher(
                self.args.search_hmm_files,
                (None if self.args.search_only else self.args.aln_hmm_file))
            self.sequence_pair_list = self.hk.parameter_checks(args)
            if hasattr(args, 'reference_package'):
                self.p = Pplacer(self.args.reference_package)

        elif self.args.subparser_name == "create":
            commands = ExternalProgramSuite(
                ['taxit', 'FastTreeMP', 'hmmalign', 'mafft'])
            self.create = Create(commands)
예제 #3
0
파일: run.py 프로젝트: wwood/graftM
 def setattributes(self, args):
     self.kb = KronaBuilder()
     self.hk = HouseKeeping()
     self.s = Stats_And_Summary()
     self.tg = TaxoGroup()
     self.e = Extract()
     if args.subparser_name == 'graft':
         self.hk.set_attributes(self.args)
         self.h = Hmmer(self.args.search_hmm_files, self.args.aln_hmm_file)
         self.sequence_pair_list, self.input_file_format = self.hk.parameter_checks(args)
         if hasattr(args, 'reference_package'):
             self.p = Pplacer(self.args.reference_package)
예제 #4
0
    def test_basic_split(self):
        input_alias_hash = {'0': {'place': []}, '1': {'place': []}}
        expected_placement = [
            'p__Proteobacteria', 'k__Bacteria', 'p__Proteobacteria'
        ]
        mock_cluster_hash = {
            '0': {
                "test_read1": [Sequence("test_read1", "SEQUENCE")]
            },
            '1': {
                "test_read2": [Sequence("test_read2", "SEQUENCE")]
            }
        }
        test_json = {
            "fields": [
                "classification", "distal_length", "edge_num",
                "like_weight_ratio", "likelihood", "pendant_length"
            ],
            "tree":
            "((696036:0.2205{0},229854:0.20827{1})1.000:0.14379{2},3190878:0.23845{3},2107103:0.32104{4}){5};",
            "placements": [{
                "p": [[
                    "p__Proteobacteria", 0.107586583111, 1, 0.970420466541,
                    -614.032176075, 0.22226616471
                ],
                      [
                          "k__Bacteria", 0.220493270874, 0, 0.0147918928965,
                          -618.21582627, 0.248671444337
                      ],
                      [
                          "p__Proteobacteria", 8.77624511719e-06, 2,
                          0.0147876405626, -618.216113788, 0.248672441848
                      ]],
                "nm": [["test_read1_0", 1], ["test_read2_1", 1]]
            }],
            "version":
            3,
            "metadata": {
                "invocation":
                "pplacer -c test_16S.gpkg\/test_16S.gpkg.refpkg\/ GraftM_output\/combined_alignment.aln.fa"
            }
        }

        pplacer = Pplacer("refpkg_decoy")

        observed_placement = pplacer.jplace_split(test_json, mock_cluster_hash)

        expected_placement = {
            '0': [{
                "p": [[
                    "p__Proteobacteria", 0.107586583111, 1, 0.970420466541,
                    -614.032176075, 0.22226616471
                ],
                      [
                          "k__Bacteria", 0.220493270874, 0, 0.0147918928965,
                          -618.21582627, 0.248671444337
                      ],
                      [
                          "p__Proteobacteria", 8.77624511719e-06, 2,
                          0.0147876405626, -618.216113788, 0.248672441848
                      ]],
                "nm": [["test_read1", 1]]
            }],
            '1': [{
                "p": [[
                    "p__Proteobacteria", 0.107586583111, 1, 0.970420466541,
                    -614.032176075, 0.22226616471
                ],
                      [
                          "k__Bacteria", 0.220493270874, 0, 0.0147918928965,
                          -618.21582627, 0.248671444337
                      ],
                      [
                          "p__Proteobacteria", 8.77624511719e-06, 2,
                          0.0147876405626, -618.216113788, 0.248672441848
                      ]],
                "nm": [["test_read2", 1]]
            }]
        }

        self.assertEqual(expected_placement, observed_placement)
예제 #5
0
파일: run.py 프로젝트: wwood/graftM
class Run:
    ### Functions that make up pipelines in GraftM

    def __init__(self, args):
        self.args = args
        self.setattributes(self.args)

    def setattributes(self, args):
        self.kb = KronaBuilder()
        self.hk = HouseKeeping()
        self.s = Stats_And_Summary()
        self.tg = TaxoGroup()
        self.e = Extract()
        if args.subparser_name == 'graft':
            self.hk.set_attributes(self.args)
            self.h = Hmmer(self.args.search_hmm_files, self.args.aln_hmm_file)
            self.sequence_pair_list, self.input_file_format = self.hk.parameter_checks(args)
            if hasattr(args, 'reference_package'):
                self.p = Pplacer(self.args.reference_package)

    def protein_pipeline(self, base, summary_dict, sequence_file, direction):
        ## The main pipeline for GraftM searching for protein sequence

        # Set a variable to store the run statistics, to be added later to
        # the summary_dict
        if direction:
            run_stats = summary_dict[base][direction]
        elif not direction:
            run_stats = summary_dict[base]
        else:
            raise Exception('Programming Error: Assigning run_stats hash')
        # Tell user what is being searched with what
        Messenger().message('Searching %s' % (os.path.basename(sequence_file)))
        # Search for reads using hmmsearch
        hit_reads, run_stats = self.h.p_search(self.gmf,
                                               self.args,
                                               run_stats,
                                               base,
                                               self.input_file_format,
                                               sequence_file)
        if not hit_reads:
            return summary_dict, False
        # Align the reads.
        Messenger().message('Aligning reads to reference package database')
        hit_aligned_reads, run_stats = self.h.align(self.gmf,
                                                    self.args,
                                                    run_stats,
                                                    base,
                                                    hit_reads)
        # Set these paramaters as N/A 'cos they don't apply to the protein pipeline
        run_stats['n_contamin_euks'] = 'N/A'
        run_stats['n_uniq_euks'] = 'N/A'
        run_stats['euk_check_t'] = 'N/A'
        if direction:
            summary_dict[base][direction] = run_stats
        elif not direction:
            summary_dict[base] = run_stats
        else:
            raise Exception('Programming Error: Logging %s hash' % direction)

        return summary_dict, hit_aligned_reads

    def dna_pipeline(self, base, summary_dict, sequence_file, direction):
        ## The main pipeline for GraftM searching for DNA sequence

        # Set a variable to store the run statistics, to be added later to
        # the summary_dict
        if direction:
            run_stats = summary_dict[base][direction]
        elif not direction:
            run_stats = summary_dict[base]
        else:
            raise Exception('Programming Error: Assigning run_stats hash')

        # Search for reads using nhmmer
        Messenger().message('Searching %s' % os.path.basename(sequence_file))
        hit_reads, run_stats = self.h.d_search(self.gmf,
                                               self.args,
                                               run_stats,
                                               base,
                                               self.input_file_format,
                                               sequence_file)
        
        if not hit_reads:
            return summary_dict, False
        
        # Otherwise, run through the alignment
        Messenger().message('Aligning reads to reference package database')
        hit_aligned_reads, run_stats = self.h.align(self.gmf,
                                                    self.args,
                                                    run_stats,
                                                    base,
                                                    hit_reads)
        if direction:
            summary_dict[base][direction] = run_stats
        elif not direction:
            summary_dict[base] = run_stats
        else:
            raise Exception('Programming Error: Logging %s hash' % direction)
        return summary_dict, hit_aligned_reads

    def placement(self, summary_dict):
        ## This is the placement pipeline in GraftM, in aligned reads are
        ## placed into phylogenetic trees, and the results interpreted.
        ## If reverse reads are used, this is where the comparisons are made
        ## between placements, for the summary tables to be build in the
        ## next stage.
        # Concatenate alignment files, place in tree, split output guppy
        # and .jplace file for the output
        summary_dict = self.p.place(summary_dict,
                                    self.gmf,
                                    self.args)
        # Summary steps.
        start = timeit.default_timer()
        otu_tables = []
        for idx, base in enumerate(summary_dict['base_list']):
            # First assign the hash that contains all of the trusted placements
            # to a variable to it can be passed to otu_builder, to be written
            # to a file. :)

            if summary_dict['reverse_pipe']:
                placements = summary_dict[base]['comparison_hash']['trusted_placements']
                summary_dict[base]['read_length'] = (summary_dict[base]['forward']['read_length'] + summary_dict[base]['reverse']['read_length'])/2
            elif not summary_dict['reverse_pipe']:
                placements = summary_dict[base]['trusted_placements']
            else:
                raise Exception('Programming Error: Assigning placements hash')

            self.gmf = GraftMFiles(base, self.args.output_directory, False) # Assign the output directory to place output in
            Messenger().message('Building summary table for %s' % base)
            self.s.otu_builder(placements,
                                 self.gmf.summary_table_output_path(base),
                                 base)
            otu_tables.append(self.gmf.summary_table_output_path(base))

            # Generate coverage table
            Messenger().message('Building coverage table for %s' % base)
            self.s.coverage_of_hmm(self.args.aln_hmm_file,
                                     self.gmf.summary_table_output_path(base),
                                     self.gmf.coverage_table_path(base),
                                     summary_dict[base]['read_length'])

        Messenger().message('Building summary krona plot')
        self.kb.otuTablePathListToKrona(otu_tables,
                                        self.gmf.krona_output_path(),
                                        self.gmf.command_log_path())
        stop = timeit.default_timer()
        summary_dict['summary_t'] = str(int(round((stop - start), 0)) )

        # Compile basic run statistics if they are wanted
        summary_dict['stop_all'] = timeit.default_timer()
        summary_dict['all_t'] = str(int(round((summary_dict['stop_all'] - summary_dict['start_all']), 0)) )
        self.s.build_basic_statistics(summary_dict, self.gmf.basic_stats_path(), self.args.type)

        # Delete unnecessary files
        Messenger().message('Cleaning up')
        for base in summary_dict['base_list']:
            directions = ['forward', 'reverse']
            if summary_dict['reverse_pipe']:
                for i in range(0,2):
                    self.gmf = GraftMFiles(base, self.args.output_directory, directions[i])
                    self.hk.delete([self.gmf.for_aln_path(base),
                                    self.gmf.rev_aln_path(base),
                                    self.gmf.sto_for_output_path(base),
                                    self.gmf.sto_rev_output_path(base),
                                    self.gmf.conv_output_rev_path(base),
                                    self.gmf.conv_output_for_path(base),
                                    self.gmf.euk_free_path(base),
                                    self.gmf.euk_contam_path(base),
                                    self.gmf.readnames_output_path(base),
                                    self.gmf.sto_output_path(base),
                                    self.gmf.orf_titles_output_path(base),
                                    self.gmf.orf_hmmsearch_output_path(base),
                                    self.gmf.hmmsearch_output_path(base),
                                    self.gmf.orf_output_path(base),
                                    self.gmf.comb_aln_fa()])
            elif not summary_dict['reverse_pipe']:
                self.gmf = GraftMFiles(base, self.args.output_directory, False)
                self.hk.delete([self.gmf.for_aln_path(base),
                                self.gmf.rev_aln_path(base),
                                self.gmf.sto_for_output_path(base),
                                self.gmf.sto_rev_output_path(base),
                                self.gmf.conv_output_rev_path(base),
                                self.gmf.conv_output_for_path(base),
                                self.gmf.euk_free_path(base),
                                self.gmf.euk_contam_path(base),
                                self.gmf.readnames_output_path(base),
                                self.gmf.sto_output_path(base),
                                self.gmf.orf_titles_output_path(base),
                                self.gmf.hmmsearch_output_path(base),
                                self.gmf.orf_hmmsearch_output_path(base),
                                self.gmf.orf_output_path(base),
                                self.gmf.comb_aln_fa()])

        Messenger().message('Done, thanks for using graftM!\n')

    def graft(self):
        # The Graft pipeline:
        # Searches for reads using hmmer, and places them in phylogenetic
        # trees to derive a community structure.
        print '''
                                GRAFT
        
                       Joel Boyd, Ben Woodcroft
                                                         __/__
                                                  ______|
          _- - _                         ________|      |_____/
           - -            -             |        |____/_
           - _     --->  -   --->   ____|
          - _-  -         -             |      ______
             - _                        |_____|
           -                                  |______
            '''
        # Set up a dictionary that will record stats as the pipeline is running
        summary_table = {'euks_checked': self.args.check_total_euks,
                         'base_list': [],
                         'seqs_list': [],
                         'start_all': timeit.default_timer(),
                         'reverse_pipe': False}

        # Set the output directory if not specified and create that directory
        if not hasattr(self.args, 'output_directory'):
            self.args.output_directory = "GraftM_proc"
        self.hk.make_working_directory(self.args.output_directory,
                                       self.args.force)

        # For each pair (or single file passed to GraftM)
        for pair in self.sequence_pair_list:

            # Set the basename, and make an entry to the summary table.
            base = os.path.basename(pair[0]).split('.')[0]

            # Set reverse pipe if more than one pair
            if hasattr(self.args, 'reverse'):
                summary_table['reverse_pipe'] = True
                summary_table[base] = {'reverse':{}, 'forward':{}}
                pair_direction = ['forward', 'reverse']
            else:
                summary_table[base] = {}

            # Set pipeline and evalue by checking HMM format
            hmm_type, hmm_tc = self.hk.setpipe(self.args.aln_hmm_file)
            setattr(self.args, 'type', hmm_type)
            if hmm_tc:
                setattr(self.args, 'eval', '--cut_tc')
                
            # Guess the sequence file type, if not already specified to GraftM
            if not hasattr(self.args, 'input_sequence_type'):
                setattr(self.args, 'input_sequence_type',
                        self.hk.guess_sequence_type(pair[0],
                                                    self.input_file_format))
            # Make the working base directory
            self.hk.make_working_directory(os.path.join(self.args.output_directory,
                                                        base),
                                           self.args.force)

            # tell the user which file/s is being processed
            Messenger().header("Working on %s" % base)

            # for each of the paired end read files
            for read_file in pair:
                # Set the output file_name
                if summary_table['reverse_pipe']:
                    direction = pair_direction.pop(0)
                    Messenger().header("Working on %s reads" % direction)
                    self.gmf = GraftMFiles(base,
                                           self.args.output_directory,
                                           direction)
                    self.hk.make_working_directory(os.path.join(self.args.output_directory,
                                                                base,
                                                                direction),
                                                   self.args.force)
                elif not summary_table['reverse_pipe']:
                    direction = False
                    self.gmf = GraftMFiles(base,
                                           self.args.output_directory,
                                           direction)
                else:
                    raise Exception('Programming Error')

                if self.args.type == 'P':
                    summary_table, hit_aligned_reads = self.protein_pipeline(base,
                                                                            summary_table,
                                                                            read_file,
                                                                            direction)
                # Or the DNA pipeline
                elif self.args.type == 'D':
                    self.hk.set_euk_hmm(self.args)
                    summary_table, hit_aligned_reads = self.dna_pipeline(base,
                                                                        summary_table,
                                                                        read_file,
                                                                        direction)
                if not hit_aligned_reads:
                    continue

                # Add the run stats and the completed run to the summary table
                summary_table['seqs_list'].append(hit_aligned_reads)
                if base not in summary_table['base_list']:
                    summary_table['base_list'].append(base)

        # Leave the pipeline if search only was specified
        if self.args.search_only:
            Messenger().header('Stopping before placement\n')
            exit(0)
        # Tell the user we're on to placing the sequences into the tree.
        self.gmf = GraftMFiles('',
                               self.args.output_directory,
                               False)
        Messenger().header("Placing reads into phylogenetic tree")
        self.placement(summary_table)


    def manage(self):
        print '''
                            MANAGE

                   Joel Boyd, Ben Woodcroft

'''

        if self.args.seq:
            self.e.extract(self.args)

    def assemble(self):
        print '''
                           ASSEMBLE

                   Joel Boyd, Ben Woodcroft


          _- - _               ___            __/
           -                  /___\____      /\/
           - _     --->   ___/       \_\     \/
          - _-           /_/            \    /
             - _        /                \__/
                       /
'''
        self.tg.main(self.args)

    def main(self):

        if self.args.subparser_name == 'graft':
            self.graft()

        elif self.args.subparser_name == 'assemble':
            self.assemble()


        elif self.args.subparser_name == 'manage':
            self.manage()
예제 #6
0
파일: run.py 프로젝트: eliasOnAWS/graftM
class Run:

    PIPELINE_AA = "P"
    PIPELINE_NT = "D"

    _MIN_VERBOSITY_FOR_ART = 3  # with 2 then, only errors are printed

    PPLACER_TAXONOMIC_ASSIGNMENT = 'pplacer'
    DIAMOND_TAXONOMIC_ASSIGNMENT = 'diamond'

    MIN_ALIGNED_FILTER_FOR_NUCLEOTIDE_PACKAGES = 95
    MIN_ALIGNED_FILTER_FOR_AMINO_ACID_PACKAGES = 30

    DEFAULT_MAX_SAMPLES_FOR_KRONA = 100

    NO_ORFS_EXITSTATUS = 128

    def __init__(self, args):
        self.args = args
        self.setattributes(self.args)

    def setattributes(self, args):

        self.hk = HouseKeeping()
        self.s = Stats_And_Summary()
        if args.subparser_name == 'graft':
            commands = ExternalProgramSuite([
                'orfm', 'nhmmer', 'hmmsearch', 'mfqe', 'pplacer',
                'ktImportText', 'diamond'
            ])
            self.hk.set_attributes(self.args)
            self.hk.set_euk_hmm(self.args)
            if args.euk_check:
                self.args.search_hmm_files.append(self.args.euk_hmm_file)

            self.ss = SequenceSearcher(
                self.args.search_hmm_files,
                (None if self.args.search_only else self.args.aln_hmm_file))
            self.sequence_pair_list = self.hk.parameter_checks(args)
            if hasattr(args, 'reference_package'):
                self.p = Pplacer(self.args.reference_package)

        elif self.args.subparser_name == "create":
            commands = ExternalProgramSuite(
                ['taxit', 'FastTreeMP', 'hmmalign', 'mafft'])
            self.create = Create(commands)

    def summarise(self, base_list, trusted_placements, reverse_pipe, times,
                  hit_read_count_list, max_samples_for_krona):
        '''
        summarise - write summary information to file, including otu table, biom
                    file, krona plot, and timing information

        Parameters
        ----------
        base_list : array
            list of each of the files processed by graftm, with the path and
            and suffixed removed
        trusted_placements : dict
            dictionary of placements with entry as the key, a taxonomy string
            as the value
        reverse_pipe : bool
            True = run reverse pipe, False = run normal pipeline
        times : array
            list of the recorded times for each step in the pipeline in the
            format: [search_step_time, alignment_step_time, placement_step_time]
        hit_read_count_list : array
            list containing sublists, one for each file run through the GraftM
            pipeline, each two entries, the first being the number of putative
            eukaryotic reads (when searching 16S), the second being the number
            of hits aligned and placed in the tree.
        max_samples_for_krona: int
            If the number of files processed is greater than this number, then
            do not generate a krona diagram.
        Returns
        -------
        '''

        # Summary steps.
        placements_list = []
        for base in base_list:
            # First assign the hash that contains all of the trusted placements
            # to a variable to it can be passed to otu_builder, to be written
            # to a file. :)
            placements = trusted_placements[base]
            self.s.readTax(
                placements,
                GraftMFiles(base, self.args.output_directory,
                            False).read_tax_output_path(base))
            placements_list.append(placements)

        #Generate coverage table
        #logging.info('Building coverage table for %s' % base)
        #self.s.coverage_of_hmm(self.args.aln_hmm_file,
        #                         self.gmf.summary_table_output_path(base),
        #                         self.gmf.coverage_table_path(base),
        #                         summary_dict[base]['read_length'])

        logging.info('Writing summary table')
        with open(self.gmf.combined_summary_table_output_path(), 'w') as f:
            self.s.write_tabular_otu_table(base_list, placements_list, f)

        logging.info('Writing biom file')
        with biom_open(self.gmf.combined_biom_output_path(), 'w') as f:
            biom_successful = self.s.write_biom(base_list, placements_list, f)
        if not biom_successful:
            os.remove(self.gmf.combined_biom_output_path())

        logging.info('Building summary krona plot')
        if len(base_list) > max_samples_for_krona:
            logging.warn(
                "Skipping creation of Krona diagram since there are too many input files. The maximum can be overridden using --max_samples_for_krona"
            )
        else:
            self.s.write_krona_plot(base_list, placements_list,
                                    self.gmf.krona_output_path())

        # Basic statistics
        placed_reads = [len(trusted_placements[base]) for base in base_list]
        self.s.build_basic_statistics(times, hit_read_count_list, placed_reads, \
                                      base_list, self.gmf.basic_stats_path())

        # Delete unnecessary files
        logging.info('Cleaning up')
        for base in base_list:
            directions = ['forward', 'reverse']
            if reverse_pipe:
                for i in range(0, 2):
                    self.gmf = GraftMFiles(base, self.args.output_directory,
                                           directions[i])
                    self.hk.delete([
                        self.gmf.for_aln_path(base),
                        self.gmf.rev_aln_path(base),
                        self.gmf.conv_output_rev_path(base),
                        self.gmf.conv_output_for_path(base),
                        self.gmf.euk_free_path(base),
                        self.gmf.euk_contam_path(base),
                        self.gmf.readnames_output_path(base),
                        self.gmf.sto_output_path(base),
                        self.gmf.orf_titles_output_path(base),
                        self.gmf.orf_output_path(base),
                        self.gmf.output_for_path(base),
                        self.gmf.output_rev_path(base)
                    ])
            else:
                self.gmf = GraftMFiles(base, self.args.output_directory, False)
                self.hk.delete([
                    self.gmf.for_aln_path(base),
                    self.gmf.rev_aln_path(base),
                    self.gmf.conv_output_rev_path(base),
                    self.gmf.conv_output_for_path(base),
                    self.gmf.euk_free_path(base),
                    self.gmf.euk_contam_path(base),
                    self.gmf.readnames_output_path(base),
                    self.gmf.sto_output_path(base),
                    self.gmf.orf_titles_output_path(base),
                    self.gmf.orf_output_path(base),
                    self.gmf.output_for_path(base),
                    self.gmf.output_rev_path(base)
                ])

        logging.info('Done, thanks for using graftM!\n')

    def graft(self):
        # The Graft pipeline:
        # Searches for reads using hmmer, and places them in phylogenetic
        # trees to derive a community structure.
        if self.args.graftm_package:
            gpkg = GraftMPackage.acquire(self.args.graftm_package)
        else:
            gpkg = None

        REVERSE_PIPE = (True if self.args.reverse else False)
        INTERLEAVED = (True if self.args.interleaved else False)
        base_list = []
        seqs_list = []
        search_results = []
        hit_read_count_list = []
        db_search_results = []

        if gpkg:
            maximum_range = gpkg.maximum_range()

            if self.args.search_diamond_file:
                self.args.search_method = self.hk.DIAMOND_SEARCH_METHOD
                diamond_db = self.args.search_diamond_file[0]
            else:
                diamond_db = gpkg.diamond_database_path()
                if self.args.search_method == self.hk.DIAMOND_SEARCH_METHOD:
                    if not diamond_db:
                        logging.error(
                            "%s search method selected, but no diamond database specified. \
                        Please either provide a gpkg to the --graftm_package flag, or a diamond \
                        database to the --search_diamond_file flag." %
                            self.args.search_method)
                        raise Exception()
        else:
            # Get the maximum range, if none exists, make one from the HMM profile
            if self.args.maximum_range:
                maximum_range = self.args.maximum_range
            else:
                if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD:
                    if not self.args.search_only:
                        maximum_range = self.hk.get_maximum_range(
                            self.args.aln_hmm_file)
                    else:
                        logging.debug(
                            "Running search only pipeline. maximum_range not configured."
                        )
                        maximum_range = None
                else:
                    logging.warning(
                        'Cannot determine maximum range when using %s pipeline and with no GraftM package specified'
                        % self.args.search_method)
                    logging.warning(
                        'Setting maximum_range to None (linked hits will not be detected)'
                    )
                    maximum_range = None
            if self.args.search_diamond_file:
                diamond_db = self.args.search_diamond_file
            else:
                if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD:
                    diamond_db = None
                else:
                    logging.error(
                        "%s search method selected, but no gpkg or diamond database selected"
                        % self.args.search_method)

        if self.args.assignment_method == Run.DIAMOND_TAXONOMIC_ASSIGNMENT:
            if self.args.reverse:
                logging.warn(
                    "--reverse reads specified with --assignment_method diamond. Reverse reads will be ignored."
                )
                self.args.reverse = None

        # If merge reads is specified, check that there are reverse reads to merge with
        if self.args.merge_reads and not hasattr(self.args, 'reverse'):
            raise Exception("Programming error")

        # Set the output directory if not specified and create that directory
        logging.debug('Creating working directory: %s' %
                      self.args.output_directory)
        self.hk.make_working_directory(self.args.output_directory,
                                       self.args.force)

        # Set pipeline and evalue by checking HMM format
        if self.args.search_only:
            if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD:
                hmm_type, hmm_tc = self.hk.setpipe(
                    self.args.search_hmm_files[0])
                logging.debug("HMM type: %s Trusted Cutoff: %s" %
                              (hmm_type, hmm_tc))
        else:
            hmm_type, hmm_tc = self.hk.setpipe(self.args.aln_hmm_file)
            logging.debug("HMM type: %s Trusted Cutoff: %s" %
                          (hmm_type, hmm_tc))

        if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD:
            setattr(self.args, 'type', hmm_type)
            if hmm_tc:
                setattr(self.args, 'evalue', '--cut_tc')
        else:
            setattr(self.args, 'type', self.PIPELINE_AA)

        if self.args.filter_minimum is not None:
            filter_minimum = self.args.filter_minimum
        else:
            if self.args.type == self.PIPELINE_NT:
                filter_minimum = Run.MIN_ALIGNED_FILTER_FOR_NUCLEOTIDE_PACKAGES
            else:
                filter_minimum = Run.MIN_ALIGNED_FILTER_FOR_AMINO_ACID_PACKAGES

        # Generate expand_search database if required
        if self.args.expand_search_contigs:
            if self.args.graftm_package:
                pkg = GraftMPackage.acquire(self.args.graftm_package)
            else:
                pkg = None
            boots = ExpandSearcher(search_hmm_files=self.args.search_hmm_files,
                                   maximum_range=self.args.maximum_range,
                                   threads=self.args.threads,
                                   evalue=self.args.evalue,
                                   min_orf_length=self.args.min_orf_length,
                                   graftm_package=pkg)

            # this is a hack, it should really use GraftMFiles but that class isn't currently flexible enough
            new_database = (os.path.join(self.args.output_directory, "expand_search.hmm") \
                            if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD \
                            else os.path.join(self.args.output_directory, "expand_search")
                            )

            if boots.generate_expand_search_database_from_contigs(
                    self.args.expand_search_contigs, new_database,
                    self.args.search_method):
                if self.args.search_method == self.hk.HMMSEARCH_SEARCH_METHOD:
                    self.ss.search_hmm.append(new_database)
                else:
                    diamond_db = new_database

        first_search_method = self.args.search_method
        if self.args.decoy_database:
            decoy_filter = DecoyFilter(
                Diamond(diamond_db, threads=self.args.threads),
                Diamond(self.args.decoy_database, threads=self.args.threads))
            doing_decoy_search = True
        elif self.args.search_method == self.hk.HMMSEARCH_AND_DIAMOND_SEARCH_METHOD:
            decoy_filter = DecoyFilter(
                Diamond(diamond_db, threads=self.args.threads))
            doing_decoy_search = True
            first_search_method = self.hk.HMMSEARCH_SEARCH_METHOD
        else:
            doing_decoy_search = False

        # For each pair (or single file passed to GraftM)
        logging.debug('Working with %i file(s)' % len(self.sequence_pair_list))
        for pair in self.sequence_pair_list:
            # Guess the sequence file type, if not already specified to GraftM
            unpack = UnpackRawReads(pair[0], self.args.input_sequence_type,
                                    INTERLEAVED)

            # Set the basename, and make an entry to the summary table.
            base = unpack.basename()
            pair_direction = ['forward', 'reverse']
            logging.info("Working on %s" % base)

            # Make the working base subdirectory
            self.hk.make_working_directory(
                os.path.join(self.args.output_directory, base),
                self.args.force)

            # for each of the paired end read files
            for read_file in pair:
                unpack = UnpackRawReads(read_file,
                                        self.args.input_sequence_type,
                                        INTERLEAVED)
                if read_file is None:
                    # placeholder for interleaved (second file is None)
                    continue

                if not os.path.isfile(read_file):  # Check file exists
                    logging.info('%s does not exist! Skipping this file..' %
                                 read_file)
                    continue

                # Set the output file_name
                if len(pair) == 2:
                    direction = 'interleaved' if pair[1] is None \
                                              else pair_direction.pop(0)
                    logging.info("Working on %s reads" % direction)
                    self.gmf = GraftMFiles(base, self.args.output_directory,
                                           direction)
                    self.hk.make_working_directory(
                        os.path.join(self.args.output_directory, base,
                                     direction), self.args.force)
                else:
                    direction = False
                    self.gmf = GraftMFiles(base, self.args.output_directory,
                                           direction)

                if self.args.type == self.PIPELINE_AA:
                    logging.debug("Running protein pipeline")
                    try:
                        search_time, (
                            result,
                            complement_information) = self.ss.aa_db_search(
                                self.gmf,
                                base,
                                unpack,
                                first_search_method,
                                maximum_range,
                                self.args.threads,
                                self.args.evalue,
                                self.args.min_orf_length,
                                self.args.restrict_read_length,
                                diamond_db,
                                self.args.diamond_performance_parameters,
                            )
                    except NoInputSequencesException as e:
                        logging.error(
                            "No sufficiently long open reading frames were found, indicating"
                            " either the input sequences are too short or the min orf length"
                            " cutoff is too high. Cannot continue sorry. Alternatively, there"
                            " is something amiss with the installation of OrfM. The specific"
                            " command that failed was: %s" % e.command)
                        exit(Run.NO_ORFS_EXITSTATUS)

                # Or the DNA pipeline
                elif self.args.type == self.PIPELINE_NT:
                    logging.debug("Running nucleotide pipeline")
                    search_time, (
                        result, complement_information) = self.ss.nt_db_search(
                            self.gmf, base, unpack, self.args.euk_check,
                            self.args.search_method, maximum_range,
                            self.args.threads, self.args.evalue)

                reads_detected = True
                if not result.hit_fasta() or os.path.getsize(
                        result.hit_fasta()) == 0:
                    logging.info('No reads found in %s' % base)
                    reads_detected = False

                if self.args.search_only:
                    db_search_results.append(result)
                    base_list.append(base)
                    continue

                # Filter out decoys if specified
                if reads_detected and doing_decoy_search:
                    with tempfile.NamedTemporaryFile(prefix="graftm_decoy",
                                                     suffix='.fa') as f:
                        tmpname = f.name
                    any_remaining = decoy_filter.filter(
                        result.hit_fasta(), tmpname)
                    if any_remaining:
                        shutil.move(tmpname, result.hit_fasta())
                    else:
                        # No hits remain after decoy filtering.
                        os.remove(result.hit_fasta())
                        continue

                if self.args.assignment_method == Run.PPLACER_TAXONOMIC_ASSIGNMENT:
                    logging.info(
                        'aligning reads to reference package database')
                    hit_aligned_reads = self.gmf.aligned_fasta_output_path(
                        base)

                    if reads_detected:
                        aln_time, aln_result = self.ss.align(
                            result.hit_fasta(), hit_aligned_reads,
                            complement_information, self.args.type,
                            filter_minimum)
                    else:
                        aln_time = 'n/a'
                    if not os.path.exists(
                            hit_aligned_reads
                    ):  # If all were filtered out, or there just was none..
                        with open(hit_aligned_reads, 'w') as f:
                            pass  # just touch the file, nothing else
                    seqs_list.append(hit_aligned_reads)

                db_search_results.append(result)
                base_list.append(base)
                search_results.append(result.search_result)
                hit_read_count_list.append(result.hit_count)

        # Write summary table
        srchtw = SearchTableWriter()
        srchtw.build_search_otu_table(
            [x.search_objects for x in db_search_results], base_list,
            self.gmf.search_otu_table())

        if self.args.search_only:
            logging.info(
                'Stopping before alignment and taxonomic assignment phase\n')
            exit(0)

        if self.args.merge_reads:  # not run when diamond is the assignment mode- enforced by argparse grokking
            logging.debug("Running merge reads output")
            if self.args.interleaved:
                fwd_seqs = seqs_list
                rev_seqs = []
            else:
                base_list = base_list[0::2]
                fwd_seqs = seqs_list[0::2]
                rev_seqs = seqs_list[1::2]
            merged_output=[GraftMFiles(base, self.args.output_directory, False).aligned_fasta_output_path(base) \
                           for base in base_list]
            logging.debug("merged reads to %s", merged_output)
            self.ss.merge_forev_aln(fwd_seqs, rev_seqs, merged_output)
            seqs_list = merged_output
            REVERSE_PIPE = False

        elif REVERSE_PIPE:
            base_list = base_list[0::2]

        # Leave the pipeline if search only was specified
        if self.args.search_and_align_only:
            logging.info('Stopping before taxonomic assignment phase\n')
            exit(0)
        elif not any(base_list):
            logging.error(
                'No hits in any of the provided files. Cannot continue with no reads to assign taxonomy to.\n'
            )
            exit(0)
        self.gmf = GraftMFiles('', self.args.output_directory, False)

        if self.args.assignment_method == Run.PPLACER_TAXONOMIC_ASSIGNMENT:
            clusterer = Clusterer()
            # Classification steps
            seqs_list = clusterer.cluster(seqs_list, REVERSE_PIPE)
            logging.info("Placing reads into phylogenetic tree")
            taxonomic_assignment_time, assignments = self.p.place(
                REVERSE_PIPE, seqs_list, self.args.resolve_placements,
                self.gmf, self.args, result.slash_endings,
                gpkg.taxtastic_taxonomy_path(), clusterer)
            assignments = clusterer.uncluster_annotations(
                assignments, REVERSE_PIPE)

        elif self.args.assignment_method == Run.DIAMOND_TAXONOMIC_ASSIGNMENT:
            logging.info("Assigning taxonomy with diamond")
            taxonomic_assignment_time, assignments = self._assign_taxonomy_with_diamond(\
                        base_list,
                        db_search_results,
                        gpkg,
                        self.gmf,
                        self.args.diamond_performance_parameters)
            aln_time = 'n/a'
        else:
            raise Exception("Unexpected assignment method encountered: %s" %
                            self.args.placement_method)

        self.summarise(base_list, assignments, REVERSE_PIPE,
                       [search_time, aln_time, taxonomic_assignment_time],
                       hit_read_count_list, self.args.max_samples_for_krona)

    @T.timeit
    def _assign_taxonomy_with_diamond(self, base_list, db_search_results,
                                      graftm_package, graftm_files,
                                      diamond_performance_parameters):
        '''Run diamond to assign taxonomy

        Parameters
        ----------
        base_list: list of str
            list of sequence block names
        db_search_results: list of DBSearchResult
            the result of running hmmsearches
        graftm_package: GraftMPackage object
            Diamond is run against this database
        graftm_files: GraftMFiles object
            Result files are written here
        diamond_performance_parameters : str
            extra args for DIAMOND

        Returns
        -------
        list of
        1. time taken for assignment
        2. assignments i.e. dict of base_list entry to dict of read names to
            to taxonomies, or None if there was no hit detected.
        '''
        runner = Diamond(graftm_package.diamond_database_path(),
                         self.args.threads, self.args.evalue)
        taxonomy_definition = Getaxnseq().read_taxtastic_taxonomy_and_seqinfo\
                (open(graftm_package.taxtastic_taxonomy_path()),
                 open(graftm_package.taxtastic_seqinfo_path()))
        results = {}

        # For each of the search results,
        for i, search_result in enumerate(db_search_results):
            if search_result.hit_fasta() is None:
                sequence_id_to_taxonomy = {}
            else:
                sequence_id_to_hit = {}
                # Run diamond
                logging.debug("Running diamond on %s" %
                              search_result.hit_fasta())
                diamond_result = runner.run(
                    search_result.hit_fasta(),
                    UnpackRawReads.PROTEIN_SEQUENCE_TYPE,
                    daa_file_basename=graftm_files.
                    diamond_assignment_output_basename(base_list[i]),
                    extra_args=diamond_performance_parameters)
                for res in diamond_result.each([
                        SequenceSearchResult.QUERY_ID_FIELD,
                        SequenceSearchResult.HIT_ID_FIELD
                ]):
                    if res[0] in sequence_id_to_hit:
                        # do not accept duplicates
                        if sequence_id_to_hit[res[0]] != res[1]:
                            raise Exception(
                                "Diamond unexpectedly gave two hits for a single query sequence for %s"
                                % res[0])
                    else:
                        sequence_id_to_hit[res[0]] = res[1]

                # Extract taxonomy of the best hit, and add in the no hits
                sequence_id_to_taxonomy = {}
                for seqio in SequenceIO().read_fasta_file(
                        search_result.hit_fasta()):
                    name = seqio.name
                    if name in sequence_id_to_hit:
                        # Add Root; to be in line with pplacer assignment method
                        sequence_id_to_taxonomy[name] = [
                            'Root'
                        ] + taxonomy_definition[sequence_id_to_hit[name]]
                    else:
                        # picked up in the initial search (by hmmsearch, say), but diamond misses it
                        sequence_id_to_taxonomy[name] = ['Root']

            results[base_list[i]] = sequence_id_to_taxonomy
        return results

    def main(self):

        if self.args.subparser_name == 'graft':
            if self.args.verbosity >= self._MIN_VERBOSITY_FOR_ART:
                print('''
                                GRAFT

                       Joel Boyd, Ben Woodcroft

                                                         __/__
                                                  ______|
          _- - _                         ________|      |_____/
           - -            -             |        |____/_
           - _     >>>>  -   >>>>   ____|
          - _-  -         -             |      ______
             - _                        |_____|
           -                                  |______
            ''')
            self.graft()

        elif self.args.subparser_name == 'create':
            if self.args.verbosity >= self._MIN_VERBOSITY_FOR_ART:
                print('''
                            CREATE

                   Joel Boyd, Ben Woodcroft

                                                    /
              >a                                   /
              -------------                       /
              >b                        |        |
              --------          >>>     |  GPKG  |
              >c                        |________|
              ----------
''')
            if self.args.dereplication_level < 0:
                logging.error(
                    "Invalid dereplication level selected! please enter a positive integer"
                )
                exit(1)

            else:
                if not self.args.sequences:
                    if not self.args.alignment and not self.args.rerooted_annotated_tree \
                                               and not self.args.rerooted_tree:
                        logging.error(
                            "Some sort of sequence data must be provided to run graftM create"
                        )
                        exit(1)
                if self.args.taxonomy:
                    if self.args.rerooted_annotated_tree:
                        logging.error(
                            "--taxonomy is incompatible with --rerooted_annotated_tree"
                        )
                        exit(1)
                    if self.args.taxtastic_taxonomy or self.args.taxtastic_seqinfo:
                        logging.error(
                            "--taxtastic_taxonomy and --taxtastic_seqinfo are incompatible with --taxonomy"
                        )
                        exit(1)
                elif self.args.rerooted_annotated_tree:
                    if self.args.taxtastic_taxonomy or self.args.taxtastic_seqinfo:
                        logging.error(
                            "--taxtastic_taxonomy and --taxtastic_seqinfo are incompatible with --rerooted_annotated_tree"
                        )
                        exit(1)
                else:
                    if not self.args.taxtastic_taxonomy or not self.args.taxtastic_seqinfo:
                        logging.error(
                            "--taxonomy, --rerooted_annotated_tree or --taxtastic_taxonomy/--taxtastic_seqinfo is required"
                        )
                        exit(1)
                if bool(self.args.taxtastic_taxonomy) ^ bool(
                        self.args.taxtastic_seqinfo):
                    logging.error(
                        "Both or neither of --taxtastic_taxonomy and --taxtastic_seqinfo must be defined"
                    )
                    exit(1)
                if self.args.alignment and self.args.hmm:
                    logging.warn(
                        "Using both --alignment and --hmm is rarely useful, but proceding on the assumption you understand."
                    )
                if len([
                        _f for _f in [
                            self.args.rerooted_tree,
                            self.args.rerooted_annotated_tree, self.args.tree
                        ] if _f
                ]) > 1:
                    logging.error("Only 1 input tree can be specified")
                    exit(1)

                self.create.main(
                    dereplication_level=self.args.dereplication_level,
                    sequences=self.args.sequences,
                    alignment=self.args.alignment,
                    taxonomy=self.args.taxonomy,
                    rerooted_tree=self.args.rerooted_tree,
                    unrooted_tree=self.args.tree,
                    tree_log=self.args.tree_log,
                    prefix=self.args.output,
                    rerooted_annotated_tree=self.args.rerooted_annotated_tree,
                    min_aligned_percent=float(self.args.min_aligned_percent) /
                    100,
                    taxtastic_taxonomy=self.args.taxtastic_taxonomy,
                    taxtastic_seqinfo=self.args.taxtastic_seqinfo,
                    hmm=self.args.hmm,
                    search_hmm_files=self.args.search_hmm_files,
                    force=self.args.force,
                    threads=self.args.threads)

        elif self.args.subparser_name == 'update':
            logging.info(
                "GraftM package %s specified to update with sequences in %s" %
                (self.args.graftm_package, self.args.sequences))
            if self.args.regenerate_diamond_db:
                gpkg = GraftMPackage.acquire(self.args.graftm_package)
                logging.info("Regenerating diamond DB..")
                gpkg.create_diamond_db()
                logging.info("Diamond database regenerated.")
                return
            elif not self.args.sequences:
                logging.error(
                    "--sequences is required unless regenerating the diamond DB"
                )
                exit(1)

            if not self.args.output:
                if self.args.graftm_package.endswith(".gpkg"):
                    self.args.output = self.args.graftm_package.replace(
                        ".gpkg", "-updated.gpkg")
                else:
                    self.args.output = self.args.graftm_package + '-update.gpkg'

            Update(
                ExternalProgramSuite([
                    'taxit', 'FastTreeMP', 'hmmalign', 'mafft'
                ])).update(input_sequence_path=self.args.sequences,
                           input_taxonomy_path=self.args.taxonomy,
                           input_graftm_package_path=self.args.graftm_package,
                           output_graftm_package_path=self.args.output)

        elif self.args.subparser_name == 'expand_search':
            args = self.args
            if not args.graftm_package and not args.search_hmm_files:
                logging.error(
                    "expand_search mode requires either --graftm_package or --search_hmm_files"
                )
                exit(1)

            if args.graftm_package:
                pkg = GraftMPackage.acquire(args.graftm_package)
            else:
                pkg = None

            expandsearcher = ExpandSearcher(
                search_hmm_files=args.search_hmm_files,
                maximum_range=args.maximum_range,
                threads=args.threads,
                evalue=args.evalue,
                min_orf_length=args.min_orf_length,
                graftm_package=pkg)
            expandsearcher.generate_expand_search_database_from_contigs(
                args.contigs,
                args.output_hmm,
                search_method=ExpandSearcher.HMM_SEARCH_METHOD)

        elif self.args.subparser_name == 'tree':
            if self.args.graftm_package:
                # shim in the paths from the graftm package, not overwriting
                # any of the provided paths.
                gpkg = GraftMPackage.acquire(self.args.graftm_package)
                if not self.args.rooted_tree:
                    self.args.rooted_tree = gpkg.reference_package_tree_path()
                if not self.args.input_greengenes_taxonomy:
                    if not self.args.input_taxtastic_seqinfo:
                        self.args.input_taxtastic_seqinfo = gpkg.taxtastic_seqinfo_path(
                        )
                    if not self.args.input_taxtastic_taxonomy:
                        self.args.input_taxtastic_taxonomy = gpkg.taxtastic_taxonomy_path(
                        )

            if self.args.rooted_tree:
                if self.args.unrooted_tree:
                    logging.error(
                        "Both a rooted tree and an un-rooted tree were provided, so it's unclear what you are asking GraftM to do. \
If you're unsure see graftM tree -h")
                    exit(1)
                elif self.args.reference_tree:
                    logging.error(
                        "Both a rooted tree and reference tree were provided, so it's unclear what you are asking GraftM to do. \
If you're unsure see graftM tree -h")
                    exit(1)

                if not self.args.decorate:
                    logging.error(
                        "It seems a rooted tree has been provided, but --decorate has not been specified so it is unclear what you are asking graftM to do."
                    )
                    exit(1)

                dec = Decorator(tree_path=self.args.rooted_tree)

            elif self.args.unrooted_tree and self.args.reference_tree:
                logging.debug(
                    "Using provided reference tree %s to reroot %s" %
                    (self.args.reference_tree, self.args.unrooted_tree))
                dec = Decorator(reference_tree_path=self.args.reference_tree,
                                tree_path=self.args.unrooted_tree)
            else:
                logging.error(
                    "Some tree(s) must be provided, either a rooted tree or both an unrooted tree and a reference tree"
                )
                exit(1)

            if self.args.output_taxonomy is None and self.args.output_tree is None:
                logging.error(
                    "Either an output tree or taxonomy must be provided")
                exit(1)
            if self.args.input_greengenes_taxonomy:
                if self.args.input_taxtastic_seqinfo or self.args.input_taxtastic_taxonomy:
                    logging.error(
                        "Both taxtastic and greengenes taxonomy were provided, so its unclear what taxonomy you want graftM to decorate with"
                    )
                    exit(1)
                logging.debug("Using input GreenGenes style taxonomy file")
                dec.main(self.args.input_greengenes_taxonomy,
                         self.args.output_tree, self.args.output_taxonomy,
                         self.args.no_unique_tax, self.args.decorate, None)
            elif self.args.input_taxtastic_seqinfo and self.args.input_taxtastic_taxonomy:
                logging.debug("Using input taxtastic style taxonomy/seqinfo")
                dec.main(self.args.input_taxtastic_taxonomy,
                         self.args.output_tree, self.args.output_taxonomy,
                         self.args.no_unique_tax, self.args.decorate,
                         self.args.input_taxtastic_seqinfo)
            else:
                logging.error(
                    "Either a taxtastic taxonomy or seqinfo file was provided. GraftM cannot continue without both."
                )
                exit(1)

        elif self.args.subparser_name == 'archive':
            # Back slashes in the ASCII art are escaped.
            if self.args.verbosity >= self._MIN_VERBOSITY_FOR_ART:
                print("""
                               ARCHIVE

                        Joel Boyd, Ben Woodcroft

                  ____.----.
        ____.----'          \\
        \\                    \\
         \\                    \\
          \\                    \\
           \\          ____.----'`--.__
            \\___.----'          |     `--.____
           /`-._                |       __.-' \\
          /     `-._            ___.---'       \\
         /          `-.____.---'                \\           +------+
        /            / | \\                       \\          |`.    |`.
       /            /  |  \\                   _.--'  <===>  |  `+--+---+
       `-.         /   |   \\            __.--'              |   |  |   |
          `-._    /    |    \\     __.--'     |              |   |  |   |
            | `-./     |     \\_.-'           |              +---+--+   |
            |          |                     |               `. |   `. |
            |          |                     |                 `+------+
            |          |                     |
            |          |                     |
            |          |                     |
            |          |                     |
            |          |                     |
            `-.        |                  _.-'
               `-.     |           __..--'
                  `-.  |      __.-'
                     `-|__.--'
            """)
            if self.args.create:
                if self.args.extract:
                    logging.error(
                        "Please specify whether to either create or export a GraftM package"
                    )
                    exit(1)
                if not self.args.graftm_package:
                    logging.error(
                        "Creating a GraftM package archive requires an package to be specified"
                    )
                    exit(1)
                if not self.args.archive:
                    logging.error(
                        "Creating a GraftM package archive requires an output archive path to be specified"
                    )
                    exit(1)

                archive = Archive()
                archive.create(self.args.graftm_package,
                               self.args.archive,
                               force=self.args.force)

            elif self.args.extract:
                archive = Archive()
                archive.extract(self.args.archive,
                                self.args.graftm_package,
                                force=self.args.force)
            else:
                logging.error(
                    "Please specify whether to either create or export a GraftM package"
                )
                exit(1)

        else:
            raise Exception("Unexpected subparser name %s" %
                            self.args.subparser_name)