예제 #1
0
def test_null_results():
    phase = PhaseFactory()

    results = [{"a": 0.6}, {"a": None}]

    queryset = [
        EvaluationFactory(submission__phase=phase, status=Evaluation.SUCCESS)
        for _ in range(len(results))
    ]

    for e, r in zip(queryset, results):
        e.outputs.add(
            ComponentInterfaceValue.objects.create(
                interface=ComponentInterface.objects.get(
                    slug="metrics-json-file"),
                value=r,
            ))

    phase.score_jsonpath = "a"
    phase.result_display_choice = Phase.ALL
    phase.save()

    calculate_ranks(phase_pk=phase.pk)

    expected_ranks = [1, 0]
    assert_ranks(queryset, expected_ranks)
def assert_ranks(challenge, expected_ranks, queryset):
    # Execute calculate_ranks manually
    calculate_ranks(challenge_pk=challenge.pk)
    for q, exp in zip(queryset, expected_ranks):
        r = Result.objects.get(pk=q.pk)
        assert r.rank == exp
    return challenge
예제 #3
0
def test_null_results():
    phase = PhaseFactory()

    results = [{"a": 0.6}, {"a": None}]

    queryset = [
        EvaluationFactory(submission__phase=phase, status=Evaluation.SUCCESS)
        for _ in range(len(results))
    ]

    for e, r in zip(queryset, results):
        e.create_result(result=r)

    phase.score_jsonpath = "a"
    phase.result_display_choice = Phase.ALL
    phase.save()

    calculate_ranks(phase_pk=phase.pk)

    expected_ranks = [1, 0]
    assert_ranks(queryset, expected_ranks)
예제 #4
0
def test_null_results():
    challenge = ChallengeFactory()

    results = [{"a": 0.6}, {"a": None}]

    queryset = [
        EvaluationFactory(submission__challenge=challenge,
                          status=Evaluation.SUCCESS)
        for _ in range(len(results))
    ]

    for e, r in zip(queryset, results):
        e.create_result(result=r)

    challenge.evaluation_config.score_jsonpath = "a"
    challenge.evaluation_config.result_display_choice = Config.ALL
    challenge.evaluation_config.save()

    calculate_ranks(challenge_pk=challenge.pk)

    expected_ranks = [1, 0]
    assert_ranks(queryset, expected_ranks)
예제 #5
0
def test_results_display():
    challenge = ChallengeFactory()

    user1 = UserFactory()
    user2 = UserFactory()

    metrics = "metrics"
    creator = "creator"

    results = [
        {
            metrics: {
                "b": 0.3
            },
            creator: user1
        },  # Invalid result
        {
            metrics: {
                "a": 0.6
            },
            creator: user1
        },
        {
            metrics: {
                "a": 0.4
            },
            creator: user1
        },
        {
            metrics: {
                "a": 0.2
            },
            creator: user1
        },
        {
            metrics: {
                "a": 0.1
            },
            creator: user2
        },
        {
            metrics: {
                "a": 0.5
            },
            creator: user2
        },
        {
            metrics: {
                "a": 0.3
            },
            creator: user2
        },
    ]

    queryset = [
        EvaluationFactory(
            submission__challenge=challenge,
            submission__creator=r[creator],
            status=Evaluation.SUCCESS,
        ) for r in results
    ]

    for e, r in zip(queryset, results):
        e.create_result(result=r[metrics])

    challenge.evaluation_config.score_jsonpath = "a"
    challenge.evaluation_config.result_display_choice = Config.ALL
    challenge.evaluation_config.save()

    calculate_ranks(challenge_pk=challenge.pk)

    expected_ranks = [0, 1, 3, 5, 6, 2, 4]
    assert_ranks(queryset, expected_ranks)

    challenge.evaluation_config.result_display_choice = Config.MOST_RECENT
    challenge.evaluation_config.save()

    calculate_ranks(challenge_pk=challenge.pk)

    expected_ranks = [0, 0, 0, 2, 0, 0, 1]
    assert_ranks(queryset, expected_ranks)

    challenge.evaluation_config.result_display_choice = Config.BEST
    challenge.evaluation_config.save()

    calculate_ranks(challenge_pk=challenge.pk)

    expected_ranks = [0, 1, 0, 0, 0, 2, 0]
    assert_ranks(queryset, expected_ranks)

    # now test reverse order
    challenge.evaluation_config.score_default_sort = (
        challenge.evaluation_config.ASCENDING)
    challenge.evaluation_config.save()

    calculate_ranks(challenge_pk=challenge.pk)

    expected_ranks = [0, 0, 0, 2, 1, 0, 0]
    assert_ranks(queryset, expected_ranks)

    challenge.evaluation_config.result_display_choice = Config.MOST_RECENT
    challenge.evaluation_config.save()

    calculate_ranks(challenge_pk=challenge.pk)

    expected_ranks = [0, 0, 0, 1, 0, 0, 2]
    assert_ranks(queryset, expected_ranks)
예제 #6
0
def test_calculate_ranks():
    challenge = ChallengeFactory()

    results = [
        # Warning: Do not change this values without updating the
        # expected_ranks below.
        {
            "a": 0.0,
            "b": 0.0
        },
        {
            "a": 0.5,
            "b": 0.2
        },
        {
            "a": 1.0,
            "b": 0.3
        },
        {
            "a": 0.7,
            "b": 0.4
        },
        {
            "a": 0.5,
            "b": 0.5
        },
        # Following two are invalid if relative ranking is used
        {
            "a": 1.0
        },
        {
            "b": 0.3
        },
        # Add a valid, but unpublished result
        {
            "a": 0.1,
            "b": 0.1
        },
    ]

    queryset = [
        EvaluationFactory(submission__challenge=challenge,
                          status=Evaluation.SUCCESS)
        for _ in range(len(results))
    ]

    for e, r in zip(queryset, results):
        e.create_result(result=r)

    # Unpublish the result
    queryset[-1].published = False
    queryset[-1].save()

    expected = {
        Config.DESCENDING: {
            Config.ABSOLUTE: {
                Config.DESCENDING: {
                    "ranks": [6, 4, 1, 3, 4, 1, 0, 0],
                    "rank_scores": [6, 4, 1, 3, 4, 1, 0, 0],
                },
                Config.ASCENDING: {
                    "ranks": [6, 4, 1, 3, 4, 1, 0, 0],
                    "rank_scores": [6, 4, 1, 3, 4, 1, 0, 0],
                },
            },
            Config.MEDIAN: {
                Config.DESCENDING: {
                    "ranks": [5, 4, 1, 1, 1, 0, 0, 0],
                    "rank_scores": [5, 3.5, 2, 2, 2, 0, 0, 0],
                },
                Config.ASCENDING: {
                    "ranks": [3, 2, 1, 3, 5, 0, 0, 0],
                    "rank_scores": [3, 2.5, 2, 3, 4, 0, 0, 0],
                },
            },
            Config.MEAN: {
                Config.DESCENDING: {
                    "ranks": [5, 4, 1, 1, 1, 0, 0, 0],
                    "rank_scores": [5, 3.5, 2, 2, 2, 0, 0, 0],
                },
                Config.ASCENDING: {
                    "ranks": [3, 2, 1, 3, 5, 0, 0, 0],
                    "rank_scores": [3, 2.5, 2, 3, 4, 0, 0, 0],
                },
            },
        },
        Config.ASCENDING: {
            Config.ABSOLUTE: {
                Config.DESCENDING: {
                    "ranks": [1, 2, 5, 4, 2, 5, 0, 0],
                    "rank_scores": [1, 2, 5, 4, 2, 5, 0, 0],
                },
                Config.ASCENDING: {
                    "ranks": [1, 2, 5, 4, 2, 5, 0, 0],
                    "rank_scores": [1, 2, 5, 4, 2, 5, 0, 0],
                },
            },
            Config.MEDIAN: {
                Config.DESCENDING: {
                    "ranks": [2, 2, 5, 2, 1, 0, 0, 0],
                    "rank_scores": [3, 3, 4, 3, 1.5, 0, 0, 0],
                },
                Config.ASCENDING: {
                    "ranks": [1, 2, 4, 4, 3, 0, 0, 0],
                    "rank_scores": [1, 2, 4, 4, 3.5, 0, 0, 0],
                },
            },
            Config.MEAN: {
                Config.DESCENDING: {
                    "ranks": [2, 2, 5, 2, 1, 0, 0, 0],
                    "rank_scores": [3, 3, 4, 3, 1.5, 0, 0, 0],
                },
                Config.ASCENDING: {
                    "ranks": [1, 2, 4, 4, 3, 0, 0, 0],
                    "rank_scores": [1, 2, 4, 4, 3.5, 0, 0, 0],
                },
            },
        },
    }

    for score_method in (Config.ABSOLUTE, Config.MEDIAN, Config.MEAN):
        for a_order in (Config.DESCENDING, Config.ASCENDING):
            for b_order in (Config.DESCENDING, Config.ASCENDING):
                challenge.evaluation_config.score_jsonpath = "a"
                challenge.evaluation_config.scoring_method_choice = (
                    score_method)
                challenge.evaluation_config.score_default_sort = a_order
                challenge.evaluation_config.extra_results_columns = [{
                    "path":
                    "b",
                    "title":
                    "b",
                    "order":
                    b_order
                }]
                challenge.evaluation_config.save()

                calculate_ranks(challenge_pk=challenge.pk)

                assert_ranks(
                    queryset,
                    expected[a_order][score_method][b_order]["ranks"],
                    expected[a_order][score_method][b_order]["rank_scores"],
                )
예제 #7
0
def test_calculate_ranks(django_assert_max_num_queries):
    phase = PhaseFactory()

    results = [
        # Warning: Do not change this values without updating the
        # expected_ranks below.
        {
            "a": 0.0,
            "b": 0.0
        },
        {
            "a": 0.5,
            "b": 0.2
        },
        {
            "a": 1.0,
            "b": 0.3
        },
        {
            "a": 0.7,
            "b": 0.4
        },
        {
            "a": 0.5,
            "b": 0.5
        },
        # Following two are invalid as they are incomplete
        {
            "a": 1.0
        },
        {
            "b": 0.3
        },
        # Add a valid, but unpublished result
        {
            "a": 0.1,
            "b": 0.1
        },
    ]

    queryset = [
        EvaluationFactory(submission__phase=phase, status=Evaluation.SUCCESS)
        for _ in range(len(results))
    ]

    for e, r in zip(queryset, results):
        e.create_result(result=r)

    # Unpublish the result
    queryset[-1].published = False
    queryset[-1].save()

    expected = {
        Phase.DESCENDING: {
            Phase.ABSOLUTE: {
                Phase.DESCENDING: {
                    "ranks": [5, 3, 1, 2, 3, 0, 0, 0],
                    "rank_scores": [5, 3, 1, 2, 3, 0, 0, 0],
                },
                Phase.ASCENDING: {
                    "ranks": [5, 3, 1, 2, 3, 0, 0, 0],
                    "rank_scores": [5, 3, 1, 2, 3, 0, 0, 0],
                },
            },
            Phase.MEDIAN: {
                Phase.DESCENDING: {
                    "ranks": [5, 4, 1, 1, 1, 0, 0, 0],
                    "rank_scores": [5, 3.5, 2, 2, 2, 0, 0, 0],
                },
                Phase.ASCENDING: {
                    "ranks": [3, 2, 1, 3, 5, 0, 0, 0],
                    "rank_scores": [3, 2.5, 2, 3, 4, 0, 0, 0],
                },
            },
            Phase.MEAN: {
                Phase.DESCENDING: {
                    "ranks": [5, 4, 1, 1, 1, 0, 0, 0],
                    "rank_scores": [5, 3.5, 2, 2, 2, 0, 0, 0],
                },
                Phase.ASCENDING: {
                    "ranks": [3, 2, 1, 3, 5, 0, 0, 0],
                    "rank_scores": [3, 2.5, 2, 3, 4, 0, 0, 0],
                },
            },
        },
        Phase.ASCENDING: {
            Phase.ABSOLUTE: {
                Phase.DESCENDING: {
                    "ranks": [1, 2, 5, 4, 2, 0, 0, 0],
                    "rank_scores": [1, 2, 5, 4, 2, 0, 0, 0],
                },
                Phase.ASCENDING: {
                    "ranks": [1, 2, 5, 4, 2, 0, 0, 0],
                    "rank_scores": [1, 2, 5, 4, 2, 0, 0, 0],
                },
            },
            Phase.MEDIAN: {
                Phase.DESCENDING: {
                    "ranks": [2, 2, 5, 2, 1, 0, 0, 0],
                    "rank_scores": [3, 3, 4, 3, 1.5, 0, 0, 0],
                },
                Phase.ASCENDING: {
                    "ranks": [1, 2, 4, 4, 3, 0, 0, 0],
                    "rank_scores": [1, 2, 4, 4, 3.5, 0, 0, 0],
                },
            },
            Phase.MEAN: {
                Phase.DESCENDING: {
                    "ranks": [2, 2, 5, 2, 1, 0, 0, 0],
                    "rank_scores": [3, 3, 4, 3, 1.5, 0, 0, 0],
                },
                Phase.ASCENDING: {
                    "ranks": [1, 2, 4, 4, 3, 0, 0, 0],
                    "rank_scores": [1, 2, 4, 4, 3.5, 0, 0, 0],
                },
            },
        },
    }

    for score_method in (Phase.ABSOLUTE, Phase.MEDIAN, Phase.MEAN):
        for a_order in (Phase.DESCENDING, Phase.ASCENDING):
            for b_order in (Phase.DESCENDING, Phase.ASCENDING):
                phase.score_jsonpath = "a"
                phase.scoring_method_choice = score_method
                phase.score_default_sort = a_order
                phase.extra_results_columns = [{
                    "path": "b",
                    "title": "b",
                    "order": b_order
                }]
                phase.save()

                with django_assert_max_num_queries(7):
                    calculate_ranks(phase_pk=phase.pk)

                assert_ranks(
                    queryset,
                    expected[a_order][score_method][b_order]["ranks"],
                    expected[a_order][score_method][b_order]["rank_scores"],
                )
예제 #8
0
def test_results_display():
    phase = PhaseFactory()

    user1 = UserFactory()
    user2 = UserFactory()

    metrics = "metrics"
    creator = "creator"

    results = [
        {
            metrics: {
                "b": 0.3
            },
            creator: user1
        },  # Invalid result
        {
            metrics: {
                "a": 0.6
            },
            creator: user1
        },
        {
            metrics: {
                "a": 0.4
            },
            creator: user1
        },
        {
            metrics: {
                "a": 0.2
            },
            creator: user1
        },
        {
            metrics: {
                "a": 0.1
            },
            creator: user2
        },
        {
            metrics: {
                "a": 0.5
            },
            creator: user2
        },
        {
            metrics: {
                "a": 0.3
            },
            creator: user2
        },
    ]

    queryset = [
        EvaluationFactory(
            submission__phase=phase,
            submission__creator=r[creator],
            status=Evaluation.SUCCESS,
        ) for r in results
    ]

    for e, r in zip(queryset, results):
        e.create_result(result=r[metrics])

    phase.score_jsonpath = "a"
    phase.result_display_choice = Phase.ALL
    phase.save()

    calculate_ranks(phase_pk=phase.pk)

    expected_ranks = [0, 1, 3, 5, 6, 2, 4]
    assert_ranks(queryset, expected_ranks)

    phase.result_display_choice = Phase.MOST_RECENT
    phase.save()

    calculate_ranks(phase_pk=phase.pk)

    expected_ranks = [0, 0, 0, 2, 0, 0, 1]
    assert_ranks(queryset, expected_ranks)

    phase.result_display_choice = Phase.BEST
    phase.save()

    calculate_ranks(phase_pk=phase.pk)

    expected_ranks = [0, 1, 0, 0, 0, 2, 0]
    assert_ranks(queryset, expected_ranks)

    # now test reverse order
    phase.score_default_sort = phase.ASCENDING
    phase.save()

    calculate_ranks(phase_pk=phase.pk)

    expected_ranks = [0, 0, 0, 2, 1, 0, 0]
    assert_ranks(queryset, expected_ranks)

    phase.result_display_choice = Phase.MOST_RECENT
    phase.save()

    calculate_ranks(phase_pk=phase.pk)

    expected_ranks = [0, 0, 0, 1, 0, 0, 2]
    assert_ranks(queryset, expected_ranks)